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Generalized Linear Mixed Models

Experiments don’t have just one participant / Corpora don’t just have
one speaker.

Different participants may have different idiosyncratic behavior.
And items may have idiosyncratic properties, too.

→ Violations of the assumption of independence!
NB: There may even be more clustered (repeated) properties and clusters

may be nested (e.g. subjects ε dialects ε languages).
We’d like to take these into account, and perhaps investigate them.

→ Generalized Linear Mixed or Multilevel Models (a.k.a. hierarchical,
mixed-effects).
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Generalized Linear Models
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Generalized Linear Mixed Models

(provided by R. Levy)
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Introductions and Tutorials

(Gelman & Hill, 2006): introduction to GLM and GLMM directed at scientists in the social
sciences; Bayesian-inspired, but not fanatic; very intuitive; comes with R code, libraries, etc.;
Gelman is also a contributor to http://fivethirtyeight.blogs.nytimes.com/ and
has a wonderful (and often funny) blog on multilevel/mixed modeling,
http://andrewgelman.com/.

(Baayen, Davidson, & Bates, 2008): introduction to linear mixed models directed at
psycholinguists; one of the most cited JML articles of all times; parts are technical, but quite
accessible; Douglas Bates, the main developer of lme4, is a co-author.

(Jaeger, 2008): introduction to mixed logit models directed at psycholinguists; compares
ANOVA and mixed logit models for the analysis of binary categorical data

(Johnson, 2009): beautifully intuitive introduction to GLMMs directed at sociolinguists;
compares GoldVarb with GLMM; great visualizations that showcase the differences; comes
with R library for mixed effect GoldVarb, Rbrul

(Jaeger, Graff, Croft, & Pontillo, 2011): introduction to LMMs directed at typologists;
discusses fixed and random effects, challenges due to data sparsity, and simulation-based
approaches to Type I&II error rate assessment (for mixed logit models, see also Dixon,
2008); explains how mixed models can be used to model genetic (family, subfamily, genera)
relations as well as spational (language contact) effects.

Roger Levy has lecture notes (in preparation for a book) on statistical models for linguists
that also cover mixed models. He takes a graphical model approach.

I don’t do this often, but do not follow (Janssen, 2012) – it contains misleading advice about
random effects (cf. Baayen et al., 2008; Barr, Levy, Scheepers, & Tily, 2013; Jaeger, 2008).

http://fivethirtyeight.blogs.nytimes.com/
http://andrewgelman.com/
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Linear Mixed Models: A simulated example

Simulation of trial-level data can be invaluable for achieving deeper
understanding of the data (based on example kindly provided by Roger
Levy)

# parameters of simulation
sigma.b <- 125 # inter-subject variation larger than
sigma.e <- 40 # intra-subject, inter-trial variation
alpha <- 500 # intercept
beta <- 12 # slope (of neighborhood density, NHD)
M <- 6 # number of participants
n <- 50 # trials per participant
b <- rnorm(M, 0, sigma.b) # random by-subject intercept differences

# combine into data.frame
d = data.frame(
Subject = rep(1:M,n),
Neighbors = rpois(M*n,3) + 1,
Noise = rnorm(M*n,0,sigma.e)

)
d$b = b[d$Subject] # Subject intercept
d$RT = # simulate RTs!
alpha + # add intercept
beta * d$Neighbors + # add effect of NHD
d$b + # add by-subject intercept differences
rnorm(M*n,0,sigma.e) # add trial-level noise
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A simulated example (cntd’)
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Participant-level clustering is easily visible

This reflects the fact that (simulated) inter-participant variation (125ms)
is larger than (simulated) inter-trial variation (40ms)

And the (simulated) effects of neighborhood density are also visible



LI539
Mixed
Effect

Models

T. Florian
Jaeger

GLMM
Graphical
Model

Linear
Mixed
Model
A Simulated
Example

A real
example

MCMC-
sampling

Relation to
GLM &
ANOVA

Random
effects
BLUPS

Crossed
random
effects

Random
slopes

Confidence
intervals

Guidelines

Random vs.
Fixed

Multilevel

References

References

A simulated example (cntd’)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8

40
0

60
0

80
0

10
00

# Neighbors

R
T

Subject intercepts (alpha + beta[subj])

Participant-level clustering is easily visible

This reflects the fact that (simulated) inter-participant variation (125ms)
is larger than (simulated) inter-trial variation (40ms)

And the (simulated) effects of neighborhood density are also visible
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Participant-level clustering is easily visible

This reflects the fact that (simulated) inter-participant variation (125ms)
is larger than (simulated) inter-trial variation (40ms)

And the (simulated) effects of neighborhood density are also visible
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This reflects the fact that (simulated) inter-participant variation (125ms)
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And the (simulated) effects of neighborhood density are also visible
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Linear Mixed Models: A simulated example (cont’d)

