LSA 125 - Psycholinguistics and Syntactic Corpora Today: Extracting and importing data from syntactic corpora into a database LSA Summer Institute 2009, UC Berkeley Florian Jaeger TAs: Judith Degen, Alex Fine, and Peter Graff # A forwarded plea for elevatorian consideration Andrew Garrett: "[please] avoid the north elevator, the one that requires [you] to walk through the Rhetoric or Classics Department corridor[...]; instead, [...] take the elevator that ends up between 370 and 7205." ## Website, Passwords, Confusion - Our website: - Info: http://wiki.bcs.rochester.edu:2525/HlpLab/Lsa09 - Readings linked to website: http://www.hlp.rochester.edu/internal/classes/lsa09/readings/ - Login: psycho - Password: *linguistics* - nothing on bSpace - Our corpus server: (see website for most up-to-date info) - 174.129.5.193 (faster CPU) - 174.129.205.212 (maybe less traffic) - Login: *IsaXX*, e.g. *Isa18* - Password: only you know # The C-Team (again) • Judith Degen Alex Fine • Peter Graff ### **Q&A** - Do you have questions about the processing accounts described in the previous lecture? - Accessibility - Availability - Alignment - Audience Design - Ambiguity Avoidance - Dependency Minimization (MiD, MaOP) - We will get back to them next Tuesday when I will also discuss - Alternative audience design accounts - Uniform Information Density a computational account of efficient language production - Alternatives to processing accounts # **Today** - Get your feet wet: - What is a syntactically-annotated corpus? - TGrep2 :: a tool to search syntactically-annotated corpora - TDTlite: a set of scripts we wrote to combine TGrep2 output into a database that can be handed to Excel or a stats program of your choice (e.g. R). - Start thinking about your project have you found a work group? # **Timeline for Corpus-based Project** - What is the structure of interest? - What at the mark-up conventions of the corpus? - Define & refine patterns () (TGrep2; TigerSearch; Tregexp): - avoid over-inclusive (easy, except for large databases) - avoid over-exclusive (hard) - − cost-accuracy-tradeoff (less clean-up → noisier data) - Extraction of variables of interest: - May need annotation (Edinburgh Nite Toolboxes) - May need scripting (TGrep2 Database Tools) - −cost-accuracy-tradeoff (cheap estimates → noisier estimates) - Additional processing (smoothing; LSA) - Statistical analysis (R software package; R-lang email list) - -Clusters require mixed models, bootstrap, ... (Imer(), bootcov()) ### that-omission Non-subject-extracted relative clauses in English allow optional *that*-omission: # **Timeline for Corpus-based Project** - What is the structure of interest? - What at the mark-up conventions of the corpus? - **Define & refine patterns ()** (TGrep2; TigerSearch; Tregexp): - -avoid over-inclusive (easy, except for large databases) - –avoid over-exclusive (hard) - -cost-accuracy-tradeoff (less clean-up \rightarrow noisier data) - Extraction of variables of interest: - –May need annotation (Edinburgh Nite Toolboxes) - –May need scripting (TGrep2 Database Tools) - −cost-accuracy-tradeoff (cheap estimates → noisier estimates) - Additional processing (smoothing; LSA) - Statistical analysis (R software package; R-lang email list) - -Clusters require mixed models, bootstrap, ... (Imer(), bootcov()) - Search tools for syntactic corpora developed by Doug Rohde (2005) - Downloadable for free: http://tedlab.mit.edu/~dr/Tgrep2/ - Online tutorial: http://www.bcs.rochester.edu/people/fjaeger/teaching/tut orials/TGrep2/LabSyntax-Tutorial.html - Parsed Switchboard in Penn Treebank format - 800,000 word syntactically annotated telephone conversation corpus (Switchboard, Treebank III) # A common syntactic annotation standard - Syntactic structure annotation - Hierarchical dependencies - Linear order - Traces - Syntactic categories - Predicate argument structure annotation - Grammatical functions (e.g. SUBJ, TOP, ADV, ...) - Modification types (e.g. NP-TEMP, ADV-LOC, ...) - Case marking preposition (e.g. PP-DTV) - Part-of-speech (POS) annotation - In Switchboard: disfluency (reparandum, repair) - Genre, speaker, etc. information ``` (TOP (S (NP-SBJ (NP (NNP Pierre) WSJ (NNP Vinken)) (,,) (ADJP (NP (CD 61) (NNS years)) (JJ old)) (\ ,\ ,\) (VP (MD will) (VP (VB join) (NP (DT the) (NN board)) (PP-CLR (IN as) (NP (DT a) (JJ nonexecutive) (NN director))) (NP-TMP (NNP Nov.) (CD 29)))) (...))) (TOP (S (NP-SBJ (NNP Mr.) (NNP Vinken)) (VP (VBZ is) (NP-PRD (NP (NN chairman)) (PP (IN of) (NP (NP (NNP Elsevier) (NNP N.V.)) ... ``` ``` (TOP (CODE (SYM SpeakerA1) SWBD (...)) (TOP (INTJ (UH Okay) (...) (-DFL- E_S))) (TOP (S (INTJ (UH Uh)) (,,) (ADVP-TMP (RB first)) (,,) (INTJ (UH um)) (,,) (NP-SBJ-1 (PRP I)) (VP (VBP need) (S (NP-SBJ (-NONE- *-1)) (VP (TO to) (VP (VB know) (,,) (INTJ (UH uh)) (,,) (SBARO (WHADVP-2 (WRB how)) (SQ (VBP do) (NP-SBJ (PRP you)) (VP (VB feel) (ADVP (-NONE- *T*-2)) (EDITED (RM (-DFL- \[)) LSA 125 - Psycholinguistics and Syntactic Corpora (PP-UNF (IN about)) ``` [13] ### **Annotations in SWBD: NITE XML** - Combination of annotations from different projects in one big data structure - Nodes can - have children (hierarchical relationship) - point at other nodes (arbitrary relationship) - Some nodes have timing information from original sound files ``` (WHADVP (N 400B34) (WDT that)) 13 3 (S (NP-SBJ MARKABLE human (N 400B21) (PRP we)) (VP (VBD had) (S (NP-SBJ MARKABLE (-NONE- (N 400B21))) (VP (TO to) (VP (VB do) (NP MARKABLE nonconc (PRP it)) (ADVP-TMP (-NONE- (N 400B34))))))))) (S (NP-SBJ_MARKABLE_human (PRP they)) TGrep2 search pattern for RC*s ^SBAR > /^NP/ < (/^WH/ != /PP/) < (/^S/ < (/-SBJ/ !< ``-NONE-'')) ! < IN | WDT | DT --Hore-- !< ``-NONE-'' ``` #### **Data** Over 3,700 RC*s (RCs with obligatory that were excluded) from approximately 350 different speakers # **Timeline for Corpus-based Project** - What is the structure of interest? - What at the mark-up conventions of the corpus? - Define & refine patterns () (TGrep2; TigerSearch; Tregexp): - avoid over-inclusive (easy, except for large databases) - -avoid over-exclusive (hard) - −cost-accuracy-tradeoff (less clean-up → noisier data) - Extraction of variables of interest: - May need annotation (Edinburgh Nite Toolboxes) - May need scripting (TGrep2 Database Tools) - $-\cos t$ -accuracy-tradeoff (cheap estimates \rightarrow noisier estimates) - Additional processing (smoothing; LSA) - Statistical analysis (R software package; R-lang email list) - -Clusters require mixed models, bootstrap, ... (Imer(), bootcov()) #### Extracting all RC*s with a pronoun subject: 5:73 21:68 31:28 41:25 236:62 331:168 589:30 651:9 ••• ### Variables in the model Use a set of scripts (TGrep2 Database Tools; cf. class webpage as of today) to combine the output of many TGrep2 searches into a database of cases. #### Probabilities: - RC Predictability; Predictability of RC onset - Frequency of words immediately preceding and following RC onset ### Variables in the model - Continuous syntactic variables, e.g. - Lengths of each of 3 regions (pre-NP, between head noun and RC, & RC) - Categorical structural variables, e.g. - Embedding within the RC - Properties of RC subject (NP type, animacy) - Properties of matrix clause (negation, verb) - Structural priming, e.g. - Within speakers - Across speakers - Distance-based; Lemma-based; etc ... ### Variables in the RC* model - Phonological variables, e.g. - segmental properties of preceding segment - stress structure of preceding segment - Speech variables, e.g. - Speech rate, Pauses - Rate of disfluency in different regions - (Prosodic phrases & accents) - Social variables, e.g. - Age - Speaker gender - Education # **Timeline for Corpus-based Project** - What is the structure of interest? - What at the mark-up conventions of the corpus? - Define & refine patterns () (TGrep2; TigerSearch; Tregexp): - -avoid over-inclusive (easy, except for large databases) - avoid over-exclusive (hard) - -cost-accuracy-tradeoff (less clean-up → noisier data) - Extraction of variables of interest: - May need annotation (Edinburgh Nite Toolboxes) - May need scripting (TGrep2 Database Tools) - -cost-accuracy-tradeoff (cheap estimates → noisier estimates) - Additional processing (smoothing; LSA) - Statistical analysis (R software package; R-lang email list) - -Clusters require mixed models, bootstrap, ... (Imer(), bootcov()) ### Results of model - Predictability one of the most influential factors - Both RC* predictability and the predictability of the RC* onset affect thatrates even when many other factors are considered As predicted by Uniform Information Density # Contemporary American English with Penn Treebank III annotation – Text - Parts of ATIS-3 - Parsed Brown corpus, release 3 - approx. 24,000 sentences & 396,000 words - 15 different written text categories of (good standard reference; like BNC). - Parts of Wall Street Journal corpus (WSJ), release 3 - approx. 24k sentences & 505,000 words [1 million out of 30 million] - Newspaper articles - Also available: - RST discourse annotation (for parts) - Propositional/event structure annotation (113,000 verb tokens; 3,200 verb types) - Automatically annotated extension to 30 million words # Contemporary American English with Penn Treebank III annotation – Speech - International Corpus of English (ICE-GB) - approx. 84,000 sentences & 1 million words - Speech and written language - Not quite Treebank III annotation style - Parts of Switchboard corpus (Swbd), release 3 - approx. 100k sentences & 800,000 words [1 million out of 2 million] - Spontaneous speech - Also available: - Disfluency annotation (all) - Sound files (all) - Phonetic & phonological annotation (~38,000 words) - Animacy annotation (~140,000 NPs) - Information Structure annotation (~60,000 NPs) ## Diachronic American English with Penn Treebank III annotation - The York-Toronto-Helsinki Parsed Corpus of Old English Prose (YCOE) - approx. 110,000 sentences & 1.5 million words - Also available: - Text source, genre, dialect, and publication date information - Helsinki Parsed Corpus of Middle English, second edition (PPCME2) - Over 100,000 sentences & 1.3 million words - Prose text samples of Middle English - Also available: - Text source, genre, dialect, and publication date information # POS & Syntactically annotated corpora of other languages - (1) - Parsed NEGRA corpus, version 2 - German - approx. 200,000 sentences - Newspaper articles (Frankfurter Rundschau) - Also available: - Morphological analysis (first 60,000 words) - Parsed TIGER corpus - German - approx. 40,000 sentences & 700,000 words - same source as NEGRA - Prague Dependency Treebank, version 1.0 - Czech - approx. 1.8 million words # POS & Syntactically annotated corpora of other languages - (2) - Penn Chinese Treebank, version 6 - approx. 600,000 words - Newswire text - Penn Arabic Treebank, Part 3, version 1.0 - approx. 340,000 words - Newswire text - Also available: - Vocalization and Lemmatization information - Aligned translations into English (for parts) - Penn Korean Treebank, - approx. 