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Data

@ Our example data comes from a 2x2 design, where both factors and
their interaction are within-subjects and within-items.

d = read.csv(file = "eye-tracking-sample.csv”) str(d) ¢ 'data.frame’: 35236
obs. of 11 variables: Subj : int1111111111... tem :int1 111111111 ..
Sample : int12345678910... Time : num 0.004 0.008 0.012 0.016 0.02 0.024
... Time: num —0.198 —0.194 —0.19 — 0.186 — 0.182... Bin:int1 11111
1111..

CondWordFrequency : Factorw/2levels” high”,”low” : 111111...
cCondWordFrequencyHigh: num 0.50.50.50.50.50.5050.5...
CondCompetitors : Factorw/2levels”one”,”two” : 22222...
cCondCompetitionHigh : num 0.50.50.50.50.50.50.50.50.5 ...
LooksToTarget : int0011001011...



Repeated measures ANOVA for 2x2 within-factors
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@ Let’s start with the F1 analysis (by-participant). For now we collapse
over time.

@ For quick help for ANOVA in R, see
http://www.statmethods.net/stats/anova.html

d.agg = aggregate(d[,c(’'LooksToTarget’)], by= list( Subj =

dSubj, CondWordFrequency = dCondWordFrequency, CondCompetitors =
dCondCompetitors), FUN =

mean)T hisvariablesstoresaverageproportionso flookstotarget(intheoriginald
? LooksToTarget” str(d.agg) ¢ 'data.frame’: 64 obs. of 4 variables:

Subj : int12345678910... CondWordFrequency: Factor w/ 2 levels

"high”’low”: 11111 ...

CondCompetitors : Factorw/2levels”one”,”two” : 11111... LooksToTarget
:num 0.815 0.784 0.772 0.806 0.561 ...


http://www.statmethods.net/stats/anova.html
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F1 and F2 Results
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: m.F1 = aov(LooksToTarget CondWordFrequency * CondCompetitors +

Error(Subj/(CondWordFrequency * CondCompetitors)), data = d.agg)

summary(m.F1)
@ ... and similarly for F2 (by aggregating by item) ...

[F1:] Df Sum Sg Mean Sq F value Pr(¢F) CondWordFrequency 1 0.08428
0.08428 3.9443 0.0519329 . CondCompetitors 1 0.36136 0.36136 16.9112
0.0001295 *** CondWordFrequency:CondCompetitors 1 0.01749 0.01749
0.8187 0.3694427 Residuals 56 1.19661 0.02137

[F2] Df Sum Sq Mean Sq F value Pr(;F) CondWordFrequency 1 0.2626
0.26261 10.9929 0.001004 ** CondCompetitors 1 2.1119 2.11193 88.4064 |
2.2e-16 *** CondWordFrequency:CondCompetitors 1 0.0415 0.04150
1.7373 0.188284 Residuals 376 8.9822 0.02389



Mixed Linear Model
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@ Here, we are aggregating by subject and item at the same time.

d.agg = aggregate(d[,c('LooksToTarget’)], by= list( Subj =

dSubj, Item = dltem, CondWordFrequency =

dCondW ordFrequency, CondCompetitors = dCondCompetitors ), FUN =
mean ) This variables stores average proportions of looks to target
names(d.agg)[length(names(d.agg))] = "LooksToTarget”



Coding the two Factors
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@ Here, | am first dummy coding and then centering the predictors.

@ That's essentially the same as contrast/sum-coding the predictors,
which is sometimes also called ANOVA coding.

d.aggcCondW ordFrequencyHigh =
myCenter(ifelse(d.aggCondWordFrequency == "high”, 1, 0))
d.aggcCondCompetitorsTwo = myCenter (i felse(d.aggCondCompetitors
=="two”, 1, 0))



@ Higher-order terms (e.g. interactions or higher order terms of
polynomials) are likely to be collinear with the lower order effects.
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Using ANOVA-coding
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yourself), | could just sum-code the predictors.
contrasts(d.aggCondW ord Frequency) =
contr.sum(2)contrasts(d.aggCondCompetitors) = contr.sum(2)
NB: R will assign the value 1 to the alphabetically first level of the factor and
-1 to the second level
NB: Under this coding the distance between the two conditions is two units.

