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Abstract

The methods in the lme4 package for R for fitting linear mixed
models are based on sparse matrix methods, especially the Cholesky
decomposition of sparse positive-semidefinite matrices, in a penalized
least squares representation of the conditional model for the response
given the random effects. The representation is similar to that in Hen-
derson’s mixed-model equations. An alternative representation of the
calculations is as a generalized least squares problem. We describe the
two representations, show the equivalence of the two representations
and explain why we feel that the penalized least squares approach is
more versatile and more computationally efficient.

1 Definition of the model

We consider linear mixed models in which the random effects are represented
by a q-dimensional random vector, B, and the response is represented by an
n-dimensional random vector, Y . We observe a value, y, of the response.
The random effects are unobserved.

The marginal distribution of the random effects is a multivariate normal
distribution with mean 0 and a variance-covariance matrix, Σ(θ), that de-
pends on a parameter vector, θ. Typically the dimension of θ is much, much
smaller than q. We will defer describing a particular parameterization until

1



later. For the time being we simply characterize the marginal distribution of
B as

B ∼ N (0,Σ(θ)) (1)

The conditional distribution, Y |B, is also multivariate normal. The con-
ditional mean, E[Y |B = b], is a linear function of the p-dimensional fixed-
effects parameter, β, and the q-dimensional random effects vector, b, defined
by the n× p and n× q model matrices X and Z as

E[Y |B = b] = Xβ +Zb. (2)

The conditional variance-covariance matrix of Y is simply σ2In, where In

denotes the identity matrix of order n. Thus

Y |B ∼ N
(
Xβ +Zb, σ2In

)
(3)

1.1 Variance-covariance of the random effects

The variance-covariance matrix, Σ(θ), of the random effects, B, must be
symmetric and positive semidefinite (i.e. x′Σx ≥ 0,∀x ∈ Rq). Because
the maximum likelihood estimate of a variance component can be zero, it is
important to allow for a semidefinite Σ. That is, we do not assume that Σ
is positive definite (i.e. x′Σx > 0,∀x ∈ Rq) and we do not assume that Σ−1

exists.
A positive semidefinite matrix such as Σ has a Cholesky decomposition

of the so-called “LDL′” form. We use a slightly modified version

Σ(θ) = σ2T (θ)S(θ)S(θ)T (θ)′ (4)

where σ is the same scale parameter that occurs in the variance-covariance
of Y |B, T (θ) is a unit lower-triangular q × q matrix and S(θ) is a diagonal
q × q matrix with nonnegative diagonal elements.

1.2 Orthogonal random effects

Let us define a q-dimensional random vector, U , of orthogonal random effects
with a marginal distribution of

U ∼ N
(
0, σ2Iq

)
(5)
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and express B as a linear transformation of U ,

B = TSU . (6)

Note that the transformation (6) gives the desired distribution of B in that
E[B] = TSE[U ] = 0 and

Var(B) = E[BB′] = TSE[UU ′]ST ′ = σ2TSST ′ = Σ.

The conditional distribution, Y |U , can be derived from Y |B as

Y |U ∼ N
(
Xβ +ZTSu, σ2I

)
(7)

We will write the transpose of ZTS as A. Because the matrices T and S
depend on the parameter θ, A(θ) is also a function of θ. That is

A′(θ) = ZT (θ)S(θ). (8)

1.3 Sparse matrix methods

The reason for the peculiar definition of A as the transpose of the model
matrix is because A is stored and manipulated as a sparse matrix. In the
compressed column-oriented storage form for sparse matrices there are ad-
vantages to storing A as a matrix of n columns and q rows. In particular, the
CHOLMOD sparse matrix library allows us to evaluate the sparse Cholesky
factor, L, a lower triangular matrix that satisfies

L(θ)L(θ)′ = P (A(θ)A(θ)′ + Iq)P
′, (9)

directly from A.
In (9) the q × q matrix P is a “fill-reducing” permutation matrix deter-

mined from the pattern of nonzeros in the sparse model matrix Z. It does not
affect the statistical theory (if U ∼ N (0, σ2I) then P ′U also has a N (0, σ2I)
distribution because PP ′ = P ′P = I) but, because it affects the number
of nonzeros in L, it can have a tremendous impact on the amount storage
required for L and the time required to evaluate it. Indeed, it is precisely
because L(θ) can be evaluated quickly, even for complex models applied the
large data sets, that the lmer function is effective in fitting such models.
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2 The penalized least squares approach to

linear mixed models

Given a value of θ we form A(θ) from which we evaluate L(θ). We can then
solve for the q × p matrix, RZX , in the system of equations

