
TGrep2 Database Tools (TDT) User Manual

Judith Degen
Brain and Cognitive Sciences

University of Rochester

July 18, 2009

1 Introduction

The TGrep2 Database Tools are a collection of command line scripts written by Florian
Jaeger, Austin Frank, Judith Degen, and Neal Snider that allow you to extract data from
large corpora and combine this data into a comprehensive database in a format suitable for
importing into your favorite statistical analysis program.

The following steps are involved in doing a corpus analysis of linguistic data with the
TDT Tools:

1. . . .come up with an interesting question. . .

2. Create TGrep2 patterns to run your corpus queries with.

3. Extract data from a corpus and create a database.

4. Do statistical analysis on your data.

We leave step 1 as an exercise to the reader. For information on TGrep2 pattern syntax
consult the TGrep2 manual (Rohde 2005).

This manual will focus on how to execute step 3. Note that the TGrep2 Database
Tools are a collection of scripts initially written for individual use and to solve very specific
problems. In consequence, some scripts may not behave the way you intend them to, and
some features you think the TDT Tools should have will not be implemented. Please report
any bugs or feature requests to tdt@bcs.rochester.edu.

2 Getting started

For the TDT Tools to work, perl and python must be installed. This is the case on most
Unix machines. In addition, you will need to install TGrep2.

1

2.1 Setting environment variables

For the TDT tools to work, set the following environment variables in your profile:

• TGREP2_CORPUS - Set this to the TGrep2 default corpus. If you run TGrep2 without a
corpus argument, it will run on this corpus.

• TGREP2ABLE - Set this to the directory that contains the TGrep2 corpora.

• TDT - Set this to the directory that contains the TDT scripts.

• TDT_DATABASES - Set this to the directory that contains the TDT databases.

In addition, add the TDT script directory to your PATH variable. For example, this is an
example of what to add to your profile (file .bash login, .bash profile, or .profile in your home
directory) if you’re operating in a bash.

TGREP2ABLE="/corpora/TGrep2able"

export TGREP2ABLE

TGREP2_CORPUS="$TGREP2ABLE/swbd.t2c.gz"

export TGREP2_CORPUS

TDT="/corpora/TDT/"

export TDTlite

TDT_DATABASES="/corpora/TDT/databases/"

export TDT_DATABASES

PATH="$HOME/bin:$PATH:/corpora/TDT"

In a C shell, add the following to your profile (file .login in your home directory) instead:

setenv TGREP2ABLE /corpora/TGrep2able

setenv TGREP2_CORPUS $TGREP2ABLE/swbd.t2c.gz

setenv TDT /corpora/TDT/

setenv TDT_DATABASES /corpora/TDT/databases/

setenv PATH $PATH:corpora/TDT

2.2 Creating a project

Start by creating your project directory. If you are planning on using the run script included
in the TDT Tools to create your database, you will need to create the following directories
in your project directory:

• shellscripts contains the run script, the options file (see section 3.1.2 for details),
the MACRO file (see the TGrep2 user manual), and a script called getOptions.py
which creates the collectData script (see section 3.1.3 for details).

2

• data is the output directory for run’s calls to TGrep2, i.e. this is where the TGrep2
output files (with the extension .t2o) will be stored in ‘data/corpus name’.

• results is where the final database file (‘corpus name.tab’) will be stored by collectData.

• ptn will contain your TGrep2 pattern files (see the TGrep2 manual for more informa-
tion on creating patterns). ptn itself contains further subdirectories for the different
variable types:

– CatVar contains .ptn files that are assumed to be categorical variables.

– ContVar contains .ptn files that are assumed to be length variables.

– CountFactor contains .ptn files that are assumed to be count variables.

– CtxtVar contains .ptn files that will output the 10 sentences preceding the match.

– ParseVar contains .ptn files that will output the match’s parse tree.

– POSVar contains .ptn files that are assumed to extract part-of-speech informa-
tion.

– StringVar contains .ptn files that are assumed to extract words.

Create one .ptn file per subpattern you wish to extract, in the appropriate subdirectory.
For each .ptn file, one TGrep2 .t2o output file will be created in ‘data/corpus name’.

3 Creating a database

Once your pattern and macro files are ready, you are ready to create your database. There
are several ways to do this:

• Use the run script. You have two options:

– The easier alternative (but the one that allows slightly less flexibility) is to specify
in an options file the options for run to create a script called collectData which
combines TGrep2 output files to create your database all in one step.

– The other alternative is to create the collectData shell script manually. This
involves knowledge of the perl scripts described in section 4, but allows for greater
flexibility specifying the manner in which to add variables to your database.