contrasts(d.aggCondW ordFrequency) [,1] high 1 low -1

@ For lots of information on predictor coding, see Maureen Gillespie’s
tutorial: http://wiki.bcs.rochester.edu:2525/HlpLab/
StatsCourses?action=AttachFile&do=get&target=

gillespie-tutorial.pdf


http://wiki.bcs.rochester.edu:2525/HlpLab/StatsCourses?action=AttachFile&do=get&target=gillespie-tutorial.pdf
http://wiki.bcs.rochester.edu:2525/HlpLab/StatsCourses?action=AttachFile&do=get&target=gillespie-tutorial.pdf
http://wiki.bcs.rochester.edu:2525/HlpLab/StatsCourses?action=AttachFile&do=get&target=gillespie-tutorial.pdf

Mixed Linear Model
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TM;:?:" Formula: LooksToTarget cCondWordFrequencyHigh *

Jaeger cCondCompetitorsTwo + (1 + cCondWordFrequencyHigh *
cCondCompetitorsTwo — Subj) + (1 + cCondWordFrequencyHigh *
cCondCompetitorsTwo — ltem) Data: d.agg AIC BIC logLik deviance
REMLdev -1016 -917.6 533.2 -1094 -1066 Random effects: Groups Name
Variance Std.Dev. Corr ltem (Intercept) 0.004607 0.067880
cCondWordFrequencyHigh 0.000439 0.020973 -0.503
cCondCompetitorsTwo 0.000479 0.021897 0.282 -0.392
cCondWFregHigh:cCondCompTwo 0.000720 0.026849 0.830 0.012 -0.142
Subj (Intercept) 0.017818 0.133484 cCondWordFrequencyHigh 0.000188
0.013739 -1.000 cCondCompetitorsTwo 0.001281 0.035795 0.777 -0.777
cCondWFregHigh:cCondCompTwo 0.002792 0.052843 0.778 -0.778 0.583
Residual 0.001919 0.043816 Number of obs: 384, groups: ltem, 24; Subj,
16
Fixed effects: Estimate Std. Error t value (Intercept) 0.54356 0.03620
15.015 cCondWordFrequencyHigh 0.13165 0.00708 18.596
cCondCompetitorsTwo -0.31924 0.01096 -29.136
cCondWordFrequencyHigh:cCondCompetitorsTwo -0.04928 0.01687 -2.921

[.]



Weighted linear regression over empirical logits

L1539

Mixed

et Formula: emplog(LooksToTarget,

T. Florian TotalLooksz) cCondW ordFrequencyHigh * cCondCompetitorsTwo + (1 +

T cCondW ordFrequencyHigh * cCondCompetitorsTwo|Subj) + (1 +
cCondW ordFrequencyHigh * cCondCompetitorsTwo|Item)Data :
d.aggAICBIClogLikdeviance REM Ldev12561355 —
60311901206 Randomef fects :
GroupsNameV arianceStd.Dev.CorrItem(Intercept)5.9687e —
030.0772574cCondW ordFrequency High5.4188e — 040.0232783 —
0.077cCondCompetitorsTwo6.7981e — 040.0260731 — 0.172 —
0.413cCondW FreqHigh : cCondCompTwol.3549¢ —
040.01164020.1400.968 — 0.331Subj(Intercept)2.3187e —
020.1522720cC'ondW ord F'requencyHigh3.6433e —
060.00190871.000cCondCompetitorsTwo2.8312e —
040.01682621.0001.000cCondW FreqHigh :
cCondCompTwo2.5864e — 040.01608220.0870.0870.087 Residual4.2018e —
020.2049839]...] EstimateStd. Errortvalue(Intercept)0.2189890.0412845.30cC o
1.4831380.008490 — 174.70cC'ondW ordFrequencyHigh :
cCondCompetitorsTwo — 0.3772460.011098 — 33.99]...]
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Are all random effects justified?

