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Bayes Factors 
Robert E. KASS and Adrian E. RAFTERY* 

In a 1935 paper and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a 
scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when 
the prior probability on the null is one-half. Although there has been much discussion of Bayesian hypothesis testing in the context 
of criticism of P-values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this article we 
review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology, and 
psychology. 

We emphasize the following points: 

* From Jeffreys' Bayesian viewpoint, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory. 
* Bayes factors offer a way of evaluating evidence in favor of a null hypothesis. 
* Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis. 
* Bayes factors are very general and do not require alternative models to be nested. 
* Several techniques are available for computing Bayes factors, including asymptotic approximations that are easy to compute 

using the output from standard packages that maximize likelihoods. 
* In "nonstandard" statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate 

Bayes factors than to derive non-Bayesian significance tests. 
* The Schwarz criterion (or BIC) gives a rough approximation to the logarithm of the Bayes factor, which is easy to use and does 

not require evaluation of prior distributions. 
* When one is interested in estimation or prediction, Bayes factors may be converted to weights to be attached to various models 

so that a composite estimate or prediction may be obtained that takes account of structural or model uncertainty. 
* Algorithms have been proposed that allow model uncertainty to be taken into account when the class of models initially considered 

is very large. 
* Bayes factors are useful for guiding an evolutionary model-building process. 
* It is important, and feasible, to assess the sensitivity of conclusions to the prior distributions used. 

KEY WORDS: Bayesian hypothesis tests; BIC; Importance sampling; Laplace method; Markov chain Monte Carlo; Model selection; 
Monte Carlo integration; Posterior model probabilities; Posterior odds; Quadrature; Schwarz criterion; Sensitivity 
analysis; Strength of evidence. 

1. INTRODUCTION 

The Bayesian approach to hypothesis testing was devel- 
oped by Jeffreys ( 1935, 196 1 ) as a major part of his program 
for scientific inference. Although Jeffreys called his methods 
"significance tests," apparently borrowing the term from 
Fisher, this is misleading, because Jeffreys's perspective and 
goals were quite different. Jeffreys was concerned with the 
comparison of predictions made by two competing scientific 
theories. In his approach, statistical models are introduced 
to represent the probability of the data according to each of 
the two theories, and Bayes's theorem is used to compute 
the posterior probability that one of the theories is correct. 

Considerable attention has been given to distinctions be- 
tween the two approaches (e.g., Berger and Delampady 1987, 
Berger and Berry 1988, and references therein). Often lost 
from the controversy, however, are the practical aspects of 
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the Bayesian methods: how conclusions may be drawn from 
them, how they can provide answers when non-Bayesian 
methods are hard to construct, what their strengths and lim- 
itations are. These concerns are the focus of this article. We 
will also discuss the Bayesian approach to accounting for 
uncertainty in the model-building process, which is closely 
connected to the methodology for hypothesis testing. 

In Section 2 we motivate the work with several applications 
from the areas of genetics, sports, ecology, sociology, and 
psychology. These help connect hypothesis testing with 
model selection and introduce several problems that Bayesian 
methodology can solve, including the evaluation of the ev- 
idence in favor of a null hypothesis, the inclusion of other 
information in the weighing of evidence, the comparison of 
nonnested models, and accounting for uncertainty in the 
choice of models. In Section 3 we introduce the Bayes factor, 
which is the posterior odds of one hypothesis when the prior 
probabilities of the two hypotheses are equal. 

Bayesian methods involve integrals and thus, often, nu- 
merical integration. Many integration techniques have been 
adapted to problems of Bayesian inference, including the 
computation of Bayes factors; this is discussed in Section 4. 
Bayes factors require priors on the parameters appearing in 
the models that represent the competing hypotheses. The 
choice of these priors and the extent to which Bayes factors 
are sensitive to this choice is discussed in Section 5. 
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In Section 6 we take up the problem of accounting for 
uncertainty about model form. The data analyst is often faced 
with many models that involve different assumptions, dis- 
tributional forms, or sets of covariates. Although he or she 
may wish to summarize findings with a single model, there 
are usually many choices to be made, and in estimating 
quantities of interest it is desirable to provide an assessment 
of the uncertainty that accounts for the model-building pro- 
cess itself. This can be done with Bayesian methods, in which 
Bayes factors are used to calculate the posterior probabilities 
of the models considered. 

In Section 7 we return to the applications and show how 
the methods reviewed in Sections 3-6 may be used to solve 
the problems posed in Section 2. 