• Alternatively, you can do everything manually: First generate TGrep2 output files by
running TGrep2 on your patterns individually, and then combine the output files to a
database via use of the perl scripts described in section 4.

These methods are described in sections 3.1 and 3.2.

3

3.1 Creating a database with run

See appendix ?? to see the directory structure of a sample project and the different steps
involved in using run.

3.1.1 The run script

Usage
./run [-h] [-c corpus] [-e] [-j] [-collect] [-o] [macrofiles]

Options
-h[elp] Prints help.
-c[orpus] corpus Specifies the corpus to extract or collect data from. Default is

swbd (Switchboard). See secton 3.1.2 for corpus tags.
-e[xtract] Extracts all matches for the patterns specified in one or more

MACRO files from the corpus specified by ‘-c corpus ’ (de-
fault: ‘no’). If no macrofile argument is provided, run
searches for a MACRO file named ‘corpusMACROS.ptn’ in the
‘shellscripts’ directory. If it does not find one, it will use the
file ‘MACROS.ptn’ if it exists in the ‘shellscripts’ directory. The
output will be saved in ‘data/corpus ’ in the project directory. If
macrofiles is provided, one subdirectory for the output of each
MACRO file is created in data. Use the -j option to concatenate
all output files and save them in the directory ‘data/corpus ’.
Naming convention for MACRO files: ‘MACROS-name.ptn’.
When passing the macrofiles arguments, specify only name. De-
fault is not to extract.

-collect Collects the information from the TGrep2 data files in the
‘../data’ directory and combines them to a database in ‘../re-
sults’. Requires the ‘collectData’ script to be in the same di-
rectory. See section 3.1.3 for information on how to create
‘collectData’ manually. Default is not to collect.

-i[mport] Imports the collected information into an R file (not implemented
yet).

-j[oin] Joins the output of each MACRO file for each TGrep2 pattern
into one file in the ‘data/corpus ’ directory. Default is not to join.

-o Like -collect, but creates the ‘collectData’ script on the fly from
options specified in a file named ‘options’ in the same directory.
Default is not to collect.

Examples

• The following will call TGrep2 on the pattern files specified in the ‘ptn’ directory and
the MACRO file ‘bncwMACROS.ptn’ or ‘MACROS.ptn’ in the ‘shellscripts’ directory.
It will then create ‘collectData’ from the options specified in the ‘options’ file and

4

‘collectData’ will combine the data from the specified files in ‘data/bncw’ to a database
in ‘results’ called ‘bncw.tab’.

$./run -c bncw -e -o

See section 3.1.2 for details on creating an ‘options’ file.

• This command does essentially the same, with the difference that instead of expecting
an ‘options’ file, it expects ‘collectData’ in the same directory.

$./run -c bncw -e -collect

See section 3.1.3 for details on creating a ‘collectData’ script.

3.1.2 Method 1: specifying an options file

This is the easiest way to create your database, but it also offers the least flexibility. The
run script creates a database in two steps: it first calls TGrep2 with the patterns specified
in the .ptn files in the pattern directory and the macro file in the shellscripts directory. It
then builds a database of the output according to the options specified in the options file.

The purpose of the options file is to specify a number of parameters for run to properly
combine the extracted data.

Obligatory parameters
The obligatory parameters are the location of the data directory that contains the TGrep2
.t2o output files, the results directory that the database should be written to, the shellscripts
directory that contains the options file itself, and the corpus from which the data was ex-
tracted.

Usage
data=/path/to/data/directory
results=/path/to/results/directory
shellscripts=/path/to/shellscripts/directory
corpus=corpus tag

Use full paths for /path/to/. . ./directory. Intervening spaces are not permitted. Use one of
the following corpus tags:

• arab - the Arabic Treebank (arabic-collapsed.t2c.gz)

• bnc - the entire BNC (BNC.parsed.t2c.gz)

• bncs - the spoken parts of the BNC (BNC spoken.parsed.t2c.gz)

• bncw - the written parts of the BNC (BNC written.parsed.t2c.gz)

• brown - Brown corpus (brown.t2c.gz)

5

• chin - the Chinese Treebank (chtb6.t2c.gz)

• ice - International Corpus of English (icegb.t2c.gz)

• negra - NEGRA (negra.t2c.gz)

• swbd - Switchboard Corpus (swbd.t2c.gz)

• tiger - TIGER corpus (tiger.t2c.gz)

• wsj - Wall Street Journal (wsj mrg.t2c.gz)

• ycoe - York-Toronto-Helsinki Parsed Corpus of Old English Prose (ycoe.t2c.gz)

For example:

**

data=/home/lsa1/perspective/data/bncw

results=/home/lsa1/perspective/results

shellscripts=/home/lsa1/perspective/shellscripts

corpus=bncw

**

Initializing the database
To create a database, first initialize it with a column of match IDs which are taken from the
file you specify (without file extension) and is assumed to be in the data directory that you
specified above.1.