@ Fit reduced model with just random intercepts for subject and item and
compare it to full model:

m.full = Imer(emplog(LooksToTarget,

TotalLooksz) cCondW ordFrequencyHigh x cCondCompetitorsTwo + (1 +
cCondWordFrequencyHigh * cCondCompetitorsTwo|Subj) + (1 +
cCondW ordFrequencyHigh *

cCondCompetitorsTwo|Item), d.agg, family =7 gaussian” , weight =
emplogweight(LooksToTarget, Total Looksx) ) m.simple =
Imer(emplog(LooksToTarget, TotalLooksz) cCondW ordFrequencyHigh *
cCondCompetitorsTwo + (1|Subj) + (1|Item), d.agg, family =

” gaussian” ,weight = emplogweight(LooksToT arget, T'otal LooksX) )
anova(m.full,m.simple)  Models: [...] Df AIC BIC logLik Chisq Chi Df
Pr(¢,Chisg) m.simple 7 1223.3 1250.9 -604.63 m.full 25 1239.8 1338.6
-594.91 19.446 18 0.3648 The full random effect structure does not result
in model that fits the data significantly better given the increase in
complexity (number of parameter). Can we just stop here?



‘Maximal random effect structure justified by the data’
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@ Based on model comparison, we find that the following model contains
the maximal random effect structure justified by the data (see script
for details):

emplog(LooksToTarget, TotalLooksz) cCondW ordFrequencyHigh
cCondCompetitorsTwo + (1 + cCondCompetitorsTwo|Subj) + (1 +
cCondWordFrequencyHigh + cCondCompetitorsTwo|Item)

AIC BIC logLik deviance REMLdev 1235 1290 -603.5 1191 1207 Random
effects: Groups Name Variance Std.Dev. Corr Item (Intercept) 0.00599874
0.077452 cCondWordFrequencyHigh 0.00056475 0.023764 -0.058
cCondCompetitorsTwo 0.00067979 0.026073 -0.181 -0.464 Subj (Intercept)
0.02310328 0.151998 cCondCompetitorsTwo 0.00028816 0.016975 1.000
Residual 0.04252746 0.206222 Number of obs: 384, groups: Item, 24; Subj,
16 [...]



‘Maximal random effect structure justified by the data’
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[...] Fixed effects: Estimate Std. Error t value (Intercept) 0.219100 0.041236
5.31 cCondWordFrequencyHigh 0.652125 0.007010 93.03
cCondCompetitorsTwo -1.483316 0.008526 -173.98
cCondWordFrequencyHigh:cCondCompetitorsTwo -0.377856 0.010117
-37.35

Correlation of Fixed Effects: (Intr) cCnWFH cCndCT cCndWrdFrgH -0.012
cCndCmpttrT 0.412 -0.251 cCndWFH:CCT -0.006 -0.063 0.051



What to report?
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@ Describe your model

@ State enough for readers and reviewers to assess whether they can
trust the model

@ Summarize your results



Model Description
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@ State the outcome variable (e.g. for a binomial model, what is the value
of the outcome you are predicting

@ Describe the predictors (incl. random effects)
@ State what you did you about outliers



Model Description
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@ State the outcome variable (e.g.
for a binomial model, what is the value of the outcome you are predicting:

[...] our dependent variable is the proportion of fixations, during the ambiguous
region, to the animal (the potential recipient, e.g., the horse). This captures the
degree to which participants expect the recipient rather than the theme. [...]
Following ? (?), proportion of fixations to the animal and the object were first
empirical logit-transformed [...]



Model Description
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@ State the predictors (incl. random effects)

@ Transformations, centering, (potentially ~standardizing), coding,
residualization should be described as part of the predictor summary.

o Where what you did isn’t already standard (e.g. unlike a log-transform for
frequency), give theoretical, and/or empirical arguments for any decision
made.

e Consider reporting scales for outputs, inputs and predictors (e.g., range,
mean, sd, median).



