Generalized Linear
Mixed Models
Florian Jaeger

Building an
interpretable
Common Issues and Solutions in Regression Modeling (Mixed or not) Day 2

Florian Jaeger

February 9, 2011
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Hypothesis testing in psycholinguistic research

- Typically, we make predictions not just about the existence, but also the direction of effects.
- Sometimes, we're also interested in effect shapes (non-linearities, etc.)
- Unlike in ANOVA, regression analyses reliably test hypotheses about effect direction and shape without requiring post-hoc analyses if (a) the predictors in the model are coded appropriately and (b) the model can be trusted.
- Today: Provide an overview of (a) and (b).

Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Overview

Generalized Linear
Mixed Models
Florian Jaeger

- Introduce sample data and simple models
- Towards a model with interpretable coefficients:
- outlier removal
- transformation
- coding, centering, ...
- collinearity
- Model evaluation:
- fitted vs. observed values
- model validation
- investigation of residuals
- case influence, outliers
- Model comparison
- Reporting the model:
- comparing effect sizes
- back-transformation of predictors
- visualization

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Data 1: Lexical decision RTs

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Subject RT Trial NativeLanguage

A1 6.340359	23	English	owl	4.859812	
A1	6.308098	27	English	mole	4.605170
A1	6.349139	29	English	cherry	4.997212
A1	6.186209	30	English	pear	4.727388
A1 6.025866	32	English	dog	7.667626	
A1 6.180017	33	English blackberry	4.060443		

Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Data 2: Lexical decision response

Generalized Linear

Mixed Models
Florian Jaeger

- Outcome: Correct or incorrect response (Correct)
- Inputs: same as in linear model

```
> lmer(Correct == "correct" ~ NativeLanguage +
+ Frequency + Trial +
+ (1 | Subject) + (1 | Word),
+ data = lexdec, family = "binomial")
```

Random effects:

Groups	Name	Variance	Std.Dev.
Word	(Intercept)	1.01820	1.00906
Subject	(Intercept)	0.63976	0.79985

Number of obs: 1659, groups: Word, 79; Subject, 21
Fixed effects:
Estimate
Std. Error
z
(Intercept)

$$
\begin{array}{rl}
\text { value } \operatorname{Pr}(>|z|) \\
-2.128 & 0.033344
\end{array}
$$

$$
-1.746 e+00 \quad 8.206 e-01 \quad-2.128 \quad 0.033344
$$

$$
-5.726 e-01 \quad 4.639 e-01 \quad 1.234 \quad 0.217104
$$

$$
5.600 \mathrm{e}-01 \quad 1.570 \mathrm{e}-01 \quad-3.567 \quad 0.000361
$$

$$
4.443 e-06 \quad 2.965 e-03 \quad 0.001 \quad 0.998804
$$

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
*
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Modeling schema

Generalized Linear

Mixed Models
Florian Jaeger

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Data exploration

Generalized Linear
Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Data exploration

- Outliers due to missing data or measurement error (e.g. RTs in SPR < 80msecs).
- NB: postpone distribution-based outlier exclusion until after transformations)
- Skewness in distribution can affect the accuracy of model's estimates (\curvearrowright transformations).

Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Understanding variance associated with potential random effects

- explore candidate predictors (e.g., Subject or Word) for level-specific variation.

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
\rightarrow Huge variance.

Interpreting and reporting interactions

Random effects (cnt'd)

Generalized Linear
Mixed Models
Florian Jaeger

- explore variation of level-specific slopes.

> xylowess.fnc(RT ~ Trial | Subject,
> type $=c(" g "$, "smooth"), data $=$ lexdec)
\rightarrow not too much variance.
- random effect inclusion test via \curvearrowright model comparison

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Understanding input variables

- Explore:
- correlations between predictors (\curvearrowright collinearity).
- non-linearities may become obvious (lowess).

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes

Non-linearities

Generalized Linear
Mixed Models
Florian Jaeger

- Consider Frequency (already log-transformed in lexdec) as predictor of RT:

\rightarrow Assumption of a linearity may be inaccurate.
- Select appropriate \curvearrowright transformation: log, power, sinusoid, etc.
- or use polynomial poly() or splines rcs(), bs(), etc. to \curvearrowright model non-linearities.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Transformation

Generalized Linear
Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Transformation

Generalized Linear
Mixed Models
Florian Jaeger

- Reasons to transform:
- Conceptually motivated (e.g. log-transformed probabilities)
- Can reduce non-linear to linear relations (cf. previous slide)
- Remove skewness (e.g. by log-transform)
- Common transformation: log, square-root, power, or inverse transformation, etc.