5,000 sentence & 55,000 words - 33 constructed texts in Korean (translated into English) for purposes of language training in a military setting. # Let's do some practice Login to/login into/log into the corpus server • If your username is **Isa1** to **Isa30** log onto the corpus server: ssh <username>@174.129.5.193 • If your username is **Isa31** to **Isa99** log onto the corpus server: ssh <username>@174.129.205.212 # Sanity check - Type env (and press enter): - TGREP2_CORPUS=/corpora/TGrep2able//swbd.t2c.gz - TGREP2ABLE=/corpora/TGrep2able/ - TDTlite=/corpora/TDTlite/ - TDT_DATABASES=/corpora/TDTlite/databases/ - PATH=...:/corpora/TDTlite - Type *tgrep2* - tgrep2 -c <corpus> -af <output-options | outputformating> <macro-file> <pattern | pattern-file> - -c <corpus> defaults to TGREP2_CORPUS - -af gives all matches exactly once - -i makes TGrep2 case-insensitive (default is case-sensitive) <output-options> and <macro-file> are optional • ... a very simple call: let's find sentences in the default corpus (Switchboard) tgrep2 "TOP" | more [more gives output page-by-page – press ENTER or SPACE] let's find NPstgrep2 "NP" | more • Now let's count: tgrep2 "NP" | wc -l [wc -l counts lines of the output; TGrep2 defaults to one match per line] # TGrep2 – Different outputs We can format the output: ``` tgrep2 -l "NP" | more tgrep2 -t "NP" | more tgrep2 -u "NP" | more ``` [be cautious with the tgrep2 -I | wc -I] There are more options for later ... # TGrep2 – Regular Expressions • Let's count *all* instances of *any type of* NP in the corpus: ``` tgrep2 -af "NP" | wc -l tgrep2 -af "/^NP/" | wc -l ``` - Investigate why there is a difference: tgrep2 -af "/^NP/" | more - →Each node can be described as a regular expression /.../ [/^ .../ means that the node has to start with whatever follows the ^] # **Across Corpora** Count all instances of any type of NP in the Wall Street Journal, Brown, and Switchboard corpus Is \$TGREP2ABLE brown.t2c.gz wsj_mrg.t2c.gz swbd.t2c.gz tgrep2 -c \$TGREP2ABLE/<corpus-file> -af "/^NP/" | wc -l What's the ration of NPs (/^NP) to VPs (/^VP/) in the three corpora? # How many of these NPs have lexical content (as opposed to traces)? $$tgrep2$$ -af "/^NP/ << (/^'{0,1}[a-zA-Z].*/!<*)" | wc -I - NB: - Left-headedness ### Time to get real: PP-ordering in English (Hawkins, 1999; taken from Hawkins, 2007:97) (19) a. The man vp[waited pp1[for his son] pp2[in the cold but not unpleasant wind]] 1 2 3 4 5 b. The man vp[waited pp2[in the cold but not unpleasant wind] pp1[for his son]] 1 2 3 4 5 6 7 8 9 ----- Structures like (19) were selected from a corpus on the basis of a permutation test (Hawkins, 2000, 2001): the two PPs had to be permutable with truth-conditional equivalence (i.e. the speaker had a choice). Only 15% (58/394) of these English sequences had long before short. Among those with at least a one-word weight difference (excluding 71 with equal weight), 82% had short before long, and there was a gradual reduction in the long before short orders, the bigger the weight difference (PPS = shorter PP, PPL = longer PP): (22) PPL>PPS by 1 word by 2 4 by 5 6 by 7 + [V PPS PPL] 60% (58) 86% (108) 94% (31) 99% (68) [V PPL PPS] 40% (38) 14% (17) 6% (2) 1% (1) ## Time to get real ... What should be the cases we extract to get all and only the relevant cases? (avoid inclusion and exclusion errors) - VPs - VPs with PPs - VPs with PPs that are sisters to each other - VPs with adjacent PPs that are sisters to each other - VPs with exactly two adjacent PPs that are sisters to each other ### **Cheat sheet** - TGrep2 is left-headed! - Syntactic relations: < > << >> \$ ~ = - Linear relations: , . - Labeling of nodes: =xx - Disjunction | [] - Negation: ! ``` /^VP/=VP1 < (/^PP/=PP1 $.. (/^PP/=PP2 !$ (/^PP/!= =PP1) !,, (* !< * ,, =PP1 !>> (EDITED|UH|PRN|/-UNF/ >> =VP1)))) ``` ### **Macros** Macros keep those precious fingers soft and smooth by avoiding to much typing ``` /^NP/; @ NP /^VP/; @ VP /^PP/; @ PP /^(ADJ|ADV)P/; @ AP /^WH/; WH @ SBJ_ZERO (@SBJ) < (@ZERO); (@SBJ) !< (@ZERO); @ SBJ_NERO SSBJ ZERO S < (@SBJ ZERO); SSBJ NERO S < (@SBJ_NERO); ```