# empirical SD of by-subject differences and noise
sd(b)

## [1] 92.94

sd(d$Noise)

## [1] 40.28

# analyze (simulated) data
library(lme4)
lmer(RT ˜ Neighbors + (1 + Neighbors | Subject), d)

## Linear mixed model fit by REML
## Formula: RT ˜ Neighbors + (1 + Neighbors | Subject)
## Data: d
## AIC BIC logLik deviance REMLdev
## 3141 3163 -1565 3141 3129
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 7166.8 84.66
## Neighbors 2.7 1.64 1.000
## Residual 1862.7 43.16
## Number of obs: 300, groups: Subject, 6
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 530.58 35.16 15.09
## Neighbors 10.21 1.67 6.13
##
## Correlation of Fixed Effects:
## (Intr)
## Neighbors 0.240
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Mixed Linear Model: Real data

Back to our lexical-decision experiment:
A variety of predictors seem to affect RTs, e.g.:

Frequency
Trial
NativeLanguage
Interactions

Additionally, different participants (a grouping factor) in your study
may also have:

different overall decision speeds
differing sensitivity to e.g. Frequency.

We want to draw inferences about all these things at the same time or,
about some of them, conditional on the others, including
between-subject variability.
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Mixed Linear Model

Random effects, starting simple: let each participant j have
idiosyncratic differences in RTs, bj.

Idea: Model distribution of subject differences as deviation from grand
mean.

Mixed models approximate these subject-specific deviations by
assuming that these deviations are normally distributed.
Grand mean reflected in ordinary intercept
→ By-subject mean set to 0 (without loss of generality)
→ Only additional parameter fit from data is standard deviatio.n

RTij = β0 +β1Frequencyij+

By-subject differences∼N(0,σb)︷︸︸︷
bj +

Noise∼N(0,σε)︷︸︸︷
εij
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Mixed linear model with one random intercept

RTij = β0 +β1Frequencyij+

By-subject differences∼N(0,σb)︷︸︸︷
bj +

Noise∼N(0,σε)︷︸︸︷
εij

library(languageR)
library(lme4)
data(lexdec)
l1 = lmer(RT ˜ Frequency + (1 | Subject), data=lexdec)

. . . where the term (. . . |Subject) can be read as ‘. . . by subjects’; this
term specifies the by-subject random effects (in this case, only a
by-subject random intercept)

NB: As was the case for glm, we can omit the family specification and the
fixed effect intercept.



LI539
Mixed
Effect

Models

T. Florian
Jaeger

GLMM
Graphical
Model

Linear
Mixed
Model
A Simulated
Example

A real
example

MCMC-
sampling

Relation to
GLM &
ANOVA

Random
effects
BLUPS

Crossed
random
effects

Random
slopes

Confidence
intervals

Guidelines

Random vs.
Fixed

Multilevel

References

References

Interpretation of the output

RTij = β0 +β1Frequencyij+

By-subject differences∼N(0,σb)︷︸︸︷
bj +

Noise∼N(0,σε)︷︸︸︷
εij

Interpretation parallel to ordinary regression models:

## Linear mixed model fit by REML
## Formula: RT ˜ Frequency + (1 | Subject)
## Data: lexdec
## AIC BIC logLik deviance REMLdev
## -858 -837 433 -881 -866
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 0.0237 0.154
## Residual 0.0327 0.181
## Number of obs: 1659, groups: Subject, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.58878 0.03773 174.6
## Frequency -0.04287 0.00349 -12.3
##
## Correlation of Fixed Effects:
## (Intr)
## Frequency -0.439
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MCMC-sampling

t-value anti-conservative

→ MCMC-sampling of coefficients to obtain non anti-conservative
estimates

library(languageR)
p = pvals.fnc(l1, nsim = 10000, addPlot=F)
print(p)

## $fixed
## Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
## (Intercept) 6.5888 6.5891 6.5279 6.6495 0.0001 0
## Frequency -0.0429 -0.0429 -0.0497 -0.0359 0.0001 0
##
## $random
## Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper
## 1 Subject (Intercept) 0.1541 0.1180 0.1197 0.0924 0.1494
## 2 Residual 0.1809 0.1817 0.1818 0.1755 0.1880
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Interpretation of the output

estimates of coefficients for fixed and random predictors.

predictions = fitted values, just as for ordinary regression model.

cor(fitted(l1), lexdec$RT)ˆ2

## [1] 0.4457
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MCMC-sampling
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MCMC-sampling: What does it do?

mcmcsamp() (in the lme4 package) uses Markov Chain Monte Carlo
methods to generate samples from the posterior distribution of the
parameters of a fitted (lmer) model
NB: No normality is assumed during MCMC sampling

The posterior distribution of parameter is their distribution conditional on
the data and the assumptions of the (lmer) model.

pvals.fnc() (in the languageR package) provides a summary
(mean estimates, highest posterior density intervals) of the output of
mcmcsamp()

Highest posterior intervals (HPDs) are one common Bayesian
equivalent of confidence intervals. HPDs are the shortest possible
interval enclosing (1− α)% of the posterior probability mass of a
distribution.
→ HPDs are not necessarily symmetric around the mean.