Density, raw RT

Density, raw Frequency

Density, \log RT

Density, log Frequency

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Coding and centering predictors

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Coding affects interpretation

Consider a simpler model:

Generalized Linear

 Mixed ModelsFlorian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Recoding

- Coding affects interpretation of coefficients.
- E.g., we can recode NativeLanguage into NativeEnglish:

```
> lexdec$NativeEnglish = ifelse(lexdec$NativeLanguage == "English", 1, 0)
> lmer(RT ~ NativeEnglish + Frequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
<...>
    AIC BIC logLik deviance REMLdev
    -886.1 -853.6 449.1 -926.6 -898.1
Random effects:
    Groups Name Variance Std.Dev.
    Word (Intercept) 0.0045808 0.067682
    Subject (Intercept) 0.0184681 0.135897
    Residual 0.0298413 0.172746
Number of obs: 1659, groups: Word, 79; Subject, 21
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.32358 0.03783 167.14
NativeEnglish 
<...>
```

- NB: \curvearrowright Goodness-of-fit (AIC, BIC, loglik, etc.) is not affected by choice between different sets of orthogonal contrasts.

Generalized Linear
Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Other codings of factor

- Treatment coding ...
- makes intercept hard to interpret.
- leads to \curvearrowright collinearity with interactions
- Sum (a.k.a. contrast) coding avoids that problem (in balanced data sets) and makes intercept interpretable (in factorial analyses of balanced data sets).

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects.
Interpreting and reporting interactions

Centering predictors

- Centering: removal of the mean out of a variable ...
- makes coefficients more interpretable.
- if all predictors are centered \rightarrow intercept is estimated grand mean.
- reduces \curvearrowright collinearity of predictors
- with intercept
- higher-order terms that include the predictor (e.g. interactions)
- Centering does not change ...
- coefficient estimates (it's a linear transformations); including random effect estimates.
- \curvearrowright Goodness-of-fit of model (information in the model is the same)

Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Centering: An example

- Re-consider the model with NativeEnglish and Frequency. Now with a centered predictors:

```
> lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
> lmer(RT ~ cNativeEnglish + cFrequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
```

<... >
Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	6.385090	0.030570	208.87
cNativeEnglish	-0.155821	0.060532	-2.57
cFrequency	-0.042872	0.005827	-7.36

Correlation of Fixed Effects:
(Intr) cNtvEn
cNatvEnglsh 0.000
cFrequency $0.000 \quad 0.000$
\rightarrow Correlation between predictors and intercept gone.
\rightarrow Intercept changed (from 6.678 to 6.385 units): now grand mean (previously: prediction for Frequency $=0$!)
\rightarrow NativeEnglish and Frequency coefs unchanged.

Centering: An interaction example

- Let's add an interaction between NativeEnglish and Frequency.
- Prior to centering: interaction is collinear with main effects.

```
> lmer(RT ~ NativeEnglish * Frequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
<...>
Fixed effects:
\begin{tabular}{lrrr} 
(Intercept) & 6.752403 & 0.056810 & 118.86 \\
NativeEnglish & -0.286343 & 0.068368 & -4.19 \\
Frequency & -0.058570 & 0.006969 & -8.40 \\
NativeEnglish:Frequency & 0.027472 & 0.006690 & 4.11
\end{tabular}
Correlation of Fixed Effects:
    (Intr) NtvEng Frqncy
NativEnglsh -0.688
Frequency -0.583 0.255
NtvEnglsh:F 0.320 -0.465 -0.549
```

Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Centering: An interaction example (cnt'd)

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Interactions and modeling of non-linearities

Generalized Linear

 Mixed ModelsFlorian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Interactions and non-linearities

Generalized Linear
Mixed Models
Florian Jaeger

- Include interactions after variables are centered \rightarrow avoids unnecessary \curvearrowright collinearity.
- The same holds for higher order terms when non-linearities in continuous (or ordered) predictors are modeled. Though often centering will not be enough.
- See for yourself: a polynomial of (back-transformed) frequency

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming

```
lexdec$crawFrequency = lexdec$rawFrequency - mean(lexdec$rawFrequency)
> lmer(RT ~ poly(crawFrequency,2) +
    (1 | Word) + (1 | Subject), data = lexdec)
```

coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Collinearity

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Definition of collinearity

- Collinearity: a predictor is collinear with other predictors in the model if there are high (partial) correlations between them.
- Even if a predictor is not highly correlated with any single other predictor in the model, it can be highly

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Consequences of collinearity

\rightarrow standard errors $\mathrm{SE}(\beta)$ s of collinear predictors are biased (inflated).
\rightarrow tends to underestimate significance (but see below)
\rightarrow coefficients β of collinear predictors become hard to interpret (though not biased)

- 'bouncing betas': minor changes in data might have a major impact on β s
- coefficients will flip sign, double, half
\rightarrow coefficient-based tests don't tell us anything reliable about collinear predictors!