Model Description - Example
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Main effects of prime structure, the surprisal of the first and second primes, target
structure, and the bias of the target verb (probability that the target verb occurs in the
DO version of the dative alternation) were included in the analysis. Additionally, the
interaction between the surprisal of the first prime and prime structure, as well as the
interaction between the surprisal of the second prime and prime structure were
included. The model included the maximal random effect structure justified by the data
(cf. Jaeger, 2011).

[? (7]



Outlier Exclusion

LI539

Mixed

Effect
Models

T. Florian
Jaeger

@ State what you did you about outliers and whether this affected your
results:

Two trials containing primes with very large surprisal values (values that
exceeded 6 bits; mean surprisal value=2.25, SD=1.4) were removed. The
results below do not depend on this removal.

)



Model assumptions
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@ Sometimes it can be crucial to be clear about what assumptions the
analysis you conducted makes. (also, remind yourself of those
assumptions — your conclusions about theories only hold under those
assumptions, cf. linearity!).

@ At least for yourself, you should also check model assumptions
(residuals, etc.), but those are not usually reported. Sometimes, it is
worth reporting these tests, though usually this would go into an
appendix (it can easily get rather expansive).



Diagnostic plots - residuals

i
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peonian assumptions about the distribution of residuals in a linear mixed model:
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density

Standardized residuals
Standardized residuals

Residuals (log-transformed) population size. Distance from origin

(A) ®) ©)

Figure 3 Diagnostic plots for the model described in Equation (E3). The histogram of residuals (the
individual-level errors) in (A) suggests normality. Linear (blue). quadratic (red). and cubic
fits (green) of log-transformed population size in (B) or distance from the origin in (C)
against the standardized residuals reveal no correlations (the shaded 95% confidence intervals
include the zero line at all times). Only six data points fall outside the inferval of -2.5 to 2.5
standardized residuals (indicated by the dashed lines). Excluding these languages
(Austronesian: Iaai. Po-Ai: Niger-Congo: Bisa: Nilo-Saharan: Koyra Chiini: Sino-Tibetan:
Garo, Naxi. and Newari) strengthens both the population and the distance effect.
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Diagnostic plots - random effects

@ From Jaeger, Graff, Croft, and Pontillo (in press) — Checking
assumptions about the distribution of random effects:

Teeeien
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Figure 4  Quantile to quantile plot of random intercepts by language family (A). subfamily (B). and
genus (¢) in a linear mixed model with the main effects and interaction of (log-transformed)
language population and distance from best fit single-origin. Theoretical quantiles — what
would be expected under a normal distribution- are shown on the x-axis. The y-axis shows
the best linear unbiased predictors (BLUPs) for each level of the random effect. Intervals

Stardard normal qarties
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Sardard normal quanties
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around dots represent the 95% highest posterior density intervals.



Diagnostic plots - linearity
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Jaeger assumption, e.g. by means of local smoothers:
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Model Evaluation
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@ State to what extent you tested whether collinearity was an issue and
what you did about it. Did this in any way affect your results? E.g.
Collinearity was observed between prime structure and the surprisal of the
second prime (r = —.59; all other fixed effect correlations r < .2).
Leave-one-out model comparison confirmed that collinearity did not affect any of
the significant effects reported below. An ANCOVA over the difference scores
yields the same results as those reported below.

[Fine and Jaeger, submitted to Cognitive Science]



Model Evaluation: Quality of Fit
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@ Often it can be informative to say something about the model quality
e For linear models: report R2. Possibly, also the amount of variance
explained by fixed effects over and beyond random effects, or predictors of
interest over and beyond the rest of predictors.
e For logistic models: report D, or concordance C-number. Report the

increase in classification accuracy over and beyond the baseline model.
NB: Be cautious, classification accuracy and its derivatives can be very
misleading!

@ Plots illustrating classification accuracy based on values of predictors
(~Lecture 3)



Some considerations for good science
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@ If at all possible, know and state whether whatever you did in terms of
coding, transformation, and data exclusions affected the results.

@ Do not report effects that heavily depend on the choices you have
made;

@ Do not fish for effects. There should be a strong theoretical motivation
for what variables to include and in what way.