When applied to mixed models, whether we can reject the null
hypothesis that a parameter is 0 (given the assumed significance level
α)
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mcmcsamp(): Technical details

mcmcsamp uses Gibbs sampling
In Gibbs sampling a (subset of) parameters is sampled conditional on
assumed values for other (subsets of) parameters.
When applied to mixed models, three subsets of parameters are
independently sampled from:

the variance, σ2
ε , of the per-observation noise

the parameters that determine the variance-covariance matrix, ΣB , of the
random effects (to be specific, sampling happens over the ST factor of the
Cholesky decomposition of the variance-covariance matrix)
the random effects and the fixed effects (in the Bayesian formulation on the
model the random effects are regarded as parameters).

The starting values for mcmc-sampling from an lmer models are taken
from the ML or REML fit of the model.
For further detail, e.g., what we exactly sample from, see

https://stat.ethz.ch/pipermail/r-help/2006-October/
115585.html
https://stat.ethz.ch/pipermail/r-help/2006-August/
110736.html

https://stat.ethz.ch/pipermail/r-help/2006-October/115585.html
https://stat.ethz.ch/pipermail/r-help/2006-October/115585.html
https://stat.ethz.ch/pipermail/r-help/2006-August/110736.html
https://stat.ethz.ch/pipermail/r-help/2006-August/110736.html
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MCMC-sampling: Example

m = mcmcsamp(l1, n=5, verbose=T)
str(m)

## Formal class 'merMCMC' [package "lme4"] with 9 slots
## ..@ Gp : int [1:2] 0 21
## ..@ ST : num [1, 1:5] 0.851 0.86 0.85 0.826 0.751
## ..@ call : language lmer(formula = RT ˜ Frequency + (1 | Subject), data = lexdec)
## ..@ deviance: num [1:5] -881 -881 -881 -881 -881
## ..@ dims : Named int [1:18] 1 1659 2 21 1 1 1 1 2 5 ...
## .. ..- attr(*, "names")= chr [1:18] "nt" "n" "p" "q" ...
## ..@ fixef : num [1:2, 1:5] 6.5888 -0.0429 6.5554 -0.0377 6.5631 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:2] "(Intercept)" "Frequency"
## .. .. ..$ : NULL
## ..@ nc : int 1
## ..@ ranef : num[1:21, 0 ]
## ..@ sigma : num [1, 1:5] 0.181 0.179 0.181 0.186 0.186
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MCMC-sampling: Example (cont’d)

m@ST

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8514 0.8604 0.8505 0.8263 0.7509

m@sigma

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1809 0.1793 0.1807 0.1864 0.1863

m@fixef

## [,1] [,2] [,3] [,4] [,5]
## (Intercept) 6.58878 6.5554 6.56309 6.68895 6.57046
## Frequency -0.04287 -0.0377 -0.04182 -0.04715 -0.03655

These values (samples of parameters drawn from the posterior
distribution –as estimated by the MCMC method) are what
pvals.fnc() bases the estimated HPD on that we use to test
significance in the linear mixed model, thereby avoiding
anti-conservative t-tests.
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GLMM vs. GLM

Mixed models (GLMMs) inherit all advantages from Generalized
Linear Models, but are computationally and conceptually more
complex.

From independence to conditional independence: GLMM revises
the assumption of independence and instead assumes conditional
independence. For GLMs, we assumed that our observations y1, . . . , yn
are independently sampled; for GLMMs, we assume that they are
independent once the grouping factors are taken into account.

NB: GLMMs allow us to make assumptions about independence/conditional
independence for each parameter in the model. That is powerful, but
also a source of confusion (see below).

For example, in the example (linear) mixed model above we evaluated the
intercept under the assumption of conditional independence, but we
evaluated the Frequency effect under the stronger (less conservative)
assumption of independence (no random by-subject slope for Frequency
was included in the model).
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Mixed vs. fixed effects for grouping factors

The way GLMMs account for clusters in the data is efficient:
In the above example, 1 parameter was sufficient to model differences
between k =21 subjects in their base RT.
Had we models these diffferences as fixed effects, we would have required
20 parameters (k − 1).

→ The assumption that between-cluster differences are normally
distributed saves k − 2 degrees of freedom for individual differences in
intercepts alone.
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Mixed vs. separate by-cluster regressions

An alternative way to account for individual differences are tests over
separate by-cluster regressions (cf. Lorch & Myers, 1990):

Split the data by level of the grouping variable (e.g., subjects)
Step 1: Fit the same ordinary (GLM) regression model to each cluster
Step 2: Analyze the distribution of coefficient estimates from Step 1 to
assess whether they are different from 0.