There has been much controversy about Bayes factors. In 
Section 8 we discuss several issues, including the purpose of 
testing sharp hypotheses, disagreements between Bayes fac- 
tors and P values, and alternative model selection criteria. 
In Section 9 we briefly mention some other work and provide 
references to the calculation of Bayes factors for some specific 
models. Finally, in Section 10 we conclude by summarizing 
the most important points and highlighting outstanding 
problems. 

2. APPLICATIONS 

In this section we present five applications that pose prob- 
lems usefully solved with Bayes factors. In the first two the 
goal is to evaluate the evidence in favor of a null hypothesis. 
The third involves irregular, nonnested models. The fourth 
has to do with drawing inferences while trying to account 
for the uncertainty in modeling; the fifth, with determination 
of which of two sets of alternative explanatory variables better 
predicts some binary repeated-measures data. The latter will 
lead to computational difficulties solved by some of the tech- 
niques reviewed in this article. Here we describe the prob- 
lems; in Section 7 we describe solutions to them. 

Application 1: Escherichia coli Mutagenesis 

In an experiment in molecular biology (Sklar and Strauss 
1980), the investigators hypothesized that in the uvrE strain 
of E. coli bacteria, mutations leading to "acetate utilization 
deficiency," would occur by an unusual error-prone DNA 
repair mechanism. As a consequence, this mutation would 
fail to be linked to mutations at neighboring loci. Specifically, 
they noted that if the acetate utilization deficiency mutation 
occurred during DNA replication, then it would be linked 
to the relatively rare trait of "rifampin resistance," but if the 
error-prone repair mechanism were responsible, then there 
would be no such linkage. The investigators thus created a 
pair of cell lines, of which one contained cells "selected" for 
rifampin resistance, and the other contained "unselected" 
cells. The absence of linkage, predicted by the error-prone 
repair hypothesis, would imply that the proportions Pi and 
P2 of bacteria exhibiting acetate utilization deficiency in the 
"selected" and "unselected" cell lines would be equal. When 
the investigators took samples from each cell line and found 
i5l and 132 to be approximately equal, they believed that this 
ought to have represented fairly strong evidence in favor of 
error-prone DNA repair. 

Already there is an interesting problem here. The inves- 
tigators understood that the hypothesis of no linkage cor- 
responded to the statistical null hypothesis Ho: Pi = P2, and 
they computed Pearson's chi-squared statistic to test it. They 
found that the chi-squared test did not reject the null hy- 
pothesis Pi = P2, but they were aware that the usual inter- 
pretation of significance tests is that they may be used only 
to reject hypotheses and do not offer an assessment of the 
strength of the evidence in favor ofthe null hypothesis. Thus 
they were left in doubt about the question that they thought 
their data should have been able to answer. 

In fact, there is more to the story. They also had data on 
12 other strains of E. coli, which showed a range of variation 
in the differences between Pi and P2. There clearly was con- 
siderable related information provided by the other strains, 
and it was desirable to try to use that information in the 
statistical analysis of the uvrE data. 

This first application poses several problems. First, the 
investigators wished to know the strength of the evidence 
provided by the data in favor of their scientific hypothesis, 
which was translated to a statistical hypothesis. Second, the 
hypothesis at issue was the n ull, and the failure of the Pearson 
chi-squared statistic to reject it did not indicate the strength 
of evidence in its favor. Third, there were other data that 
could be used to construct an alternative hypothesis; that is, 
there was prior information. These facets of the problem 
suggest that the Bayesian approach could be useful. 

In the next application, evidence in favor of the null is 
again at issue, but prior information is less well documented. 
This example concerns the evidence against extrabinomial 
variability. 

Application 2: The Hot Hand 

It has been argued that belief in the "hot hand" in bas- 
ketball is based on misperception of random sequences 
(Gilovich, Vallone, and Tversky 1985$). That is, erratic be- 
havior of shooting may not reflect any real tendency for 
players to have good streaks or bad streaks but may instead 
be consistent with a stable shooting percentage. If there were 
a strong tendency for players to have good and bad streaks, 
then one would expect to see this expressed in good and bad 
days. In fact, many people who engage in athletic activity 
do seem to think that they themselves have good days and 
bad days. Fans often have similar beliefs about players. As 
a check on results reported by Gilovich et al. (1985), one 
of us (Kass) collected data on Larry Bird's game-by-game 
performance during the 1986-1987 season. Bird's field goal 
shooting percentage ranged from 21% to 92%, with an av- 
erage of 53.5% over the 44 games that were reported in The 
Boston Globe. The null hypothesis was that Bird's shooting 
percentages resulted from 44 binomial distributions all hav- 
ing the same probability of success; that is, from 44 batches 
of independent coin flips with a "Larry Bird coin." 