Usage
init IDfile

For example, if IDfile is the file ID.t2o in the data directory:

**

init ID

**

Adding variables to your database
To add different variable columns to your database, use the add command.

Usage
add variabletype arguments

Depending on what kind of variable you are adding, variabletype and arguments will differ.
The following options are available for variabletype:

• categoricalvar - adds a categorical factor, i.e. the value “1” if a given ID finds a match
for the specified variable.2

1Specifying this option is like running the initDatabase.pl script
2see section 4.2.2 for information on how to specify different values by using the addCategoricalVar.pl

script.

6

• condprob - adds one column with the joint frequency of the value of the specified
variable and the predicted event (i.e. your database). That is, a column with the
frequency of the value of the specified variable in your database. It adds a second
column with the conditional probability of the target event (i.e. your database) given
the value of the specified variable in the corpus.

• countvar - adds a count variable, i.e. the number of matches for a given ID.

• infodensity - adds one column with the information of the specified variable (already
in the database) given a 3gram model.3 It adds a second column providing the length
of the specified variable in words.

• lemmavar - adds a lemma variable, i.e. the specified variable/word’s lemma.

• lengthvar - adds a length variable, i.e. the total length of the specified variable’s value
(number of words) for a given ID.

• phonology - adds segmental information about the specified variable (already in the
database): one column for the phonemic transcription of the word (see the Carnegie
Mellon Pronunciation Dictionary for transcription information), one column each for
place and manner of articulation of the first and last phoneme (unless they are vowels,
in which case the label ”vowel” is inserted), and a column specifying syllable structure
(one digit per syllable, 0 for no stress, 1 for primary stress, 2 for secondary stress).

• posvar - adds a POS variable, i.e. the specified variable/word’s part of speech.

• stringvar - adds a string variable, i.e. terminals/words to the database.

Variable type specific usages:
add categoricalvar [variablename=]filename
add condprob [variablename]
add countvar [variablename=]filename
add infodensity variablename
add lemmavar [variablename=]filename
add lengthvar [variablename=]filename
add phonology variablename1 [variablename2] [. . .]
add posvar [variablename=]filename
add stringvar [variablename=]filename

For example, the following commands add

• a string variable column for the target event’s form by adding the data from the
Form.t2o file. The name of the variable column in the database and the file name are
the same.

3see section 4.2.5 for information on how to specify different ngram models by using the addInformation-
Density.pl script

7

• a POS variable column for the target event’s part-of-speech by adding the data from
the POS.t2o file. The name of the variable column and file name are the same.

• a lemma variable column called ‘Lemma Form’ containing the lemma of the word form
in Form.t2o.

• a string variable column that adds the entire sentence containing the match from the
TOPstring.t2o file. The column name (‘Sentence’) is different from file name.

• a categorical variable column ‘PPfrom’ that contains a “1” if that match contains a
PP after a following NP and an empty cell if it doesn’t (according to the data in the
PPafterNP.t2o file).

• the information density of the NP preceding the match.

• columns containing phonological information about the entries in the Form column.

• one column with the joint frequency of each value of Form and the target event, and
one column with the conditional probability of the target event given the value of Form
in the entire corpus.

• a count variable that for each row ID contains the number of matches for that ID in
the PPFROMafterNP file.

• a length variable that for each row ID contains the total length (ie number of words)
of all matches for that ID in the PPFROMafterNP file.

**

add stringvar Form=Form

add posvar POS

add lemmavar Form

add stringvar Sentence=TOPstring

add categoricalvar PPfrom=PPafterNP

add infodensity NPpreceding

add phonology Form

add condprob Form

add Countvar CntPPfrom=PPFROMafterNP

add lengthvar LenPPfrom=PPFROMafterNP

**

3.1.3 Method 2: creating collectData manually

If you want to retain the previous method’s advantage of extracting your data, creating
your database, and adding all the desired variables to it in one step via batch mode, but
also want additional flexibility in specifying certain options, you can create the collectData

8

shell script, which is essentially a collection of calls to the perl scripts described in section 4,
manually.