GLMMs provide more power than by-cluster regression (e.g., Dixon,
2008)

(in the alternative approach, information about the amount of data that
went into each by-cluster estimate is not available at the final step of
analysis: e.g., the difference between a model fit a subject with 10 data
points compared to a subject with 100 data points)
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GLMM vs. repeated-measures ANOVA

Both repeated-measures ANOVA and GLMM are suited for the analysis
of repeated-measures data (for which the assumption of independence
is not warranted, cf. Clark (1973)).
Some of the advantages of ANOVA include:

ANOVA is more commonly taught and more of your colleagues will be
familiar with it (i.e., can provide better feedback)
Our fields have established standards on how to conduct and report
ANOVA (though those can be a two-edged sword)
ANOVA is a robust tool that typically work even when some of its
assumptions are violated (e.g., normality, sphericity; but see Dixon (2008);
Jaeger (2008)).
ANOVA is computationally cheap (though this advantage is increasingly
less important).
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Some advantages of GLMM

Like GLMs, appropriate models exists for a variety of types of
dependent variables (unlike ANOVA, which is intended for continuous
Gaussian data)

Like for GLMs, the framework encourages us to think about the coding
and conceptualization of our effects (though this advantage depends on
the discipline of the user)

GLMMs readily extend situations with multiple crossed grouping factors
(e.g., subjects and items). ANOVA requires multiple separate analyses
(F1, F2) that are known to be anti-conservative, but can be made
conservative by combining them in an additional step (minF, cf. Clark
(1973))
GLMMs provide greater insight into the random effect structure:

We can specify random effect structures (this freedom comes with risks for
the uninitiated)
NB: For example, the linear mixed model shown above only contains a random

intercept rather than random effects for all fixed effects.

We can look at the random difference between levels of a grouping variable.
We can explore the covariation structure of the random effects (within the
random effects for a grouping factor)
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So, GLMM or ANOVA?

In all the current frenzy about mixed models, don’t forget that the most
important part is to understand your data.

It’s important that your familiar and comfortable with whatever analysis
you choose.

In case of doubt, perhaps risk loosing some power, but use what you
understand (e.g., for balanced data the Type I and Type II error
advantage of mixed models is negligible to non-existent).

E.g., use ANOVA if you aren’t comfortable with linear mixed models
unless the assumptions of the ANOVA are severly violated.

→ GLMMs are a very powerful tool, but with the ability to do more also
comes the risk of doing more wrongly.
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What about all the things that could go wrong?

Almost all common issues with GLMMs are also common issues with
ordinary regression (GLMs).

Some of these issues are due to the fact that we can now analyze variables
with ditributional properties that ANOVA isn’t suited for (e.g., categorical
data, count data) and those types of variables (not GLM or GLMM) come
with their own challenges.
Other issues are either shared with ANOVA (overly influential cases,
outliers) or are due to the relaxed constraints on the ‘shape’ of the data
(e.g., unbalanced and sparse data or lack of full factorial balanced designs)

Some issues are specific to –or at least more common in– mixed
models:

Random effects
Increased computational complexity and issues with convergence.
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Random effects: Examining individual differences

Let’s look at the by-subject adjustments to the intercept. These are
called Best Unbiased Linear Predictors (BLUPs)

BLUPs are not fitted parameters. Only one degree of freedom was added to
the model. The BLUPs are estimated posteriori based on the fitted model.

P (bi|α̂, β̂, σ̂b, σ̂ε,X)

The BLUPs are the conditional modes of the bis—the choices that
maximize the above probability
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Random effects: Examining individual differences

Let’s look at the by-subject adjustments to the intercept. These are
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Examining individual differences

NB: By-subjects adjustments are assumed to be centered around zero, but
they don’t necessarily do so:

mean(ranef(l1)$Subject[[1]])

## [1] -1.823e-13

head(ranef(l1)$Subject[1], 5)

## (Intercept)
## A1 -0.10552
## A2 -0.16189
## A3 0.01243
## C -0.06170
## D 0.02062
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Shrinkage: Observed vs. fitted by-subject differences
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(for a nice introduction to shrinkage, see Kliegl, Masson, and Richter (2010))
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Mixed models with several grouping factors

Unlike with ANOVA, the linear mixed model can accommodate more
than one random intercept

These are crossed random effects.

l2 = lmer(RT ˜ 1 + (1 | Subject) + (1 | Word),
data = lexdec)

head(ranef(l2)$Subject, 5)

## (Intercept)
## A1 -0.10568
## A2 -0.16213
## A3 0.01245
## C -0.06179
## D 0.02065

head(ranef(l2)$Word, 5)

## (Intercept)
## almond 0.03859
## ant -0.04993
## apple -0.11279
## apricot -0.01725
## asparagus 0.07771
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Shrinkage: Observed vs. fitted by-subject differences
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Mixed models with random slopes

Not only the intercept, but any of the slopes (of the predictors) may
differ between individuals.