It turned out that the null-hypothetical binomial model 
fit these data fairly well. That is, there was not enough vari- 
ability in these data to reject the null hypothesis that each 
shot was exactly analogous to a flip of a coin. Here, however, 
it was not clear whether the data failed to reject the null 
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hypothesis because the null hypothesis was true or because 
the sample size was too small. To check this, an alternative 
to the binomial could be constructed and the posterior odds 
of the binomial calculated. A particularly simple alternative 
is to assume that the binomial parameters vary across games 
according to a beta distribution. In addition, Kass collected 
more data, using Vinnie Johnson, the player who at that 
time seemed to be the most commonly cited example of a 
"streak shooter," as opposed to Larry Bird, who was viewed 
as a relatively stable shooter. Kass obtained Johnson's shoot- 
ing data for 380 games during the 1985-1989 seasons. 

Bayes factors allow easy comparison of nonnested models 
and of irregular models. This is illustrated in the next ap- 
plication. 

Application 3: Ozone Exceedances 

As described by Smith ( 1989), ground-level ozone is a topic 
of concern because high levels of ozone indicate that the air is 
polluted. U.S. standards specify that a threshold level be ex- 
ceeded on no more than three days in any three-year period. 
In a number of U.S. cities, including Houston, Texas, this stan- 
dard is far from being met, and the task of regulatory bodies 
such as the Texas Air Control Board is to introduce measures 
to reduce the frequency and level of high exceedances. 

The question of whether ozone exceedances were decreas- 
ing in Houston may be examined using the times of occur- 
rence of clusters of exceedances above the threshold of 16 
parts per 100 million (pphm) between 1974 and 1986, de- 
seasonalized; the data were given by Raftery (1989, Table 
1). Exceedances may be modeled as a Poisson process with 
a rate that is perhaps varying over time. Raftery ( 1989) con- 
sidered three models for the rate that represent (a) no change. 
(b) a gradual decrease, and (c) an abrupt decrease. There 
are several interesting features of this application. Models 
(b) and (c) are not nested. In addition, model (c) is not a 
regular statistical model in that it has a highly discontinuous 
likelihood function. As a result, frequentist methods for test- 
ing (a) against (c) are complex to develop, whereas Bayes 
factors are fairly simple to calculate. We know of no fre- 
quentist way of testing (b) against (c). The analysis suggested 
a more precise mechanism and, potentially, a more devel- 
oped statistical model, illustrating that Bayes factors are not 
restricted to the comparison of previously formulated hy- 
potheses but are also useful for guiding an evolving model- 
building process. 

In the foregoing applications, simple plausible models were 
used to represent competing hypotheses. In each case, 
though, one could phrase the question differently by asking 
which of the models fits the data better. That is, the problem 
of testing a hypothesis was identified with one of model se- 
lection. But the connotation of the phrase "model selection" 
differs according to whether the model comes from under- 
lying theory or from looking at the data. If the latter, then 
Bayes factors can still be used, but choosing a model may 
no longer be the primary goal. 

This arises, for example, when one is interested in the effect 
of one variable on another and where there are several other 
possible covariates to be included in a regression equation. One 

often is not sure of having chosen exactly the right set of co- 
variates, and this is a source of uncertainty that should be taken 
into account. Similarly, other functional or distributional as- 
sumptions may lead to different estimates of quantities of in- 
terest, and again, one would like to take account of uncertainty 
about the assumptions within the estimation process. The 
Bayesian approach allows this to be done in a natural way by 
averaging over the candidate models with their posterior prob- 
abilities as weights. The following application raises this issue, 
where the competing models correspond to different link func- 
tions in a generalized linear model. 

Application 4: Educational Transitions 

Do social class background, ability, and type of school 
attended affect educational attainment? These questions were 
addressed in the context of Ireland by Greaney and Kelleghan 
( 1984), who concluded that the Irish educational system is 
approaching the meritocratic ideal. By this they meant that 
progress within the system is determined largely by educa- 
tionally relevant attributes and not by other, educationally 
irrelevant, attributes such as social class. One question of 
particular policy interest is whether and to what extent stu- 
dents in vocational (nonacademic second-level) schools drop 
out of school earlier than their counterparts in secondary 
(academic second-level) schools with the same ability and 
social class origin. 

The questions may be addressed by reanalyzing the lon- 
gitudinal data of Greaney and Kelleghan ( 1984) using mod- 
els based on logistic regression. They then reduce to questions 
about the presence or absence of the effects of interest in the 
regression model and their size. Questions about the size of 
these effects have to be answered in the presence of several 
competing models (in this case different link functions) be- 
tween which the data do not distinguish clearly but which 
nevertheless yield very different results. It is essential to take 
account of this model uncertainty. 