The first line of your script depends on your shell, for example

#!/bin/bash

if you’re in a bash, or

#!/bin/csh -f

if you’re in a C shell. This will be followed by a directory change to your results directory,
and setting of project variables Pdata, Presults, Pshellscripts to the data, results,
and shellscripts directory, respectively. For example, in a C shell:

cd /home/lsa1/perspective/results

setenv Pdata /home/lsa1/perspective/data/bncw

setenv Presults /home/lsa1/perspective/results

setenv Pshellscripts /home/lsa1/perspective/shellscripts

Instead, if you’re in a bash:

cd /home/lsa1/perspective/results

export Pdata=/home/lsa1/perspective/data/bncw

export Presults=/home/lsa1/perspective/results

export Pshellscripts=/home/lsa1/perspective/shellscripts

Next, you need to initialize the database with a column of match IDs by calling the
initDatabase.pl script on the match ID file in your data directory. See section 4.2.1 for
details on how to use initDatabase.pl. For example, the following will print an initialization
message and call initDatabase.pl:

echo Creating new corpus file bncw.tab

initDatabase.pl -roc bncw --files $Pdata/ID

You can now add further variable columns to the database via calls to the addX.pl
scripts. See section 4 for details on how to use the scripts for adding different variable types
to the database. For example, the following will add a string variable, a part-of-speech
variable, a lemma variable, a categorical variable, a variable coding information density,
phonological information, conditional probabilities, a count variable and a length variable.
Finally, change back into the shellscripts directory.

9

echo Beginning data extraction...

addStringVar.pl -roc bncw -f Form=$Pdata/Form

addPosVar.pl -roc bncw -f POS=$Pdata/POS

addLemma.pl -roc bncw -f Form=$Pdata/Form

addStringVar.pl -roc bncw -f Sentence=$Pdata/TOPstring

addCategoricalVar.pl -roc bncw -f PPfrom 1 $Pdata/PPFROMafterNP

addInformationDensity.pl -roc bncw -f NPpreceding 3

addPhonology.pl -roc bncw -f Form

addConditionalProbability.pl -c bncw -f Form

addCountVar.pl -roc bncw -f CntPPfrom=$Pdata/PPFROMafterNP

addLengthVar.pl -roc bncw -f LenPPfrom=$Pdata/PPFROMafterNP

cd $Pshellscripts

See Appendix C for a full example of a collectData script.

3.2 Method 3: Adding TGrep2 output to database manually

Use this method to add individual variables to your database if you already have TGrep2
.t2o output files that you want to combine to a database, or information about which you
want to add to a database. Each of the scripts in 4.2 can be used to add a different variable
type to your database. See section 4.1 for general usage information.

4 Perl scripts

These scripts are called by collectData and combine the data files from the project data
directory to create a database in the results directory. You can use these scripts individually
or modify collectData to call the scripts you want. Each script will add one or more new
variables (i.e. columns) to the database - the variable type should determine which kind of
script you use.

All of the scripts assume that there is a database file named corpus.tab (see the -c option
in section 4.1 for corpus options) in the scripts folder (but see the -d option). The exception
is initDatabase.pl, which initially creates a database corpus.tab from IDs specified in an
.t2o TGrep2 output file.

The next section describes the options that may be used with all the perl scripts unless
noted otherwise. Sections 4.2.1 to 4.3.3 describe the individual scripts.

10

4.1 General options

Usage
perl scriptname [-horw] [--about] [-c corpus] [-d database] [--default value] [-f vari-

able(s)] [--filesfile(s)] [--noversion]

Options
--about Provide information about the program. The default is not to.
-c[orpus] corpus corpus is an argument describing the corpus to be used. This

determines a variety of things, e.g. which ngram files will be used
and how corpus-specific information will be stripped from the
terminal output of TGrep2 (e.g. when extracting strings from
the corpus). Currently the following arguments are recognized:

• arab - the Arabic Treebank (arabic-collapsed.t2c.gz)

• bnc - the entire BNC (BNC.parsed.t2c.gz)

• bncs - the spoken parts of the BNC
(BNC spoken.parsed.t2c.gz)

• bncw - the written parts of the BNC
(BNC written.parsed.t2c.gz)

• brown - Brown corpus (brown.t2c.gz)

• chin - the Chinese Treebank (chtb6.t2c.gz)

• ice - International Corpus of English (icegb.t2c.gz)

• negra - NEGRA (negra.t2c.gz)

• swbd - Switchboard Corpus (swbd.t2c.gz)

• tiger - TIGER corpus (tiger.t2c.gz)

• wsj - Wall Street Journal (wsj mrg.t2c.gz)

• ycoe - York-Toronto-Helsinki Parsed Corpus of Old English
Prose (ycoe.t2c.gz)

-d[atabase] database database is the filename of the database you want to manipu-
late (create, add information to, etc.). The default is corpus-
name.tab. Note that this implies that the database file must be
in the scripts folder unless a path to it is specified.