For example, subjects may show different sensitivity to Frequency:

l3 = lmer(RT ˜ 1 + Frequency + (1 + Frequency | Subject) + (1 | Word),
data = lexdec)
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Mixed models with random slopes (cont’d)

print(l3, corr=F)

## Linear mixed model fit by REML
## Formula: RT ˜ 1 + Frequency + (1 + Frequency | Subject) + (1 | Word)
## Data: lexdec
## AIC BIC logLik deviance REMLdev
## -943 -905 479 -970 -957
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Word (Intercept) 0.00297 0.0545
## Subject (Intercept) 0.05647 0.2376
## Frequency 0.00041 0.0202 -0.918
## Residual 0.02917 0.1708
## Number of obs: 1659, groups: Word, 79; Subject, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.58878 0.05925 111.2
## Frequency -0.04287 0.00731 -5.9

NB: By default, R also fits a random effect for the covariance(s) between all
random slopes within a grouping factor (shown above in the column
Corr as the correlation between the variances). We’ll return to that.
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Mixed models with random slopes

The BLUPs of the random slope reflect the by-subject adjustments to
the overall Frequency effect.

head(ranef(l3)$Subject, 5)

## (Intercept) Frequency
## A1 -0.113082 0.002002
## A2 -0.237502 0.015898
## A3 -0.005239 0.003483
## C -0.132056 0.014383
## D 0.001134 0.003810

head(ranef(l3)$Word, 5)

## (Intercept)
## almond 0.01666
## ant -0.02480
## apple -0.04996
## apricot -0.04152
## asparagus 0.03392
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Visualizing the random effects

dotplot(ranef(l3))
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Visualizing the random effects

qqmath(ranef(l3))
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Visualizing random effect correlations

par(cex=.5)
plot(ranef(l3)$Subject, main="Random Effect Correlation")
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Question

What does this correlation mean?
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Visualizing random effect correlations

Answer

The plot shows us that there is a negative correlation between the
modes of the by-subject random intercepts and the modes of the
by-subject random slopes for word frequency

(this is reflected in the negative correlations of the two variances,
−0.918, see above)

→ Subjects with a higher intercept tend to have smaller slopes for
Frequency.

Question

According to this model, do slower readers have larger or smaller
effects of word frequency?
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Visualizing random effect correlations

Answer

The plot shows us that there is a negative correlation between the
modes of the by-subject random intercepts and the modes of the
by-subject random slopes for word frequency

(this is reflected in the negative correlations of the two variances,
−0.918, see above)

→ Subjects with a higher intercept tend to have smaller slopes for
Frequency.

Question

According to this model, do slower readers have larger or smaller
effects of word frequency?
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Visualizing random effect correlations

Answer

Notice first that the axis of the plot are the by-subject BLUPs for the
intercept and Frequency.

→ we should interpret them relative to the fixed coefficient estimates.

→ slower readers exhibit larger (more negative) effects of word frequency
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Random effect correlations are sensitive to predictor
transformation

NB: Random effect correlations can change (quantitatively or even
qualitatively) when we transform a continuous predictor or change the
coding of a categorical predictor.
For example, here’s the same model after centering Frequency:

lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
l3b = lmer(RT ˜ 1 + cFrequency + (1 + cFrequency | Subject),

data= lexdec)
print(l3b, corr=F)

## Linear mixed model fit by REML
## Formula: RT ˜ 1 + cFrequency + (1 + cFrequency | Subject)
## Data: lexdec
## AIC BIC logLik deviance REMLdev
## -876 -844 444 -902 -888
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.023740 0.1541
## cFrequency 0.000387 0.0197 -0.814
## Residual 0.032136 0.1793
## Number of obs: 1659, groups: Subject, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.38509 0.03391 188.3
## cFrequency -0.04287 0.00551 -7.8
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Random effect correlations and predictor coding

Here’s an illustration that predictor coding, too, affects random effect
correlations.

lexdec$HighFrequency =
ifelse(lexdec$Frequency > median(lexdec$Frequency), 1, 0)

l4 = lmer(RT ˜ 1 + HighFrequency + (1 + HighFrequency | Subject),
data= lexdec)

print(l4, corr=F)