In the final application, simple approximate methods were 
applied in a modestly complicated setting (i.e., repeated- 
measures logistic regression with alternative predictors). It 
was desired to check the modeling assumptions and the ac- 
curacy of the asymptotics used. This raised problems of 
computation and the determination of prior distributions. 

Application 5: Human Working Memory Failure in 
Computer-Based Tasks 

In human-computer interaction it is of interest to char- 
acterize tasks that tend to lead to human error, so that pro- 
cedures may be written to avoid them. Carlin, Kass, Lerch, 
and Huguenard ( 1992) have described one such effort in an 
experimental study involving the data base management 
system SQL, which presented subjects with query tasks of 
varying complexity (such as "find all customers having an 
outstanding invoice of more than $200"). Understanding of 
errors is guided by cognitive psychological theory concerning 
overload of what is now called "working memory" (a concept 
that has replaced and refined what used to be called short- 
term memory). Thus the notion is that errors tend to occur 
when human working memory is overloaded because of ex- 
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cessive demands in the task. At issue in this study was 
whether overload tended to be due to (a) the number of 
conditions in the query or (b) the complexity of the query. 
To determine which characterization led to better predictions 
of error rates, two alternative statistical models were con- 
structed based on alternative predictor variables, either the 
number of conditions or a pair of measures of query com- 
plexity. 

There were 20 experimental subjects, each of whom was 
given 50 tasks to complete. Half the subjects received a "cue," 
which was supposed to remind them of the essential feature 
of the problem and to prevent them from making the error 
under study. Carlin et al. ( 1992) used a logistic regression 
model with random subject ability effects (a single number 
for each subject) nested within the cue effect, together with 
the respective predictor variables. The two competing models 
had four parameters in common; the number-of-conditions 
model had one additional parameter (the coefficient of the 
predictor), whereas the query-complexity model had two 
additional parameters (the coefficients of the two predictors). 
Evaluation of the likelihood in either model required the 
numerical calculation of an integral due to the random sub- 
ject effects. 

3. BAYES FACTORS 

3.1 Definition 

We begin with data D, assumed to have arisen under one 
of the two hypotheses H1 and H2 according to a probability 
density pr(D I H1) or pr(D I H2). Given a priori probabil- 
ities pr(H1) and pr(H2) = 1 - pr(Hi), the data pro- 
duce a posteriori probabilities pr(Hi ID) and pr(H2 I D) 
= 1 - pr(H1 I D). Because any prior opinion gets transformed 
to a posterior opinion through consideration of the data, the 
transformation itself represents the evidence provided by the 
data. In fact, the same transformation is used to obtain the 
posterior probability, regardless of the prior probability. Once 
we convert to the odds scale (odds'= probability/( 1 - prob- 
ability)), the transformation takes a simple form. From 
Bayes's theorem, we obtain 

pr(HkID) =pr(D IHk)pr(Hk) 
pr(D I HI)pr(HI) + pr(D I H2)pr(H2) 

(k= 1, 2), 

so that 

pr(Hi I D) pr(D I HI) pr(H1) 
pr(H2 ID) pr(D I H2) pr(H2) 

and the transformation is simply multiplication by 

B12 = pr(D I HI) 
B2=pr(D IH2)(1 

which is the Bayes factor. Thus, in words, 

posterior odds = Bayes factor X prior odds, 

and the Bayes factor is the ratio of the posterior odds of H1 
to its prior odds, regardless of the value of the prior odds. 
(The terminology is apparently due to Good 1958, who at- 

tributed the method to Turing in addition to, and indepen- 
dently of, Jeffreys at about the same time; see Good 1983.) 
When the hypotheses H1 and H2 are equally probable a priori 
so that pr(H1) = pr(H2) = .5, the Bayes factor is equal to 
the posterior odds in favor of H1. The two hypotheses may 
well not be equally likely a priori, however. 

In the simplest case, when the two hypotheses are single 
distributions with no free parameters (the case of "simple 
versus simple" testing), B12 is the likelihood ratio. In other 
cases, when there are unknown parameters under either or 
both of the hypotheses, the Bayes factor is still given by ( 1 ), 
and, in a sense, it continues to have the form of a likelihood 
ratio. Then, however, the densities pr(D I Hk) (k = 1, 2) are 
obtained by integrating (not maximizing) over the parameter 
space, so that in Equation ( 1), 

pr(D I Hk) = f pr(D I Ok, Hk) ( Ok IHk) dOk, (2) 

where Ok iS the parameter under Hk, ir( Ikl Hk) is its prior 
density, and pr(D1 Ok, Hk) is the probability density of D 
given the value of Ok, or the likelihood function of 0. Here 
Ok may be a vector, and in what follows we will denote its 
dimension by dk. 