--default value value will be the default value for any empty cell of the vari-
able(s) modified by the scripts. The variable must be given with
the -f option.

11

-f[actors] variable(s) variable(s) is one or more names of variables (i.e. columns) in the
database that you want to create, import, or manipulate. If there
is more than one variable, separate variable names by commas
with no intervening spaces (i.e. variable1,variable2,. . .variablen).
Most scripts allow several variable names as input and will
loop over all variables. In case the script expects an in-
put file (e.g. a TGrep2 .t2o output file) for each variable,
these can either be provided separately (see --files option)
or in conjunction with the variable specification by using
variable1=file1,variable2=file2,. . .,variablen=filen

--files file(s) Use this option to specify one or more files to be read from. If
there is more than one file, separate file names by commas with
no intervening spaces (i.e. file1,file2,. . . ,filen). When used in con-
junction with -f, the order of variables and files must be the same
(i.e. -f variable1,variable2,. . .variablen --files file1,file2,. . . ,filen)

--h[elp] This option is not yet implemented. See this manual for infor-
mation about options.

--noversion Don’t print the version header. The default is to print the header.
-o[verwrite] Overwrite cells that already have a value if a new value is ob-

tained by the operations executed by the script (e.g. by importing
information from a TGrep2 .two output file). The default is not
to overwrite.

-r[eset] Reset all cell values of the variables (i.e. columns) specified with
the -f option to the default value (usually an empty cell). The
default is not to reset.

-w[arnings] Print detailed warnings. The default is not to print.

4.2 Adding variables - initDatabase.pl and addX.pl scripts

4.2.1 initDatabase.pl

This script creates your database from a set of match IDs provided in a TGrep2 .t2o output
file. If you want to combine different variables (corresponding to different TGrep2 output
files) to form a database, initDatabase.pl must be run before any variable scripts can be run.
It creates a corpusname.tab file in the scripts directory unless specified otherwise (see -d
option above). For example, if you want to create a database from data that was extracted
from the written BNC and that contains an ID file ID.t2o in /home/perspective/data/bncw:

$ initDatabase.pl -roc bncw --files /home/perspective/data/bncw/ID

The -r, -o, -c, and --files options apply as specified in section 4.1. Note that the file
extension should not be included in the path.
The following options are not supported: --default, -f

12

4.2.2 addCategoricalVar.pl

This script adds a categorical variable to the database. The added column will contain a
value (specified in the options) for the matched rows and empty cells for the non-matched
rows. After the column name, this script expects the value to enter in the column for matched
rows. For example, for a file PPafterNP.t2o that contains an ID for each of the matches in
the entire database in case that match contains a PP following an NP, if you want to add a
column CntPP that contains a 1 for every ID in the file PPTOafterNP.t2o:

$ addCategoricalVar.pl -roc bncw -f CntPP 1 /project/data/bncw/PPTOafterNP

The -r, -o, -c, and -f options apply as specified in section 4.1. 1 is the value to enter for
matched rows, the path to PPafterNP specifies the TGrep2 output file containing the PPs
(and match IDs). Note that the file extension should not be included in the path. To add
an empty value, specify “ ” as the level value.

More than one factor level may be added to the specified variable in two ways:

1. You can run addCategoricalVar.pl a second time, using the -o option to overwrite
existing values. The following will add two factor levels with values 1 and 2 to the
variable CntPP.
$ addCategoricalVar.pl -roc bncw -f CntPP 1 /project/data/bncw/PPTOafterNP

$ addCategoricalVar.pl -oc bncw -f CntPP 2 /project/data/bncw/PPFROMafterNP

2. Alternatively, you can add both levels in one step. After the variable name you can
specify arbitrarily many factor levels with the syntax:
level value1 file1 level value2 file2 . . . level valuen filen

The following command will have the same effect as alternative 1.
$ addCategoricalVar.pl -oc bncw -f CntPP 1 /project/data/bncw/PPTOafterNP

2 /project/data/bncw/PPFROMafterNP

The following options are not supported: --files

4.2.3 addConditionalProbability.pl

This script adds two columns to your database: one column called JFQ variablename with
the joint frequency of the value of the specified variable and the predicted event (i.e. your
database). That is, a column with the frequency of the value of the specified variable in
your database. The second column, called CndP variablename, contains the conditional
probability of the target event (i.e. your database) given the value of the specified variable
in the corpus. This script does not require .t2o output files to extract data from, rather it
expects the column name of an already existing variable in the database to calculate the
conditional probability of.
For example, consider a database that contains all complement clauses in the Switchboard.
It further contains a column Verb with all the different verbs that occur immediately before

13

the complement clause. For each row (i.e. each value of Verb), addConditionalProbability.pl
will add p(complement clause|Verb). That is

p(complement clause|Verb=“think”)

p(complement clause|Verb=“believe”)

p(complement clause|Verb=“guess”)

...