@ To the extent that different ways of entering a predictor are investigated
(without a theoretical reason), do make sure your conclusions hold for
all ways of entering the predictor or that the model you choose to report
is superior (~model comparison).



Result Summary
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@ Standard textual summary

o Describe effects in your own words and provide coefficient, either SE or

t/z-statistics, and p-value. Some things you might want to mention:
@ ~ Effect size (What is that actually?)
@ Effect direction

@ Effect shape (tested by significance of non-linear components & superiority of
transformed over un-transformed variants of the same input variable); plus
visualization

o lllustrate effect size, especially for continuous variables (e.g. predicted
difference in outcome for 5th and 95th quantile of continuous predictor,
perhaps on its original scale; ~Lecture 3).

@ Visualize, especially for interactions.

@ If you have many predictors in the model, you might want to provide a
table of results.



Result Summary: Terminological Suggestions
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@ In regression studies, it is common to talk about predictors
(independent variables) and outcomes (dependent variables)

@ ‘the maximal random effect structure justified by the data’ (e.g. ? (?);
also http://hiplab.wordpress.com/2009/05/14/random-effect-structure/ and
http://hiplab.wordpress.com/2011/06/25/more-on-random-slopes/).

@ “random by-subject intercepts and slopes for frequency as well as neighborhood density” (cf
?2.(?7).



Result Summary: Text Example
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The main effect of prime structure remained only marginally significant when prime surprisal and the
prime structure-prime surprisal interactions were included in the model (3 = .34, SE= .34,

p= .1), but was statistically significant when these terms were left out (3 = .43, SE= .21,

p< .05), replicating Thothathiri and Snedeker (2008). The reason for the reduced significance of
the main effect of priming is that the effect of prime structure is carried by the high-surprisal primes,
discussed below.

As expected, no main effect of the surprisal of either the first or the second prime was observed
(ps> .5). Crucially, we found the predicted two-way interaction between the surprisal of the first
prime and prime Structure (3 = .53, SE= .24, p< .05)-for DO primes, as prime surprisal
increased, fixations to the animal relative to the object increased; for PO primes, as prime surprisal
increased, fixations to the animal relative to the object decreased. The interaction between the
surprisal of the second prime and prime structure was not significant (p= .9). The significant
interaction of prime structure and prime surprisal for prime 1 is shown in Figure 2.

7 (7]



Result Summary: Visualization Example
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Result Summary: Visualization Example
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: = Australian
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Normalized phonological diversity

(B)

Figure 5 (A) Distribution of the nine largest language families in the sample (at least 16 languages
each). Circles represent languages. The size of the circle reflects the number of speakers of
that language as reported m WALS. The color of the circle reflects the language fanuly. (B)
Normalized phonological complexity plotted against distance from the origin for the same
subset of languages. Solid colored lines show the best fit hnear trend with 95% confidence
mtervals (shaded area) by language famly.



Result Summary: Continuous Predictors
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Kl @ estimate the effect in ms across the frequency range and then the effect
for a unit of frequency.

¢, intercept = as.vector(fixef(lexdec.Imer4)[1]) ¢, betafreq =
as.vector(fixef(lexdec.Imer4)[3]) ¢, eff = exp(intercept + betafreq *
max(lexdecFrequency))— >

exp(intercept + beta freq x min(lexdecFrequency))) [1]-109.0357 RT
decrease across the entire range of Frequency ¢ range =
exp(max(lexdecFrequency))— > exp(min(lexdecFrequency)) [1] 2366.999

@ Report that the full effect of Frequency on RT is a 109 ms decrease.

But in this model there is no simple relation between RTs and
frequency, so resist to report that “the difference in 100 occurrences
comes with a 4 ms decrease of RT”.

¢, efffrange * 100 [1] -4.606494



‘Back-transforming coefficients’
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Fixed effects: Estimate Std. Error t value (Intercept) 6.323783 0.037419

169.00 NativeLanguageOther 0.150114 0.056471 2.66 cFrequency
-0.039377 0.005552 -7.09

@ The increase in 1 log unit of cFrequency comes with a -0.039 log
units decrease of RT.