The prior distributions lr(Ok I Hk) (k = 1, 2) are necessary. 
This may be considered both good and bad. Good, because 
it is a way of including other information about the values 
of the parameters (as in Application 1). Bad, because these 
prior densities may be hard to set when there is no such 
information. We discuss the problem of setting priors and 
assessing sensitivity to the choices in Section 5. 

The quantity pr(D I Hk) given by Equation (2) is the mar- 
ginal probability of the data, because it is obtained by inte- 
grating the joint density of (D, ok) given D over 0k. It is also 
the predictive probability of the data; that is, the probability 
of seeing the data that actually were observed, calculated 
before any data became available. It is also sometimes called 
a marginal likelihood, or an integrated likelihood. Note that, 
as in computing the likelihood ratio statistic but unlike in 
some other applications of likelihood, all constants appearing 
in the definition of the likelihood pr(DI Ok, Hk) must be 
retained when computing B12. In fact, B12 is closely related 
to the likelihood ratio statistic, in which the parameters Ok 

are eliminated by maximization rather than by integration. 
We discuss this relationship in Sections 4.1.2 and 4.1.3. 

Other notations are often used for the Bayes factor. When 
many hypotheses are involved, we will write Bik as the Bayes 
factor for Hj against Hk. Often, one of the hypotheses is 
considered the null and thus is denoted by Ho. In this case 
if there is only one alternative, it will be denoted by H1, so 
that, putting pr(D I H0) in the numerator, the Bayes factor 
becomes Bo I. In this situation Jeffreys instead used K. When 
comparing results with standard likelihood ratio tests, it is 
convenient to instead put the null hypothesis in the denom- 
inator of ( 1) and thus use BIo as the Bayes factor. 

For the usual (non-Bayesian) large-sample distribution 
theory of likelihood ratio tests to be applicable, the null must 
be nested within the alternative. That is, there must be some 
parameterization under H1 of the form 0 = (,B, 4' such that 
Ho is obtained from H1 when 4' = 4'0 for some 4'o. Here both 
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,B and 4' may be vectors. Although the expression (1) does 
not require the models to be nested, the case of nested models 
is of special interest in the Bayesian approach as well, and 
we will refer to it frequently in what follows. 

3.2 Interpretation 

The Bayes factor is a summary of the evidence provided 
by the data in favor of one scientific theory, represented by 
a statistical model, as opposed to another. Jeffreys (1961, 
app. B) suggested interpreting Blo in half-units on the log1o 
scale. Pooling two of his categories together for simplification, 
we have: 

log1o(Blo) Blo Evidence against Ho 

0 to 1/2 1 to 3.2 Not worth more than a bare 
mention 

1/2 to 1 3.2 to 10 Substantial 
1 to 2 10 to 100 Strong 
>2 > 100 Decisive 

Probability itself provides a meaningful scale defined by bet- 
ting, and so these categories are not a calibration of the Bayes 
factor, but rather a rough descriptive statement about stan- 
dards of evidence in scientific investigation. We speak here 
in terms of Blo, because weighing evidence against a null 
hypothesis is more familiar, but Bayes factors can equally 
well provide evidence in favor of a null hypothesis. Of course, 
the interpretation may depend on the context. For example, 
Evett ( 199 1 ) has argued that for forensic evidence alone to 
be conclusive in a criminal trial, one would require posterior 
odds for H1 (guilt) against Ho (innocence) of at least 1,000 
rather than the 100 suggested by Jeffreys. 

It can be useful to consider twice the natural logarithm of 
the Bayes factor, which is on the same scale as the familiar 
deviance and likelihood ratio test statistics. Rounding and 
using 20 rather than 10 as the requirement for strong evi- 
dence, we then obtain a slight modification: 

2 loge(Blo) (Blo) Evidence against H0 

0 to 2 1 to 3 Not worth more than a bare 
mention 

2 to 6 3 to 20 Positive 
6 to 10 20 to 150 Strong 
>10 >150 Very strong 

From our own experience, these categories seem to furnish 
appropriate guidelines. 