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Extreme collinearity: An example

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?

```
lmer(RT ~ meanSize + (1 | Word) + (1 | Subject), data = lexdec)
```

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	6.3891053	0.0427533	149.44
meanSize	-0.0004282	0.0094371	-0.05

- n.s. correlation of meanSize with RTs.
- similar n.s. weak negative effect of meanWeight.
- The two predictors are highly correlated ($r>0.999$).

Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Extreme collinearity: An example (cnt'd)

Generalized Linear Mixed Models

Florian Jaeger

- If the two correlated predictors are included in the model...

```
> lmer(RT ~ meanSize + meanWeight +
+ (1 | Word) + (1 | Subject), data = lexdec)
```

Fixed effects:

Estimate	Std. Error t value	
5.7379	0.1187	48.32
1.2435	0.2138	5.81
-1.1541	0.1983	-5.82

Correlation of Fixed Effects:
(Intr) meanSz
meanSize -0.949
meanWeight $0.942-0.999$

- $\mathrm{SE}(\beta) \mathrm{s}$ are hugely inflated (more than by a factor of 20)
- large and highly significant significant counter-directed effects ($\beta \mathbf{s}$) of the two predictors
\rightarrow collinearity needs to be investigated!

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Extreme collinearity: An example (cnt'd)

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Fixed effects:
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

So what does collinearity do?

Generalized Linear

Mixed Models
Florian Jaeger

Building an

- Type II error increases \rightarrow power loss

```
h <- function(n) {
```

h <- function(n) {
x <- runif(n)
x <- runif(n)
y<-x + rnorm(n,0,0.01)
y<-x + rnorm(n,0,0.01)
z<-((x+y)/2)+\operatorname{rnorm}(n,0,0.2)
z<-((x+y)/2)+\operatorname{rnorm}(n,0,0.2)
m<- lm(z ~ x + y)
m<- lm(z ~ x + y)
signif.m.x <- ifelse(summary (m) \$coef[2,4] < 0.05, 1, 0)
signif.m.x <- ifelse(summary (m) \$coef[2,4] < 0.05, 1, 0)
signif.m.x <- ifelse(summary (m) \$coef[2,4] < 0.05, 1, 0)
signif.m.x <- ifelse(summary (m) $coef[2,4] < 0.05, 1, 0)
 mx <- lm(z ~ x)
 mx <- lm(z ~ x)
 my <- lm(z ~ y)
 my <- lm(z ~ y)
 signif.mx.x <- ifelse(summary(mx)$coef[2,4] < 0.05, 1, 0)
signif.mx.x <- ifelse(summary(mx)$coef[2,4] < 0.05, 1, 0)
 signif.my.y <- ifelse(summary (my)$coef[2,4] < 0.05, 1, 0)
signif.my.y <- ifelse(summary (my)\$coef[2,4] < 0.05, 1, 0)
return(c(cor (x,y), signif.m.x, signif.m.y,signif.mx.x, signif.my.y))
return(c(cor (x,y), signif.m.x, signif.m.y,signif.mx.x, signif.my.y))
}
}
result <- sapply(rep (M,n), h)
result <- sapply(rep (M,n), h)
print(paste("x in combined model:", sum(result[2,])))
print(paste("x in combined model:", sum(result[2,])))
print(paste("y in combined model:", sum(result[3,])))
print(paste("y in combined model:", sum(result[3,])))
print(paste("x in x-only model:", sum(result[4,])))
print(paste("x in x-only model:", sum(result[4,])))
print(paste("y in y-only model:", sum(result[5,])))
print(paste("y in y-only model:", sum(result[5,])))
print(paste("Avg. correlation:", mean(result[1,])))

```
print(paste("Avg. correlation:", mean(result[1,])))
```

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

So what does collinearity do?