## Linear mixed model fit by REML
## Formula: RT ˜ 1 + HighFrequency + (1 + HighFrequency | Subject)
## Data: lexdec
## AIC BIC logLik deviance REMLdev
## -912 -879 462 -935 -924
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.03086 0.176
## HighFrequency 0.00314 0.056 -0.811
## Residual 0.03141 0.177
## Number of obs: 1659, groups: Subject, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.4440 0.0388 166.0
## HighFrequency -0.1192 0.0150 -7.9
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Random effect correlations and predictor coding

lexdec$HighFrequency = ifelse(lexdec$Frequency > median(lexdec$Frequency),
.5, -.5)

l4b = lmer(RT ˜ 1 + HighFrequency + (1 + HighFrequency | Subject),
data= lexdec)

print(l4b, corr=F)

## Linear mixed model fit by REML
## Formula: RT ˜ 1 + HighFrequency + (1 + HighFrequency | Subject)
## Data: lexdec
## AIC BIC logLik deviance REMLdev
## -912 -879 462 -935 -924
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Subject (Intercept) 0.02367 0.154
## HighFrequency 0.00314 0.056 -0.744
## Residual 0.03141 0.177
## Number of obs: 1659, groups: Subject, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.3843 0.0339 188.6
## HighFrequency -0.1192 0.0150 -7.9

par(cex=.5)
plot(ranef(l4b)$Subject, main="Random Effect Correlation")
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Some useful commands

# use vcov(model) for variance-covariance matrix of fixed effects
# these determiner the standard errors of the fixed effects.
vcov(l4b)

## 2 x 2 Matrix of class "dpoMatrix"
## [,1] [,2]
## [1,] 0.0011460 -0.0003048
## [2,] -0.0003048 0.0002253

# get standard errors of fixed effects:
sqrt(diag(vcov(l4b)))

## [1] 0.03385 0.01501



LI539
Mixed
Effect

Models

T. Florian
Jaeger

GLMM
Graphical
Model

Linear
Mixed
Model
A Simulated
Example

A real
example

MCMC-
sampling

Relation to
GLM &
ANOVA

Random
effects
BLUPS

Crossed
random
effects

Random
slopes

Confidence
intervals

Guidelines

Random vs.
Fixed

Multilevel

References

References

Some useful commands (cont’d)

# use VarCorr(model) for variance-covariance matrix of random effects
# unlike the fixed effect variance-covariance matrix, only the *structure*
# of the VarCorr is known, the values are parameters that are estimated
# when we fit the model.
VarCorr(l4b)

## $Subject
## (Intercept) HighFrequency
## (Intercept) 0.02367 -0.00641
## HighFrequency -0.00641 0.00314
## attr(,"stddev")
## (Intercept) HighFrequency
## 0.15384 0.05603
## attr(,"correlation")
## (Intercept) HighFrequency
## (Intercept) 1.0000 -0.7436
## HighFrequency -0.7436 1.0000
##
## attr(,"sc")
## [1] 0.1772

# for further details, see
# https://stat.ethz.ch/pipermail/r-help/2006-July/109308.html



LI539
Mixed
Effect

Models

T. Florian
Jaeger

GLMM
Graphical
Model

Linear
Mixed
Model
A Simulated
Example

A real
example

MCMC-
sampling

Relation to
GLM &
ANOVA

Random
effects
BLUPS

Crossed
random
effects

Random
slopes

Confidence
intervals

Guidelines

Random vs.
Fixed

Multilevel

References

References

Confidence intervals on random effects

Sometimes you might want to get CIs for the random effects (e.g., are
the variances significantly different from zero?)

lmer does purposefully not provide standard error estimates for the
estimates of the variance-covariance of the random effects

(because the distribution of variance estimates is expected to be not
symmetric, making the use of SE-based CIs problematic).

Instead, it is recommended that MCMC-sampling is used:

s = mcmcsamp(l2, 50000)
HPDinterval(s)
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Confidence intervals on random effects

As a reminder, this was our l2 model:

## Linear mixed model fit by REML
## Formula: RT ˜ 1 + (1 | Subject) + (1 | Word)
## Data: lexdec
## AIC BIC logLik deviance REMLdev
## -891 -869 449 -904 -899
## Random effects:
## Groups Name Variance Std.Dev.
## Word (Intercept) 0.00591 0.0768
## Subject (Intercept) 0.02377 0.1542
## Residual 0.02984 0.1727
## Number of obs: 1659, groups: Word, 79; Subject, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 6.385 0.035 182
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Confidence intervals on random effects (cont’d)

## $fixef
## lower upper
## (Intercept) 6.33 6.438
## attr(,"Probability")
## [1] 0.95
##
## $ST
## lower upper
## [1,] 0.3169 0.4647
## [2,] 0.5220 0.8349
## attr(,"Probability")
## [1] 0.95
##
## $sigma
## lower upper
## [1,] 0.1686 0.181
## attr(,"Probability")
## [1] 0.95
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Technical note: Cholesky decomposition

Variance-covariance matrices are square, symmetrical matrices
containing variances along the diagonal elements and covariances in
the off-diagonal elements.