The logarithm of the marginal probability of the data may 
also be viewed as a predictive score. This is of interest, because 
it leads to an interpretation of the Bayes factor that does not 
depend on viewing one of the models as "true." Suppose 
that D = {yl, . y. , Yn} and that for each i, we form a pre- 
dictive distribution pri (*) of yi given the already available 
data { Y, . . ., yi-I }. We use the logarithmic scoring rule, 
log pri(yi) (Good 1952), to assess performance. Then the 
overall score of any rule that generates such predictive dis- 
tributions is LS = Ei log pr, (y, ). In particular, if the pre- 
diction rule is derived from the model Hk (i.e., likelihood 
and prior), then log pr(DI|Hk) = Si log pr(y, IYi1,.*.* *, , 

Hk) = LSk. It follows that the log Bayes factor is log Blo 
= LS1 - LSo; that is, the difference in predictive scores. Thus 
the Bayes factor can be viewed as measuring the relative 
success of H1 and Ho at predicting the data. This is related 
to prequential analysis (Dawid 1984) and also to stochastic 
complexity (Rissanen 1987); the connections were discussed 
by Dawid (1992) and Hartigan (1992). Good (1985), and 
in many other publications, has referred to the log Bayes 
factor as the "weight of evidence." 

4. CALCULATING BAYES FACTORS 

In some elementary cases the integral (2), which we will 
rewrite in this section as 

I = f pr(DI0, H) r(OIH) dO, (3) 

may be evaluated analytically. More often, it is intractable 
and thus must be computed by numerical methods. But most 
available software developed by numerical analysts is gen- 
erally so inefficient for these integrals that it is of little use. 
One reason is that when sample sizes are moderate or large, 
the integrand becomes highly peaked around its maximum, 
which may be found by other techniques, and quadrature 
methods that do not begin with knowledge of the maximum 
are likely to have difficulty finding the region where the in- 
tegrand mass is accumulating. A second reason is that some 
problems are of high dimension. In this case Monte Carlo 
methods may be used, but these too need to be adapted to 
the statistical context. A review of various numerical inte- 
gration strategies for evaluating the integral in (3) is provided 
by Evans and Swartz ( 1995). 

Exact analytic evaluation of the integral (3) is possible for 
exponential family distributions with conjugate priors, in- 
cluding normal linear models (DeGroot 1970, chap. 9; Zell- 
ner 1971, chap. 10). 

4.1 Asymptotic Approximation 

4.1.1 Laplace's Method. A useful approximation to the 
marginal density of the data as given by (3) is obtained by 
assuming that the posterior density, which is proportional 
to (pr(D 10 , H) r(0 I H)), is highly peaked about its maximum 
0, which is the posterior mode. This will usually be the case 
if the likelihood function pr(D 10 , H) is highly peaked near 
its maximum 0, which will be the case for large samples. Let 
1(0) = log(pr(D I 0, H) r(0 I H)). Expanding 1(0) as a qua- 
dratic about 0 and then exponentiating yields an approxi- 
mation to (pr(D 10, H) r(OIH)) that has the form of a 
normal density with mean 0 and covariance matrix X 
= (-D2 (O))-1, where D2l(0) is the Hessian matrix of second 
derivatives. Integrating this approximation yields 

I = (27r)d"21 1 112 pr(D I, H) r(b I H), (4) 

where d is the dimension of 0. 
This is Laplace's method of approximation (de Bruijn 

1970, sec. 4.4; Tierney and Kadane 1986). For many prob- 
lems in which the sample size n is moderate, it produces 
answers well within the accuracy required for drawing con- 
clusions according to the scheme of Section 3.2. Formally, 
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under conditions spelled out by Kass, Tierney, and Kadane 
(1990), as n oo, I = I (1 + O(n -1)); that is, the relative 
error is O(n1). Thus when Laplace's method is applied to 
both the numerator and denominator of BIo in (1), the re- 
sulting approximation also has relative error of order O(n1 ). 

The accuracy of Laplace's method in this context has been 
examined by Kass and Vaidyanathan (1992), Rosenkranz 
(1992), and Raftery (1993c) and is mentioned in Applica- 
tions 4 and 5. In general, the method provides adequate ap- 
proximations for well-behaved problems (those in which the 
likelihood functions are not grossly nonnormal) of modest 
dimensionality. We are unable to be much more specific 
than this, though our rough feeling is that samples of size 
less than 5d are worrisome (with d being the dimension of 
0), whereas those of size greater than 20d are large enough 
for the method to work well in most familiar problems, pro- 
vided that a reasonably good parameterization is used. (See 
Slate 1994 for a detailed discussion of sample sizes required 
to obtain posterior normality, which would guarantee ac- 
curacy of Laplace's method, for various parameterizations 
of exponential families.) Software for applying Laplace's 
method is available in S and in LispStat (Raftery 1993c; 
Tiemey 1989, 1990). Approximations of this kind have been 
used by many authors, notably Jeifreys (1961), Lindley 
(1961), Mosteller and Wallace (1964), and Leonard (1982). 