To add conditional probabilities for Verb in the database swbd.tab just described:

$ addConditionalProbability.pl -c swbd -f Verb

The following options are not supported: --default, --files

4.2.4 addCountVar.pl

This script adds a column to your database with the number of matches in the TGrep2 .t2o
output file for that row ID. For example, if you have a file Disfluencies.t2o that contains all
the disfluencies for each matched sentence in the BNC, and you want a disfluency count for
each sentence:

$ addCountVar.pl -roc bnc -f CntDis --files /project/data/bnc/Disfluencies

Here, CntDis is the name of the column that will contain the disfluency count. Specify the
path to the .t2o file to count from with the --files option.
There are two ways to add more than one count variable at once:

1. Specify the variable names (the column names to be created) with the -f option and
the file names with the --files option. Variable and file names should be comma-
delimited, with no intervening spaces (i.e. -f variable1,variable2,. . . --files file1,file2,. . .).
For example:
$ addCountVar.pl -roc bnc -f CntDisPreceding,CntDisFollowing

--files /project/data/bnc/Dpreceding,/project/data/bnc/Dfollowing

2. Alternatively, you can specify both the variable names and the file names with the -f
option: -f variable1=file1,variable2=file2,. . .. For example:
$ addCountVar.pl -roc bnc -f CntDisPreceding=/project/data/bnc/Dpreceding,

CntDisFollowing=/project/data/bnc/Dfollowing

This script supports all options. See section 4.2.7 for the difference between addCountVar.pl
and addLengthVar.pl.

14

4.2.5 addInformationDensity.pl

This script adds two columns to the database: one column Information variable ngram
containing the information of the specified variable, given an n-gram model.4 The second
column, Length variable ngram, contains the length of the specified variable (in number
of words). Specify the variable with the -f option, and n as the last argument. For example,
the following will add columns Information Form 2gram and Length Form 2gram to
your database, which will contain information and length of the entries in the column Form,
given a bigram model.

$ addInformationDensity.pl -roc bncw -f Form 2

The following options are not supported: --files. -f takes exactly one argument.

4.2.6 addLemma.pl

This script adds a column variablename Lemma that contains the lemma of the specified
variable (i.e. this variable should only contain one word per row). Specify the variable with
the -f option and the database with the -c or -d option.

For example, to create a column Form Lemma, containing lemma information about
the Form column, to the database bncw.tab:

$ addLemma.pl -roc bncw -f Form

To add lemma information for more than one column, specify all column names in comma-
separated format (without intervening spaces) with the -f option. For example, the following
will create two columns, Form Lemma and NPpreceding Lemma:

$ addLemma.pl -roc bncw -f Form,NPpreceding

The following options are not supported: --files

4.2.7 addLengthVar.pl

This script adds a column to your database that contains the total variable length (in number
of words) for that row ID, given a TGrep2 .t2o file containing IDs and strings. Specify the
name of the column to be created with the -f option, and the files from which to compute the
length data with the --files option. For example, given a file Disfluencies.t2o that contains
all disfluencies that occur in any of the matched sentences, the following will add a column
LenDis with the total length of all disfluencies that occur in each matched sentence to the
database bncw.tab.

$ addLengthVar.pl -roc bncw -f LenDis --files /project/data/bncw/NP

There are two ways to add more than one length variable at once:

4This information will be read from corpus-specific n-gram database files.

15

1. Specify the variable names (the column names to be created) with the -f option and
the file names with the --files option. Variable and file names should be comma-
delimited, with no intervening spaces (i.e. -f variable1,variable2,. . . --files file1,file2,. . .).
For example:
$ addLengthVar.pl -roc bnc -f LenDisPreceding,LenDisFollowing

--files /project/data/bnc/Dpreceding,/project/data/bnc/Dfollowing

2. Alternatively, you can specify both the variable names and the file names with the -f
option: -f variable1=file1,variable2=file2,. . .. For example:
$ addLengthVar.pl -roc bnc -f LenDisPreceding=/project/data/bnc/Dpreceding,

LenDisFollowing=/project/data/bnc/Dfollowing

This script supports all options.

On the difference between addCountVar.pl and addLengthVar.pl
The difference between addCountVar.pl and addLengthVar.pl is that the former counts the
number of matches for a given ID, while the latter computes the total length of a given
ID in number of words. Consider the following example, an excerpt from our fictitious file
Disfluencies.t2o.