@ Utterly uninterpretable!
@ To get estimates in sensible units we need to back-transform both our
predictors and our outcomes.
e decentralize cFrequency, and

@ exponentially-transform logged Frequency and RT.

o if necessary, we de-residualize and de-standardize predictors and
outcomes.



Result Summary: Visualization Example
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Fig.4. Effect of information density at the complement clause onset on that-mentioning along with 95% Cls (shaded area, which
is hard to see because the Cls are very narrow around the predicted mean effect). (a) The effect on the log-odds of
complementizer that (the space in which the analysis was conducted). (b) The effect transformed back into probability space.
Hexagons indicate the distribution of information density against predicted log-odds (a) and probabilities (b) of thar,
ing all predictors in the model. Fill color indicates the number of cases in the database that fall within the hexagon.




Result Summary: Visualization Example
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Result Summary: Table Example
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Jaeger Table 3

Result summary: coefficient estimates f, standard errors SE(f), associated Wald's z-score (= /SE(#)) and significance level p for all
predictors in the analysis.

Predictor Coef. SE() z )
Intercept 012 (0.38) 03 0.7
POSITION(MATREX VERE) 095 (0.14) 66 <0.0001
(1st restricted comp.) 2794 (5.33) 52 <0.0001
(2nd restricted comp.) 55.43 (10.80) 51 <0.0001
LENGTH MATRIX VERB-TO-CC) 017 (0.065) 25 -0.01
LENGTHLCE ONSET) 018 (0.014) 128 <0.0001
LENGTH CE REMAINDER) 0.03 (0.006) 44 <0.0001
LOG SPEECH RATE 0.70 (0.13) 55 <0.0001
5Q L0G SPEECH RATE 0.36 (0.19) 19 <0.06
PAUSE 111 (0.11) 102 <0.0001
DISFLLENCY 039 (0.12) 32 <0.002
€c suBJECt =it vs. | 0.04 (0.08) 05 >06
=other pro vs. prev. levels 005 (0.03) 16 <0.11
=other NP vs. prev. levels 0.1 (0.02) 49 <0.0001
FREQUENCY{CC SUBJECT HEAD) 0.02 (0.03) 07 05
SUBJECT DENTITY 032 (017) 19 <0.052
WORD FORM SIMILARITY 031 (017) 18 <0.08
FREQUENCYMATRIX VERE) 0.23 (0.03) 73 <0.0001
AMBIGUOUS CC ONSET 012 (0.12) 10 02
MATRIX SUBJECT =YL 048 (0.15) 31 <0002
~other PRO 0.60 (0.13) 48 <0.0001
=other NP 085 (0.13) 67 <0.0001
PERSISTENCE =NO US. prime wjo that 0.02 (007) 03 >07
~prime w/ that vs. prev. levels 0.06 (0.04) 16 <011
MALE SPEAKER 0.15 (0.11) 13 >0.19

Information density 047 (0.03) 169 <0.0001
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Result Summary: Table Example

@ From a draft of Harry Tily’s (2011) thesis:

3 P df x? e
T T T

Intercept 093 o019 -L5 0.0 18
Object case/type = dat/2nd | 0.046 0.52 L]
Pronominal object -1.5 0 =001 " 1 1100 <001
Quantified object -0.70 =001 1 120 <001
Object length 0.85 <.001
Subject length -0.13  0.0013 L] 1 7.7 0.0054
Text date 0.04 0.24 —e—
Text date » Object case/type 12 <001 to 1 7 =001
Text date + Object length | -0.49 <001 1 19 <001

sd cor df X’ P2
Intercept | Text 0.89 — e | 1 080 <.001
Intercept | Verb POS 1.6 _—
Text date | Verb POS L7 0.6] =———mmm e | 2 190 <.001

Tahle 3: Final model for VO/OV order (positive outcome is VO)



Returning to our Example: The Time Course
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. Florian @ Local smoother in general additive model (thin lines) and quadratic fit in
Jaeger binomial GLM (thick lines) for the four conditions over the time bins:

Word Frequency
high

- low

Competitors
. = one

R Y L =wo
e w W EE - P
-

_ Proportion of looks to the target

Time bin
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Mixed Logit Model

Formula: LooksToTarget cCondWordFrequencyHigh *
cCondCompetitorsTwo * pol(cTime, 2) + (1 — Subj) + (1 — Item) Data: d
AIC BIC logLik deviance 40765 40883 -20368 40737 Random effects:
Groups Name Variance Std.Dev. ltem (Intercept) 0.11565 0.34007 Subj
(Intercept) 0.42845 0.65456 Number of obs: 35236, groups: ltem, 24; Subj,
16

Fixed effects: Estimate Std. Error z value Pr(;—z—) (Intercept) 0.292108
0.178705 1.63 0.1021 cCondWordFrequencyHigh 0.703270 0.036675 19.18
i 2e-16 cCondCompetitorsTwo -1.538732 0.036954 -41.64 | 2e-16
pol(cTime, 2)cTime 0.579599 0.104796 5.53 3.19e-08 pol(cTime,

2)cTime? — 4.5363251.016127 — 4.468.03e — 06cCondW FqHigh. :
cCondCompetitorsTwo — 0.4764650.073144 — 6.517.31e —

11cCondW FqHigh : cT'ime0.4184180.2095672.000.0459¢C ondW FqHigh :
cTime? — 1.8578472.032027 — 0.910.3606cCondCompTwo

cT'ime — 0.0048280.209584 — 0.020.9816¢cCondCompTwo :
cTime?0.6716212.0322960.330.7410cCondW FqHigh : cCondCompTwo :
clime — 0.5742470.419159 — 1.370.1707cCondW FqHigh :
cCondCompTwo : cTime?4.9979244.0646801.230.2188
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Disclaimer

@ Generated data

a=.3

ﬁWonFrequencyHigh =.7

6CompetitorsTwo = -
BWordFrequencyHigh:CompetitorsTwo =-.3

Btime = .5 and By;,,.2 = —1.5
BWonF'requencHigh:Time =4
BCompetitorsTwo:Time =.1

6WordF'requencHigh:C’ompetitorsTwo:Time =-.8
Oasubject — 0.5and ooy, =0.

@ With data loss rates differing between individual participants (1 = 3%)



The magic of the ‘original’ scale
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What'’s the advantage of having an effect size in familiar units?

o Comparability across experiments?

@ Intuitive idea of ‘how much’ factor (and mechanisms that predicts it to
matter) accounts for?

But this may be misleadingly intuitive . ..

o [f variables are related in non-linear ways, then that’s how it is.

o [f residualization is necessary then it's applied for a good reason —
back-translating will lead to misleading conclusions (there’s only so much
we can conclude in the face of collinearity).

o Most theories don’t make precise predictions about effect sizes on ‘original
scale anyway.

o Comparison across experiments/data sets often only legit if similar stimuli
(with regard to values of predictors).



Comparing effect sizes
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@ It ain’t trivial: What is meant by effect size?

@ Change of outcome if ‘feature’ is present? — coefficient
@ per unit?
@ overall range?

e But that does not capture how much an effect affects language processing
@ What if the feature is rare in real language use (‘availability of feature’)? Could
use...

deviations.

— Variance accounted for (goodness-of-fit.~ improvement associated with factor)
— Standardized coefficient (gives direction of effect)
Standardization: subtract the mean and divide by two standard

e standardized predictors are on the same scale as binary factors (cf.
Gelman & Hill 2006).

@ makes all predictors (relatively) comparable.



Plotting coefficients of linear models

s Plo'tting (par?ial) effects of predictors allows for comparison and reporting of
(Ettect their effect sizes:

@ partial fixed effects can be plotted, using c1otiyEr. £nc (). Option £un is the
back-transformation function for the outcome. Effects are plotted on the same scale, easy to compare their
relative weight in the model.