4.1.2 Variants on Laplace's Method. Laplace's method 
may be applied in alternative forms by omitting part of the 
integrand from the exponent when performing the expan- 
sion. (For the general formulation, see Kass and Vaidyan- 
athan 1992, which followed Tiemey, Kass, and Kadane 1989 
and Mosteller and Wallace 1964, Sec. 4.6). An important 
variant on (4) is 

IMLE = (21r )d/21? 11/2 pr(D I , H)7r(b IH) (5) 
where X` is the observed information matrix; that is, the 
negative Hessian matrix of the log-likelihood evaluated at 
the maximum likelihood estimator (MLE) 0. This approx- 
imation again has relative error of order 0( n-). Although 
it is likely to be less accurate than (4) when the prior is 
somewhat informative relative to the likelihood, it has the 
advantage that it is easily computed from any statistical soft- 
ware package that reports the MLE, the observed information 
matrix (or its inverse), and the value of the maximized like- 
lihood. 

Some software packages calculate the expected informa- 
tion matrix (i.e., the usual Fisher information matrix), or 
its inverse, as the asymptotic covariance matrix rather than 
the observed information matrix. The inverse of the expected 
information matrix may be used in place of X in (5). The 
resulting approximation has a larger asymptotic relative er- 
ror, of order O(n n1/2), but it remains sufficiently accurate 
to be of use in many problems. 

Now suppose that we have nested hypotheses, with pa- 
rameter (,B, 0/) having prior ir(fl, 4A I H1) under H1 and then 
Ho: 4' = V/0 with prior 7r(0'IHO). When (5) is applied, we 
obtain 
2 log B10 A + logX1I:1 - logiZo l + log ir(fl, 4'1 H1) 

- log ir(fl*, gHo) + (d - do)log(2ir), (6) 
where A = 2(Iog pr(DI(fB, 0', H1) -log pr(DIl j, Ho)) is 

the log-likelihood ratio statistic having degrees of freedom 
(di - do) and ,B* denotes the MLE under Ho. Again, either 
observed or expected information may be used in computing 
the covariance matrices Xk; then (6) has relative error of 
order O(n-1) or O(n-1/2). Jeffreys (1961, sec. 5.31) gave 
an approximation for the case where (di - do) = 1 in es- 
sentially the form of (6) but with expected rather than ob- 
served information, and Chow ( 1981) extended Jeffreys' re- 
sult to higher dimensions. Hsiao (1994) investigated 
alternative expansions for the case in which 4 l = o lies at 
the boundary of the parameter space. 

Raftery (1993c) suggested approximating 0k by a single 
Newton step starting from 0k and substituting the result into 
Equation (4), which yields the approximation 

2 log Blo A + (E1-EO). (7) 

In Equation (7), 

Ek = 2Xk(Ok) + Xk(Ok) (Fk + Gk)O {2 - Fk(Fk + Gk) } 
X X(O) - logI Fk + GkI + dklog(21r), (8) 

where var[OkjHk] = Wk, Fk = Zk, Gk = Wk , Xk(Ok) 
= log pr(Ok l Hk) is the log-prior density, and Xk(bk) is the dk 
vector of derivatives of Xk(Ok) with respect to the elements 
Of Ok (k = 0, 1). This often improves on the approximation 
of (5), but it does not require any additional information. 
It is implemented for generalized linear models in the GLIB 
software; see Section 9. 

4.1.3 The Schwarz Criterion. It is possible to avoid the 
introduction of the prior densities 17k(Ok l Hk) in (1) by using 

S = log pr(D I A1, H1) - log pr(D I O, H2) 

--(di - d2)log(n), 2 

where 0k iS the MLE under Hk, dk is the dimension of Ok, 

and n is the sample size. As n -* oo, this quantity, often 
called the Schwarz criterion, satisfies 

S-logB120 (9) 
log B12 

and thus may be viewed as a rough approximation to the 
logarithm of the Bayes factor. Minus twice the Schwarz cri- 
terion is often called the Bayesian information criterion 
(BIC); sometimes an arbitrary constant is added. See Section 
8.3 for additional discussion. 

In contrast to the approximations furnished by (4) or (5), 
the relative error of exp(S) in approximating B12 is generally 
0(1). Thus even for very large samples, it does not produce 
the correct value. On the other hand, keeping in mind the 
rough interpretation of B12 on the logarithmic scale suggested 
in Section 3.2, Equation (9) shows that in large samples the 
Schwarz criterion should provide a reasonable indication of 
the evidence. 