- Type II error increases \rightarrow power loss
- Type I error does not increase much (5.165\% Type I error for two predictors with $r>0.9989$ in joined model vs. 5.25% in separate models; 20,000 simulation runs with 100 data points each)

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

```
set.seed(1)
```

set.seed(1)
n <- 100
n <- 100
M <- 20000
M <- 20000
f<- function(n) {
f<- function(n) {
x <- runif(n)
x <- runif(n)
y<-x + rnorm(n,0,0.01)
y<-x + rnorm(n,0,0.01)
z<- rnorm (n,0,5)
z<- rnorm (n,0,5)
m<- lm(z~x+y)
m<- lm(z~x+y)
mx <- lm(z ~ x)
mx <- lm(z ~ x)
my <- lm(z ~ y)
my <- lm(z ~ y)
signifmin <- ifelse(min(summary (m)$coef[2:3,4]) < 0.05, 1, 0)
 signifmin <- ifelse(min(summary (m)$coef[2:3,4]) < 0.05, 1, 0)
signifx <- ifelse(min(summary (mx)$coef[2,4]) < 0.05, 1, 0)
 signifx <- ifelse(min(summary (mx)$coef[2,4]) < 0.05, 1, 0)
signify <- ifelse(min(summary (my)$coef[2,4]) < 0.05, 1, 0)
 signify <- ifelse(min(summary (my)$coef[2,4]) < 0.05, 1, 0)
signifxory <- ifelse(signifx == 1 | signify == 1, 1, 0)
signifxory <- ifelse(signifx == 1 | signify == 1, 1, 0)
return(c(cor(x,y),signifmin,signifx,signify,signifxory))
return(c(cor(x,y),signifmin,signifx,signify,signifxory))
}
}
result <- sapply(rep (n,M), f)
result <- sapply(rep (n,M), f)
sum(result[2,])/M \# joined model returns >=1 spurious effect
sum(result[2,])/M \# joined model returns >=1 spurious effect
sum(result [3,])/M
sum(result [3,])/M
sum(result [4,])/M
sum(result [4,])/M
sum(result[5,])/M \# two individual models return >=1 spurious effect
sum(result[5,])/M \# two individual models return >=1 spurious effect
min(result[1,])

```
min(result[1,])
```

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

So what does collinearity do?

- Type II error increases \rightarrow power loss
- Type I error does not increase (much)
* But small differences between highly correlated predictors can be highly correlated with another predictors and create 'apparent effects' (like in the case discussed).
\rightarrow Can lead to misleading effects (not technically spurious, but if they we interpret the coefficients causally we will have a misleading result!).
- This problem is not particular to collinearity, but it frequently occurs in the case of collinearity.
- When coefficients are unstable (as in the above case of collinearity) treat this as a warning sign - check for mediated effects.

Detecting collinearity

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Formal tests of collinearity

Generalized Linear
Mixed Models
Florian Jaeger

- Variance inflation factor (VIF, vif()).
- generally, VIF $>10 \rightarrow$ absence of absolute collinearity in the model cannot be claimed.
* VIF >4 are usually already problematic.
* but, for large data sets, even VIFs > 2 can lead inflated standard errors.
- Kappa (e.g. collin.fnc() in languageR)
- generally, c-number (κ) over $10 \rightarrow$ mild collinearity in the model.
- Applied to current data set, ...

```
> collin.fnc(lexdec[,c(2,3,10,13)])$cnumber
```

- ...gives us a kappa $>90 \rightarrow$ Houston, we have a problem.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Dealing with collinearity

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Dealing with collinearity

- Good news: Estimates are only problematic for those predictors that are collinear.
\rightarrow If collinearity is in the nuisance predictors (e.g. certain controls), nothing needs to be done.
- Somewhat good news: If collinear predictors are of interest but we are not interested in the direction of the effect, we can use \curvearrowright model comparison (rather than tests based on the standard error estimates of coefficients).
- If collinear predictors are of interest and we are interested in the direction of the effect, we need to reduce collinearity of those predictors.

Reducing collinearity

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity considerations (e.g. ratio of spoken vs. written frequency in lexdec; rate of disfluencies per words when constituent length and fluency should be controlled).

- pros: easy to do and relatively easy to interpret.
- cons: only applicable in some cases.

Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Reducing collinearity (cnt'd)

- Stratification: Fit separate models on subsets of data holding correlated predictor A constant.
- If effect of predictor B persists \rightarrow effect is probably real.
- pros: Still relatively easy to do and easy to interpret.
- cons: harder to do for continuous collinear predictors; reduces power, \rightarrow extra caution with null effects; doesn't work for multicollinearity of several predictors.
- Principal Component Analysis (PCA): for n collinear predictors, extract $k<n$ most important orthogonal components that capture $>p \%$ of the variance of these predictors.
- pros: Powerful way to deal with multicollinearity.
- cons: Hard to interpret (\rightarrow better suited for control predictors that are not of primary interest); technically complicated; some decisions involved that affect outcome.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Reduce collinearity (cnt'd)

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

An example of moderate collinearity (cnt'd)

Generalized Linear Mixed Models

Florian Jaeger

- Consider two moderately correlated variables ($r=-0.49$), (centered) word length and (centered log) frequency:

```
> lmer(RT ~ cLength + cFrequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
<...>
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.385090 0.034415 185.53
cLength 0.009348 0.004327 2.16
cFrequency -0.037028 0.006303 -5.87
Correlation of Fixed Effects:
    (Intr) cLngth
cLength 0.000
cFrequency 0.000 0.429
<...>
```

- Is this problematic? Let's remove collinearity via residualization

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Residualization: An example

- Let's regress word length vs. word frequency.
> lexdec\$rLength $=$ residuals(lm(Length \sim Frequency, data $=$ lexdec))
- rLength: difference between actual length and length as predicted by frequency. Related to actual length ($r>0.9$), but crucially not to frequency ($r \ll 0.01$).
- Indeed, collinearity is removed from the model:

```
<...>
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.385090 0.034415 185.53
rLength 0.009348 0.004327 2.16
cFrequency -0.042872 0.005693 -7.53
```

Correlation of Fixed Effects:
(Intr) ringth
r Length 0.000
cFrequency $0.000 \quad 0.000$
$\rightarrow \mathrm{SE}(\beta)$ estimate for frequency predictor decreased
\rightarrow larger t-value

Residualization: An example (cnt'd)

- Q: What precisely is rLength?
- A: Portion of word length that is not explained by (a linear relation to log) word frequency.
\rightarrow Coefficient of rLength needs to be interpreted as such
- No trivial way of back-transforming to Length.
- NB: We have granted frequency the entire portion of the variance that cannot unambiguously attributed to either frequency or length!
\rightarrow If we choose to residualize frequency on length (rather than the inverse), we may see a different result.

Understanding residualization

- So, let's regress frequency against length.
- Here: no qualitative change, but word length is now highly significant (random effect estimates unchanged)

```
> lmer(RT ~ cLength + rFrequency +
+(1 | Word) + (1 | Subject), data = lexdec)
<...>
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.385090 0.034415 185.53
cLength 0.020255 0.003908 5.18
rFrequency -0.037028 0.006303 -5.87
Correlation of Fixed Effects:
    (Intr) cLngth
cLength 0.000
rFrequency 0.000 0.000
```

\rightarrow Choosing what to residualize, changes interpretation of $\beta \mathrm{s}$ and hence the hypothesis we're testing.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Extreme collinearity: ctn'd

Generalized Linear

 Mixed ModelsFlorian Jaeger

- we can now residualize meanWeight against meanSize and Frequency, and
- and residualize meanSize against Frequency.
- include the transformed predictors in the model.

```
lexdec$rmeanSize <- residuals(lm(cmeanSize ~ Frequency + cmeanWeight,
    data=lexdec))
lexdec$rmeanWeight <- residuals(lm(cmeanWeight ~ Frequency,
                data=lexdec))
lmer(RT ~ rmeanSize + rmeanWeight + Frequency + (1/Subject) + (1/Word),
    data=lexdec)
\begin{tabular}{lrrr} 
(Intercept) & 6.588778 & 0.043077 & 152.95 \\
rmeanSize & -0.118731 & 0.351957 & -0.34 \\
rmeanWeight & 0.026198 & 0.007477 & 3.50 \\
Frequency & -0.042872 & 0.005470 & -7.84
\end{tabular}
```

- NB: The frequency effect is stable, but the meanSize vs. meanWeight effect depends on what is residualized against what.

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Residualization: Which predictor to residualize?

- What to residualize should be based on conceptual considerations (e.g. rate of disfluencies $=$ number of disfluencies \sim number of words).
- Be conservative with regard to your hypothesis:
- If the effect only holds under some choices about residualization, the result is inconclusive.
- We usually want to show that a hypothesized effect holds beyond what is already known or that it subsumes other effects.
\rightarrow Residualize effect of interest.
- E.g. if we hypothesize that a word's predictability affects its duration beyond its frequency \rightarrow residuals(lm(Predictability \sim Frequency, data)).
- (if effect direction is not important, see also \curvearrowright model comparison)

Modeling schema

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Overfitting

Overfitting: Fit might be too tight due to the exceeding number of parameters (coefficients). The maximal number of predictors that a model allows depends on their distribution and the distribution of the outcome.