5:34 um

5:34 you know

5:34 I mean

5:34 Jo-

The ID 5:34 has four disfluencies associated with it. That is, addCountVar.pl (see section
4.2.4) will add ‘4’ in the CntDis column at the row with the row ID 5:34. However, the
total length of all disfluencies is 6, so addLengthVar.pl will add ‘6’ in the LenDis column
at the row with the row ID 5:34. In consequence, if each ID has only one word associated
with it, addCountVar.pl and addLengthVar.pl will yield the same result.

4.2.8 addPhonology.pl

This script adds 6 columns with phonological information about the specified variable:
PHON variable, PHONstartPLC variable, PHONstartMNR variable,
PHONendPLC variable, PHONendMNR variable, SYLS variable. The first column
contains the phonemic transcription of the word (see the Carnegie Mellon Pronunciation
Dictionary for transcription information). The second and third column contain information
about place and manner of articulation of the first phoneme in the word, while the fourth
and fifth column contain the same information for the last phoneme in the word. If the
phonemes are vowels, these columns will contain the label ‘vowel’. The las column specifies
the word’s syllable structure (one digit per syllable, ‘0’ if no stress, ‘1’ if primary stress, ‘2’
if secondary stress).
For example, the following adds phonological information about the variable Form (which
already exists in the database) to the database bncw.tab.

16

$ addPhonology.pl -roc bncw -f Form

To add phonological information about more than one variable, specify all column names in
comma-separated format (without intervening spaces) with the -f option.
The following options are not supported: --files

4.2.9 addPosVar.pl

This script adds a column that contains part-of-speech information contained in the specified
file. Specify the column name with the -f option and the database with the -c or -d option.
For example, to create a column POS, containing part-of-speech information taken from the
POS.t2o file, to the database bncw.tab:

$ addPosVar.pl -roc bncw -f POS --files /home/project/data/bncw/POS

There are two ways to add more than one POS variable at once:

1. Specify the variable names (the column names to be created) with the -f option and
the file names with the --files option. Variable and file names should be comma-
delimited, with no intervening spaces (i.e. -f variable1,variable2,. . . --files file1,file2,. . .).
For example:
$ addPosVar.pl -roc bnc -f POS1,POS2 --files /project/data/bnc/Pos1,

/project/data/bnc/Pos2

2. Alternatively, you can specify both the variable names and the file names with the -f
option: -f variable1=file1,variable2=file2,. . .. For example:
$ addPosVar.pl -roc bnc -f POS1=/project/data/bnc/Pos1,POS2=

/project/data/bnc/Pos2

This script supports all options.

4.2.10 addStringVar.pl

This script adds a column that contains the words corresponding to a given pattern, to be
taken from a specified file. For example, the following adds a column Verb with information
from the file Verb.t2o to the database bncw.tab:

$ addStringVar.pl -roc bncw -f Verb=/project/data/bncw/Verb

There are two ways to add more than one string variable at once:

1. Specify the variable names (the column names to be created) with the -f option and
the file names with the --files option. Variable and file names should be comma-
delimited, with no intervening spaces (i.e. -f variable1,variable2,. . . --files file1,file2,. . .).
For example:
$ addStringVar.pl -roc bnc -f NPpreceding,NPfollowing --files

/project/data/bnc/NPprec,/project/data/bnc/NPfoll

17

2. Alternatively, you can specify both the variable names and the file names with the -f
option: -f variable1=file1,variable2=file2,. . .. For example:
$ addStringVar.pl -roc bnc -f NPpreceding=/project/data/bnc/NPprec,

NPfollowing=/project/data/bnc/NPfoll

This script supports all options.

4.3 Further handy scripts

4.3.1 stripTGrep2Terminals.pl

This script strips “junk” (e.g. speaker information, disfluencies, other markers that may im-
pede ease of reading) from TGrep2 output, reformats punctuation, and prints it to standard
output.
For example, the following will strip extra markers from the file adjp.t2o.

$ stripTGrep2Terminals.pl --files adjp.t2o

The first line of adjp.t2o before stripping:

She had a rather massive stroke \[about , \+ uh , about \] uh , eight

months ago I guess . E_S

After stripping:

She had a rather massive stroke about, uh, about uh, eight months ago I guess.