L(θ)RZX = PA(θ)X (10)

and for the p× p upper triangular matrix, RX , satisfying

R′XRX = X ′X −R′ZXRZX (11)

The conditional mode, ũ(θ), of the orthogonal random effects and the

conditional mle, β̂(θ), of the fixed-effects parameters can be determined si-
multaneously as the solutions to a penalized least squares problem[

ũ(θ)

β̂(θ)

]
= arg min

u,β

∥∥∥∥[y0
]
−
[
A′P ′ X
Iq 0

] [
u
β

]∥∥∥∥2

(12)

for which the solution satisfies[
P (AA′ + I)P ′ PAX

X ′A′P ′ X ′X

] [
ũ(θ)

β̂(θ)

]
=

[
PAy
X ′y

]
(13)

The Cholesky factor of the system matrix for the PLS problem can be ex-
pressed using L, RZX and RX because[

P (AA′ + I)P ′ PAX
X ′A′P ′ X ′X

]
=

[
L 0
R′ZX R′X

] [
L′ RZX

0 RX

]
. (14)

In the lme4 package the "mer" class is the representation of a mixed-effects
model. The A slot contains the sparse matrixA(θ) and the L slot contains the
Cholesky factor L(θ) satisfying (9). The RZX and RX slots contain RZX(θ)
and RX(θ) as dense matrices.

It is not necessary to solve for ũ(θ) and β̂(θ) to evaluate the profiled
log-likelihood as a function of θ, which is the log-likelihood evaluated at
θ, β̂(θ) and σ̂2(θ). All that is needed for evaluation of the profiled log-
likelihood is the penalized residual sum of squares, r2, and the determinant,
|AA′ + I| = |L|2.
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Because L is triangular, its determinant is simply the product of its di-
agonal elements and, because AA′ + I is positive definite, |L|2 > 0.

The profiled deviance (negative twice the profiled log-likelihood), as a
function of θ only (β and σ2 at their conditional estimates), is

d(θ|y) = log(|L|2) + n

(
1 + log(r2) +

2π

n

)
(15)

The maximum likelihood estimates, θ̂, satisfy

θ̂ = arg min
θ
d(θ|y) (16)

Once the value of θ̂ has been determined, the mle’s of the other parameters
are evaluated from (13) and

σ̂2(θ) =
r2

n
. (17)

2.1 Comments on the sparse matrix representation

Note that nothing has been said about the form of the sparse model matrix
Z other than the fact that it is sparse. The computational methods outlined
above can be applied to models with multiple random effects terms in which
the factors determining the random effects are nested or crossed or partially
crossed.

3 The generalized least squares approach to

linear mixed models

Another common approach to linear mixed models is to derive the marginal
variance-covariance matrix of Y as a function of θ and use that to determine
the conditional estimates, β̂(θ), as the solution of a generalized least squares
(GLS) problem. In the notation of §1 the marginal mean of Y is E[Y ] = Xβ
and the marginal variance-covariance matrix is

Var(Y) = σ2 (In +ZTSST ′Z ′) = σ2 (In +A′A) = σ2V (θ), (18)

where V (θ) = In +A′A.
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The conditional estimates of β are often written as

β̂(θ) =
(
X ′V −1X

)−1
X ′V −1y (19)

but, of course, this formula is not suitable for computation. The matrix
V (θ) is a symmetric n×n positive definite matrix and hence has a Cholesky
factor. However, this factor is n× n, not q × q and q is always smaller than
n - sometimes orders of magnitude smaller.

3.1 Relating the GLS approach to the Cholesky factor
L.

We can use the fact that

V −1(θ) = (In +A′A)
−1

= In −A′ (Iq +AA′)
−1
A (20)

to relate the GLS problem to the PLS problem. One way to establish (20) is
simply to show that the product

(I +A′A)
(
I −A′ (I +AA′)

−1
A
)

=I +A′A−A′ (I +AA′) (I +AA′)
−1
A

=I +A′A−A′A
=I.

Incorporating the permutation matrix P we have

V −1(θ) =In −A′P ′P (Iq +AA′)
−1
P ′PA

=In −A′P ′(LL′)−1PA

=In −
(
L−1PA

)′
L−1PA.

(21)

Even in this form we would not want to evaluate such a matrix but (21) does
allow us to simplify many common expressions.

For example, the variance-covariance of the estimator β̂, conditional on
θ and σ, can be expressed as

σ2
(
X ′V −1(θ)X

)−1
=σ2

(
X ′X −

(
L−1PAX

)′ (
L−1PAX

))−1

=σ2 (X ′X −R′ZXRZX)
−1

=σ2 (R′XRX)
−1
.

(22)
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