- Rules of thumb:
- linear models: > 20 observations per predictor.
- logit models: the less frequent outcome should be observed >10 times more often than there predictors in the model.
- Predictors count: one per each random effect + residual, one per each fixed effect predictor + intercept, one per each interaction.

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Validation

Validation allows us to detect overfitting:

- How much does our model depend on the exact data we have observed?
- Would we arrive at the same conclusion (model) if we had only slightly different data, e.g. a subset of our data?
- Bootstrap-validate your model by repeatedly sampling from the population of speakers/items with replacement. Get estimates and confidence intervals for fixed effect coefficients to see how well they generalize (Baayen, 2008:283; cf. bootcov () for ordinary regression models).

Visualize validation

- Plot predicted vs. observed (averaged) outcome.
- E.g. for logit models, plot.logistic.fit.fnc in languageR or similar function (cf. http://hlplab.wordpress.com)
- The following shows a badly fitted model:

```
> lexdec$NativeEnglish = ifelse(lexdec$NativeLanguage == "English", 1, 0)
> lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
> lexdec$cNativeEnglish = lexdec$NativeEnglish - mean(lexdec$NativeEnglish)
> lexdec$Correct = ifelse(lexdec$Correct == "correct", T, F)
> 1 <- glmer(Correct ~ cNativeEnglish * cFrequency + Trial +
    (1 | Word) + (1 | Subject),
    data = lexdec, family="binomial")
```


Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Mean predicted probabilities

Fitted values

So far, we've been worrying about coefficients, but the real model output are the fitted values.
Goodness-of-fit measures assess the relation between fitted (a.k.a. predicted) values and actually observed outcomes.

- linear models: Fitted values are predicted numerical outcomes.

	RT	fitted
1	6.340359	6.277565
2	6.308098	6.319641
3	6.349139	6.265861
4	6.186209	6.264447

- logit models: Fitted values are predicted log-odds (and hence predicted probabilities) of outcome.

```
Correct fitted
1 correct 0.9933675
2 \text { correct 0.9926289}
3 correct 0.9937420
4 correct 0.9929909
```

Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Goodness-of-fit measures: Linear Mixed Models

Generalized Linear
Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Measures built on data likelihood

- Data likelihood: What is the probability that we would observe the data we have given the model (i.e. given the predictors we chose and given the 'best' parameter estimates for those predictors).
- Standard model output usually includes such measures, e.g. in R:
AIC BIC logLik deviance REMLdev

$$
\begin{array}{lllll}
-96.48 & -63.41 & 55.24 & -123.5 & -110.5
\end{array}
$$

- log-likelihood, $\log L i k=\log (L)$. This is the maximized model's log data likelihood, no correction for the number of parameters. Larger (i.e. closer to zero) is better. The value for log-likelihood should always be negative, and AIC, BIC etc. are positive. \rightarrow current bug in the lmer () output for linear models.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Measures built on data likelihood (contd')

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Likelihood functions used for the fitting of linear mixed models

- Linear models:
- Maximum Likelihood function, ML: Find θ-vector for your model parameters that maximizes the probability of your data given the model's parameters and inputs. Great for point-wise estimates, but provides biased (anti-conservative) estimates for variances.
- Restricted or residual maximum likelihood, REML: default in lmer package. Produces unbiased estimates for variance.
- In practice, the estimates produced by ML and REML are nearly identical (Pinheiro and Bates, 2000:11).
\rightarrow hence the two deviance terms given in the standard model output in R.

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of.-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Goodness-of-fit: Mixed Logit Models

- Best available right now:
- some of the same measures based on data likelihood as for mixed models

AIC BIC logLik deviance
499.1537 -242.6 485.1

* but no known closed form solution to likelihood function of mixed logit models \rightarrow current implementations use Penalized Quasi-Likelihoods or better Laplace Approximation of the likelihood (default in R; cf. Harding \& Hausman, 2007)
- Discouraged:
\star pseudo- R^{2} a la Nagelkerke (cf. along the lines of http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm)
\star classification accuracy: If the predicted probability is $<0.5 \rightarrow$ predicted outcome $=0$; otherwise 1 . Needs to be compared against baseline. (cf. Somer's $D_{x y}$ and C index of concordance).