The ST slot of a mer-class object (the output of lmer()) contains

. . .

A list of S and T factors in the TSST’ Cholesky factorization of
the relative variance matrices of the random effects
associated with each random-effects term.

(see help(‘‘mer-class’’))

Cholesky decomposition deconstructs any n-by-n positive definite
covariance matrix (all variance-covariance matrices are assumed to be
positive definite) into an n-by-n triangular matrix (a matrix with zeros
above the diagonal), postmultiplied by its transpose. (see also
http://cran.r-project.org/web/packages/lme4/
vignettes/Implementation.pdf, p. 22)

http://cran.r-project.org/web/packages/lme4/vignettes/Implementation.pdf
http://cran.r-project.org/web/packages/lme4/vignettes/Implementation.pdf
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Technical note: Cholesky decomposition

the ST values of an lmer object can be turned into variance-covariance
matrices via VarCorr (see ?VarCorr).

HPDinterval(VarCorr(s, type = "varcov"))

## lower upper
## [1,] 0.003052 0.006495
## [2,] 0.008181 0.020966
## [3,] 0.028418 0.032728
## attr(,"Probability")
## [1] 0.95

# (given in the order they appear in l2: variance for Word intercept,
# Subject intercept, Residual)

(cf. the estimates of the random effects in model l2 above, which this is
based on)
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What random slopes should I include?

A mixed model with random slopes for all its predictors (incl. random
intercept) is comparable in structure to an ANOVA

→ at least within the tradition of ANOVA designs, we should use mixed
models with maximal random effect structures (Barr et al., 2013) (see
also Jaeger, 2008; Baayen et al., 2008).

However, maximal random effect structures often don’t even converge
for balanced designs with lots of data. For more interesting (harder to
analyze) data, models with any random slope often won’t converge.
Taken as an absolute standard, keeping it maximal is problematic (see
also Jaeger et al., 2011).
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What random slopes should I include?

A mixed model with random slopes for all its predictors (incl. random
intercept) is comparable in structure to an ANOVA

→ at least within the tradition of ANOVA designs, we should use mixed
models with maximal random effect structures (Barr et al., 2013) (see
also Jaeger, 2008; Baayen et al., 2008).

However, maximal random effect structures often don’t even converge
for balanced designs with lots of data. For more interesting (harder to
analyze) data, models with any random slope often won’t converge.
Taken as an absolute standard, keeping it maximal is problematic (see
also Jaeger et al., 2011).
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Some suggestions

Do not assume that only random intercepts are required (see Baayen et
al., 2008; Jaeger, 2008). (actually, there seems to be only one paper
that has ever suggested this, Janssen (2012))

Feel free to explore the random effect structure. It’s one of the
appealing features of mixed models.

Differences between keeping it maximal or using the maximal
random effect (RE) structure justified by model comparison (the
only two realistic options) are usually negligible (compared to, for
example, common mistakes in statistical pratice; cf. Simmons, Nelson,
and Simonsohn (2011)).
For some types of data keeping it maximal seems to cause problems:

For highly heterogenous and sparse data (overfitting; lack of any insight)
For dichotomous data with many categorical cells
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Maximal RE structure justified by model comparison

One great feature of Mixed Models is that we can assess whether a
certain random effect structure is actually warranted given the data.

Just as nested ordinary regression models can be compared (cf.
stepwise regression), we can compare models with nested random
effect structures.

Here, model comparison shows that the covariance parameter of l3
significantly improves the model compared to l2 with both the random
intercept and slope for subjects, but no covariance parameter
(χ2(1) = 21.6, p < 0.0001).

The random slope overall is also justified (χ2(2) = 24.1, p < 0.0001).
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Random vs. fixed effects

A FAQ is when something should be considered a random effect,
rather than a fixed effect

First off, not everybody likes this terminology since it can be misleading
and since none of the frequently used criteria is absolute (Gelman &
Hill, 2006)
That said, here are a couple of considerations:

when sampling further data from our population would increase the
number of levels of a factor, it is often considered a random effect
when we assume that differences in mean of an effect (i.e., the fixed effect
coefficients) are randomly distributed with regard to another factor, that
latter factor is commonly considered a random effect
Convention also often tells us what to do. For example, in psycholinguistics
it is standard to consider both subjects and items as random effects.
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Random vs. fixed effects

A FAQ is when something should be considered a random effect,
rather than a fixed effect

First off, not everybody likes this terminology since it can be misleading
and since none of the frequently used criteria is absolute (Gelman &
Hill, 2006)
That said, here are a couple of considerations:

when sampling further data from our population would increase the
number of levels of a factor, it is often considered a random effect
when we assume that differences in mean of an effect (i.e., the fixed effect
coefficients) are randomly distributed with regard to another factor, that
latter factor is commonly considered a random effect
Convention also often tells us what to do. For example, in psycholinguistics
it is standard to consider both subjects and items as random effects.
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Modeling a hierarchy of clusters (multilevel)