T. Florian
Jaeger
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@ confidence intervals (obtained by MCMC-sampling of posterior
distribution) can be added.
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Plotting posterior distributions (for linear mixed models)

@ pvals.fnc () plots MCMC-sampling posterior distributions, useful for
inspection of whether the distributions are well-bounded.

figs/posterior.pdf




Plotting coefficients of mixed logit models

L1539 @ Log-odd units can be automatically transformed to probabilities.
Effect @ pros: more familiar space
otk e cons: effects are linear in log-odds space, but non-linear in probability
T-J;g::" space; linear slopes are hard to compare in probability space;

non-linearities in log-odd space are hard to interpret
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Plotting coefficients of mixed logit models (contd’)

s @ For an alternative way, see htip:/hiplab.wordpress.com/.

Magais ¢, data(lexdec) ¢, lexdecNativeEnglish = ifelse(lexdecNativeLanguage ==
T. Florian "English”, 1, 0) ¢, lexdecrawFrequency = exp(lexdecFrequency) ¢,

saeger lexdeccFrequency = lexdecFrequency -

mean(lexdecFrequency) > lexdeccNativeEnglish =

lexdecNative English — mean(lexdecNativeEnglish) ¢,

lexdecCorrect = ifelse(lexdecCorrect == "correct”, T, F) ¢, lj- Imer(Correct
cNativeEnglish + cFrequency + Trial + + (1 — Word) + (1 — Subject), data =
lexdec, family="binomial”) ¢ my.glmerplot(l, "cFrequency”, predictor=
lexdecraw Frequency, +predictor.centered = T, predictor.trans form =
log, +name.outcome = 7 correctanswer” , xlab = ex, fun = plogis)

Counts 104 - . : - | Counts

_ 52 g 7 Aeee 234
g 9 3 219
4 45 G 09 r 205
= 23 190
g ? 2] 176
g ® 5% 161
g 35 147
@ 0 2 07 L 95
g S o6 1
® o2 s 0f 88
= 7 B 74
8 14 B 059 Fo959
g "8 45
a

& Gy 8 | | Qg



Plotting coefficients of mixed logit models (contd’)

= @ Great for outlier detection. Plot of predictor in log-odds space (actual

Effect H . . L
N space in which model is fit):

T. Florian
Jaeger

Predicted log-odds of correct answer
>

2 3 4 5 6 7
(log-transformed) Word Frequency



Plotting interactions

L1539 ¢, plotLMER.fnc(l, pred = "FamilySize”, intr = list("cFrequency”, ¢,

Mixed .

e quantile(lexdeccFrequency),”end”), fun = exp)
lodels

T. Florian

Jaeger

RT
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@ Can also be plotted as the FamilySize effect for levels of
cFrequency. Plotting and interpretation depends on research

hvnathacAae



Reporting interactions
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@ Report the p-value for the interaction as a whole, not just p-values for
specific contrasts. For linear models, use aovlimer. fnc () in
languageR.

¢, aovimer.fnc(Imer(RT NativeLanguage + cFrequency * FamilySize + ¢,
(1— Subject) + (1—Word), data = lexdec), mcmcm = mcmcSamp) Analysis
of Variance Table Df Sum Sq Mean Sq F value F Df2 p NativeLanguage 1
0.20 0.20 6.5830 6.5830 1654.00 0.01 cFrequency 1 1.63 1.63 54.6488
54.6488 1654.00 2.278e-13 FamilySize 1 0.05 0.05 1.6995 1.6995 1654.00
0.19 cFrequency:FamilySize 1 0.03 0.03 1.0353 1.0353 1654.00 0.31

— FamilySize and its interaction with cFrequency do not reach
significance in the model.



Some thoughts for discussion
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What do we do when what’s familiar (probability space; original scales
such as msecs; linear effects) is not what's best/better?
More flexibility and power to explore and understand complex
dependencies in the data do not come for free, they require additional
education that is not currently standard in our field.

@ Let’s distinguish challenges that relate to complexity of our hypothesis and

data vs. issues with method (regression).
e cf. What’s the best measure of effect sizes? What to do when there is

collinearity? Unbiased vs. biased variance estimates for ML-fitted models;
accuracy of laplace approximation.