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Model comparison

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Likelihood ratio test for nested models

Building an
interpretable
model

- -2 times ratio of likelihoods (or difference of log likelihoods) of nested model and super model.
- Distribution of likelihood ratio statistic follows asymptotically the χ-square distribution with $D F\left(\right.$ model $\left._{\text {super }}\right)-D F\left(\right.$ model $\left._{\text {nested }}\right)$ degrees of freedom.
- χ-square test indicates whether sparing extra df's is justified by the change in the log-likelihood.
- in R: anova(model1, model2)
- NB: use restricted maximum likelihood-fitted models to compare models that differ in random effects.

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Example of model comparison

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
$>$ super. lmer $=\operatorname{lmer}(R T \sim$ rawFrequency $+(1 \mid$ Subject $)+(1$ Word $)$, data $=$ lexdec
$>$ nested.lmer $=1$ mer $(R T \sim$ rawFrequency $+(1+T r i a l \mid S u b j e c t)+(1 /$ Word $)$, data
$>$ anova(super.lmer, nested.lmer)

	Df		AIC	BIC	logLik	Chisq	Chi	D			
super.lmer	5		-910.41	-883.34	460.20						
nested.lmer	7		-940.71	-902.81	477.35	34.302			2		

\rightarrow change in log-likelihood justifies inclusion Subject-specific slopes for Trial, and the correlation parameter between trial intercept and slope.

Gpednetseffit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Model comparison: Trade-offs

- Compared to tests based on $\mathrm{SE}(\beta)$, model comparison
- robust against collinearity
- does not test directionality of effect
\star Suggestion: In cases of high collinearity ...
- first determine which predictors are subsumed by others (model comparison, e.g. $p>0.7$)) \rightarrow remove them,
- then use $\mathrm{SE}(\beta)$-based tests (model output) to test effect direction on simple model (with reduced collinearity).

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Reporting the model's performance

- for the overall performance of the model, report goodness-of-fit measures:
- for linear models: report R^{2}. Possibly, also the amount of variance explained by fixed effects over and beyond random effects, or predictors of interest over and beyond the rest of predictors.
- for logistic models: report $D_{x y}$ or concordance C-number. Report the increase in classification accuracy over and beyond the baseline model.
- for model comparison: report the p-value of the log-likelihood ratio test.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Before you report the model coefficients

- Transformations, centering, (potentially \curvearrowright standardizing), coding, residualization should be described as part of the predictor summary.
- Where possible, give theoretical, and/or empirical arguments for any decision made.
- Consider reporting scales for outputs, inputs and predictors (e.g., range, mean, sd, median).

Some considerations for good science

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

- To the extent that different ways of entering a predictor are investigated (without a theoretical reason), do make sure your conclusions hold for all ways of entering the predictor or that the model you choose to report is superior (model comparison \curvearrowleft).

Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

What to report about effects

 components \& superiority of transformed over un-transformed variants of the same input variable); plus visualizationModel Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Reporting the model coefficients

- Linear models: report (at least) coefficient estimates, MCMC-based confidence intervals (HPD intervals) and MCMC-based p-values for each fixed and random effect (cf. pvals.fnc() in languageR).
\$fixed
(Intercept)
cFrequency
NativeLanguageOther

Estimate	MCMCmean	HPD95lower	HPD95upper	pMCMC	Pr $(>\|t\|)$
6.3183	6.3180	6.2537	6.3833	0.0001	0.0000
-0.0429	-0.0429	-0.0541	-0.0321	0.0001	0.0000
0.1558	0.1557	0.0574	0.2538	0.0032	0.0101

\$random

	Groups	Name	Std.Dev.	MCMCMedian	MCMCmean	HPD95lower
1	Word	(Intercept)	0.0542	0.0495	0.0497	0.0377
2	Subject	(Intercept)	0.1359	0.1089	0.1101	0.0824
3 Residual		0.1727	0.1740	0.1741	0.1679	0.1386

- Logit models: for now, simply report the coefficient estimates given by the model output (but see e.g. Gelman \& Hill 2006 for Bayesian approaches, more akin to the MCMC-sampling for linear models)

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Interpretation of coefficients

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Getting interpretable effects

- estimate the effect in ms across the frequency range and then the effect for a unit of frequency.
> intercept $=$ as. vector(fixef(lexdec.Imer4) [1])
> betafreq $=$ as.vector(fixef(lexdec.lmer4) [3])
> eff $=\exp (i n t e r c e p t ~+~ b e t a f r e q ~ * ~ m a x(l e x d e c \$ F r e q u e n c y)) ~-~$
> exp(intercept + betafreq * min(lexdec\$Frequency)))
[1] -109.0357 \#RT decrease across the entire range of Frequency
> range $=\exp (\max ($ lexdec\$Frequency $))$ -
> $\exp (\min ($ lexdec\$Frequency))
[1] 2366.999
- Report that the full effect of Frequency on RT is a 109 ms decrease.
* But in this model there is no simple relation between RTs and frequency, so resist to report that "the difference in 100 occurrences comes with a 4 ms decrease of RT".
> eff/range * 100
[1] -4. 606494