Instead of using the --files option, stripTGrep2Terminals.pl also accepts input from standard
in, e.g. the piped output of a TGrep2 query. The following command does the same as above
(assuming that "TOP << ADJP" is the pattern that generated the contents of adjp.t2o):

$ tgrep2 -t "TOP << ADJP" | stripTGrep2Terminals.pl

The following options are not supported: -d, --default, -f,

4.3.2 importVariable.pl

This script lets you import variables from other files by matching the row IDs of the target
database and the input file. There are several ways to do this, but in each case the target
database must be specified by using the -c or -d option. In addition, the first column of
each input file is assumed to contain IDs (to match with the target database).

18

• Use the --files options to pass files containing variables to add to the database. If
you specify only the file names, the second column (right after the ID column) will
be imported. The name of the imported variable in the database will be the name of
the input file. For example, the following will create two new variables adjp.t2o and
np.t2o in the database bncw.tab.
$ importVariable.pl -d bncw.tab --files /home/adjp.t2o,/home/np.t2o

• To specify the column to be imported from each file, use the --cols option. The column
name in the database will be the same as the column name in the input file. For
example, the following will create two new variables Adjp1 and Np4 in the database
bncw.tab that are imported from column Adjp1 in adjp.t2o and column Np4 in
np.t2o.
$ importVariable.pl -c bncw --files adjp.t2o,np.t2o --Adjp1,Np4

• If you want to import more than one column from a given file, specify only one file
with the --files option and all the columns you want to import from that file with the
--cols option. For example, the following will import columns Adjp1, Adjp2, and
Adjp4 from the file adjp.t2o.
$ importVariable.pl -d bncw.tab --files adjp.t2o --Adjp1,Adjp2,Adjp4

In addition, if you want to specify the names of the columns that are added to the database,
you can do this with the --colnames options. For example, the following creates a column
ADJP by importing column Adjp1 from file adjp.t2o.
$ importVariable.pl -d bncw.tab --files adjp.t2o --cols Adjp1 --colnames ADJP

The following options are not supported: --default, -f

4.3.3 sampleDatabase.pl

This script draws a pseudo-random sample from your corpus.tab database and calls it cor-
pus sample.tab. If corpus sample.tab already exists, the file name will be unknown sample.tab.
Use the -c or -d option to specify the database to draw the sample from. A second argument
determines the sample size. For example, the following will draw a sample of 200 cases from
the file bncw.tab and write it to bncw sample.tab.

$ sampleDatabase.pl -c bncw 200

The following options are not supported: --d, -f, --files

A Sample project directory

Directories are represented by American Typewriter font, files are represented by Arial font.
Files and directories that should be named the same across projects are black. Files and
directories that vary by project are blue.

19

Initial state:

20

Step 1: run uses .ptn files and MACROS.ptn to run TGrep2 with

21

TGrep2 output files have been created in the data directory

22

Step 2: run uses the options file to combine the .t2o files to create a database

23

The database has been created in the results directory

24

B Sample options file

**

data=/home/lsa1/perspective/data

results=/home/lsa1/perspective/results

shellscripts=/home/lsa1/perspective/shellscripts

corpus=bncw

init ID

add stringvar Form=Form

add posvar POS

add lemmavar Form

add stringvar Sentence=TOPstring

add categoricalvar PPfrom=PPafterNP

add infodensity NPpreceding

add phonology Form

add condprob Form

add countvar CntPPfrom=PPFROMafterNP

add lengthvar LenPPfrom=PPFROMafterNP

**

C Sample collectData script

**

#!/bin/csh -f

cd /home/lsa1/perspective/results

setenv Pdata /home/lsa1/perspective/data/bncw

setenv Presults /home/lsa1/perspective/results

setenv Pshellscripts /home/lsa1/perspective/shellscripts

echo Creating new corpus file bncw.tab

initDatabase.pl -roc bncw --files $Pdata/ID

echo Beginning data extraction...

echo

addStringVar.pl -roc bncw -f Form=$Pdata/Form

addPosVar.pl -roc bncw -f POS=$Pdata/POS

addLemma.pl -roc bncw -f Form=$Pdata/Form

addStringVar.pl -roc bncw -f Sentence=$Pdata/TOPstring

addCategoricalVar.pl -roc bncw -f PPfrom 1 $Pdata/PPFROMafterNP

25

addInformationDensity.pl -roc bncw -f NPpreceding 3

addPhonology.pl -roc bncw -f Form

addConditionalProbability.pl -c bncw -f Form

addCountVar.pl -roc bncw -f CntPPfrom=$Pdata/PPFROMafterNP

addLengthVar.pl -roc bncw -f LenPPfrom=$Pdata/PPFROMafterNP

cd $Pshellscripts

**

References

Rohde, D. (2005). TGrep2 Manual. http://tedlab.mit.edu/∼dr/Tgrep2/tgrep2.pdf.

26