Sometimes we want to recognize that there is a hierarchy of random
effects.
For example,

A sociolinguist analyzing behavioral repeated measures data from multiple
speakers might consider random effects for subjects and (perhaps multiple
levels of) dialect region
A typologist analyzing linguistic properties of languages in a sample might
want to model random effects of language family, subfamily, genus, and
alike (e.g., Atkinson, 2011; Jaeger et al., 2011).
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An example

Atkinson (2011) modeled phonological complexity of languages in such
a model. He wanted to test the hypothesis that, during human
migration, repeated founder events (groups splitting off, migrating, and
creating new language communities) led to a shrinking of the
phonological inventory. In his words,

A series of founder events should produce a gradient of
decreasing phonemic diversity with increasing distance from
the origin [of language].

Atkinson obtain measures of phonological complexity (standardized
number of consonants, vowels, and tones) from WALS (Haspelmath et
al., 2005).

He then predicted the complexity of a language’s phonology as a
function of its (log-transformed) population size, the distances of its
population center from the origin of language, and the interaction of
these two factors.
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An example (cont’d)

However, languages do not constitute independent samples. So, to
capture that Atkinson inlcuded crossed random intercepts by language
family, subfamily, and genus.

NB: when a ‘lower’ grouping factor (e.g., Subfamily) has no value (e.g.,
because only one sample from the higher grouping factor, e.g., Family,
is available) we code that as 0.

Task

Let’s think about why this way of specifying the random effects makes sense.
Write down the linear predictor of such a model. Think about the BLUPs.



LI539
Mixed
Effect

Models

T. Florian
Jaeger

GLMM
Graphical
Model

Linear
Mixed
Model
A Simulated
Example

A real
example

MCMC-
sampling

Relation to
GLM &
ANOVA

Random
effects
BLUPS

Crossed
random
effects

Random
slopes

Confidence
intervals

Guidelines

Random vs.
Fixed

Multilevel

References

References

Atkinson, Q. D. (2011). Phonemic diversity supports a serial founder effect
model of language expansion from africa. Science, 332(6027),
346–349.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects
modeling with crossed random effects for subjects and items. Journal
of memory and language, 59(4), 390–412.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects
structure for confirmatory hypothesis testing: Keep it maximal. Journal
of Memory and Language, 68(3), 255–278.

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of
language statistics in psychological research. Journal of verbal
learning and verbal behavior, 12(4), 335–359.

Dixon, P. (2008). Models of accuracy in repeated-measures designs.
Journal of Memory and Language, 59(4), 447–456.

Gelman, A., & Hill, J. (2006). Data analysis using regression and
multilevel/hierarchical models. Cambridge, UK: Cambridge University
Press.

Jaeger, T. F. (2008). Categorical data analysis: Away from anovas
(transformation or not) and towards logit mixed models. Journal of
memory and language, 59(4), 434–446.

Jaeger, T. F., Graff, P., Croft, W., & Pontillo, D. (2011). Mixed effect models



LI539
Mixed
Effect

Models

T. Florian
Jaeger

GLMM
Graphical
Model

Linear
Mixed
Model
A Simulated
Example

A real
example

MCMC-
sampling

Relation to
GLM &
ANOVA

Random
effects
BLUPS

Crossed
random
effects

Random
slopes

Confidence
intervals

Guidelines

Random vs.
Fixed

Multilevel

References

References

for genetic and areal dependencies in linguistic typology. Linguistic
Typology, 15(2), 281–320.

Janssen, D. P. (2012). Twice random, once mixed: Applying mixed models
to simultaneously analyze random effects of language and
participants. Behavior research methods, 44(1), 232–247.

Johnson, D. E. (2009). Getting off the goldvarb standard: Introducing rbrul
for mixed-effects variable rule analysis. Language and Linguistics
Compass, 3(1), 359–383.

Kliegl, R., Masson, M. E., & Richter, E. M. (2010). A linear mixed model
analysis of masked repetition priming. Visual Cognition, 18(5),
655–681.

Lorch, R., & Myers, J. (1990). Regression analyses of repeated measures
data in cognitive research. Journal of Memory and Language, 16(1),
149–157.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive
psychology undisclosed flexibility in data collection and analysis allows
presenting anything as significant. Psychological science, 22(11),
1359–1366.


	Generalized Linear Mixed Model
	Graphical Model

	Linear Mixed Model
	A Simulated Example
	A real example
	MCMC-sampling

	Relation to GLM & ANOVA
	Random effects
	BLUPS
	Crossed random effects
	Random slopes
	Confidence intervals
	Guidelines
	Random vs. Fixed

	Multilevel
	References