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

The magic of the 'original' scale

* What's the advantage of having an effect size in familiar units?
- Comparability across experiments?
- Intuitive idea of 'how much' factor (and mechanisms that predicts it to matter) accounts for?
* But this may be misleadingly intuitive...
- If variables are related in non-linear ways, then that's how it is.
- If residualization is necessary then it's applied for a good reason \rightarrow back-translating will lead to misleading conclusions (there's only so much we can conclude in the face of collinearity).
- Most theories don't make precise predictions about effect sizes on 'original' scale anyway.
- Comparison across experiments/data sets often only legit if similar stimuli (with regard to values of predictors).

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Comparing effect sizes

- It ain't trivial: What is meant by effect size?
- Change of outcome if 'feature' is present? \rightarrow coefficient
- per unit?
- overall range?
- But that does not capture how much an effect affects language processing:
- What if the feature is rare in real language use ('availability of feature')? Could use ...
\rightarrow Variance accounted for (goodness-of-fit \curvearrowleft improvement associated with factor)
\rightarrow Standardized coefficient (gives direction of effect)
* Standardization: subtract the mean and divide by two standard deviations.
- standardized predictors are on the same scale as binary factors (cf. Gelman \& Hill 2006).
- makes all predictors (relatively) comparable.

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Plotting coefficients of linear models

Plotting (partial) effects of predictors allows for comparison and reporting of their effect sizes:

- partial fixed effects can be plotted, using plotLMER.fnc(). Option fun is the back-transformation function for the outcome. Effects are plotted on the same scale, easy to compare their relative weight in the model.

Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Plotting posterior distributions (for linear mixed models)

Generalized Linear

Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Plotting coefficients of mixed logit models

- Log-odd units can be automatically transformed to probabilities.
- pros: more familiar space
- cons: effects are linear in log-odds space, but non-linear in probability space; linear slopes are hard to compare in probability space; non-linearities in log-odd space are hard to interpret

Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Plotting coefficients of mixed logit models (contd')

- For an alternative way, see http://hlplab.wordpress.com/:

```
data(lexdec)
> lexdec$NativeEnglish = ifelse(lexdec$NativeLanguage == "English", 1, 0)
> lexdec$rawFrequency = exp(lexdec$Frequency)
> lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
> lexdec$cNativeEnglish = lexdec$NativeEnglish - mean(lexdec$NativeEnglish)
> lexdec$Correct = ifelse(lexdec$Correct == "correct", T, F)
> l<- lmer(Correct ~ cNativeEnglish + cFrequency + Trial +
    (1 | Word) + (1 | Subject), data = lexdec, family="binomial
> my.glmerplot(l, "cFrequency", predictor= lexdec$rawFrequency,
    predictor.centered=T, predictor.transform=log,
    name.outcome="correct answer", xlab= ex, fun=plogis)
```


Counts
52
49
46
42
39
36
33
30
26
23
20
17
14
11
7
4
1

Generalized Linear

 Mixed ModelsFlorian Jaeger

Building an
interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Plotting coefficients of mixed logit models (contd')

- Great for outlier detection. Plot of predictor in log-odds space (actual space in which model is fit):

Generalized Linear

 Mixed ModelsFlorian Jaeger

Building an interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Plotting interactions

```
> plotLMER.fnc(l, pred = "FamilySize", intr = list("cFrequency",
> quantile(lexdec$cFrequency), "end"), fun = exp)
```


- Can also be plotted as the FamilySize effect for levels of cFrequency. Plotting and interpretation depends on research hypotheses.

Generalized Linear
Mixed Models
Florian Jaeger

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Discussion

Reporting interactions

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects
Interpreting and reporting interactions

Some thoughts for discussion

What do we do when what's familiar (probability space; original scales such as msecs; linear effects) is not what's best/better?
More flexibility and power to explore and understand complex dependencies in the data do not come for free, they require additional education that is not currently standard in our field.

- Let's distinguish challenges that relate to complexity of our hypothesis and data vs. issues with method (regression).
- cf. What's the best measure of effect sizes? What to do when there is collinearity? Unbiased vs. biased variance estimates for ML-fitted models; accuracy of laplace approximation.

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison
Reporting the