The Schwarz criterion is appealing in that it can be applied 
as a standard procedure even when the priors ir( 0k IHk) are 
hard to set precisely. In this sense it provides an often-useful 
reference procedure for scientific reporting. Also in its favor 
is the following. For independent and identically distributed 
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sampling in nested models with Ho: A/ = 4'O, it is reasonable 
to take the prior on 4 to be N(lo, W) with I W I = I J(4o) I -1, 
where J(4') is the Fisher information in the parameter A'. 
This says that the amount of information in the prior is 
equal to the amount of information in one observation. In 
this case, under certain conditions (i.e., the assumptions of 
null orthogonality and local alternative mentioned in Sec. 
5.2), the Schwarz criterion furnishes an order O(n-1/2) ap- 
proximation to log B12 (Kass and Wasserman 1995). Thus 
if one were willing to use this prior as a "reference prior" 
suitable for standardized reporting, then the Schwarz crite- 
rion would be a reasonably good approximation to the log 
of the Bayes factor. As Kass and Wasserman (1995) noted, 
Jeffreys's method was essentially to use S + c as an approx- 
imation to the log of the Bayes factor, with c being a constant 
determined by substituting a Cauchy prior in place of the 
normal prior on 4'. 

The sample size n in the definition of S needs to be figured 
carefully. It is apparent from the derivation of S (e.g., Kass 
1993), that n should be the rate at which the Hessian matrix 
of the log-likelihood function grows; thus n becomes the 
number of data values contributing to the summation that 
appears in the formula for the Hessian. For instance, as Raf- 
tery (1986a) pointed out, in the case of log-linear models 
for contingency tables, n is the sum of the counts, not of the 
number of cells. Similarly, in models for binomial responses, 
n is the sum of the denominators, not the number of re- 
sponses or the number of successes. In survival analysis, 
Raftery, Madigan, and Volinsky (1995) have taken n to be 
the number of uncensored observations; that is, of deaths. 
In two-stage hierarchical models the situation can be subtle 
and the appropriate form of S depends on which parameters 
are being tested. 

Schwarz (1978) gave a rigorous derivation of the criterion 
for linear subfamilies of exponential families and Haughton 
(1988) extended Schwarz's result to curved exponential 
families. Heuristic derivations of (9) are quite easy: one ap- 
plies (5) and then neglects constant-order terms. It is ap- 
parent from arguments such as those of Kass et al. (1990) 
that (9) holds much more generally than in the restricted 
setting of curved exponential families (e.g., Kass 1993, Katz 
1981, Leonard 1982, Raftery 1986a). But rigorously dem- 
onstrating the assumptions for the validity of Laplace's 
method seems to be enough of a chore that no general pre- 
cisely formulated result has been published. 

4.2 Simple Monte Carlo, Importance Sampling, 
and Gaussian Quadrature 

Dropping the notational dependence on Hk, Equation (2) 
becomes 

pr(D) = f pr(D I )r(O) dO. 

The simplest Monte Carlo integration estimate of this is 

pr1 (D) =-1m pr(D I 8 (i), 

where { 0 ('): i = 1, . . ., m } is a sample from the prior dis- 
tribution; this is the average of the likelihoods of the sampled 
parameter values (e.g., Hammersley and Handscomb 1964). 

This possibility was mentioned by Raftery and Banfield 
(1991 ) and was investigated in some detail in particular cases 
by McCulloch and Rossi (1991). A major difficulty with 
pr1 (D) is that most of the 0 (i) have small likelihood values 
if the posterior is concentrated relative to the prior, so that 
the simulation process will be quite inefficient. Thus the es- 
timate is dominated by a few large values of the likelihood, 
and so the variance of pr1 (D) is large and its convergence 
to a Gaussian distribution is slow. These problems were ap- 
parent in the examples studied in detail by McCulloch and 
Rossi ( 1991 ). 

The precision of simple Monte Carlo integration can be 
improved by importance sampling. This consists of gener- 
ating a sample { (i): i = 1, . .. , m} from a density ir*(0). 
Under quite general conditions, a simulation-consistent es- 
timate of I is 

I Sm=1 wipr(DI0(i') (10) 

where wi = ir(0 (i))/ir*( 0 (i)); the function ir*( 0) is known as 
the importance sampling function. (For general discussion 
and references, see Geweke 1989.) 

A more efficient scheme is based on adaptive Gaussian 
quadrature. Using well-established methods from the nu- 
merical analysis literature, Genz and Kass (1993) showed 
how integrals that are peaked around a dominant mode may 
be evaluated. This approach is effective in such problems 
when the dimensionality of the parameter space is modest 
(roughly, less than 9). 

4.3 Simulating from the Posterior 

Several methods are now available for simulating from 
posterior distributions. In the simplest cases these include 
direct simulation and rejection sampling. In more complex 
cases, Markov chain Monte Carlo (MCMC) methods, par- 
ticularly the Metropolis-Hastings algorithm and the Gibbs 
sampler, provide a general recipe (e.g., Smith and Roberts 
1993 and references therein). Another fairly general recipe 
is the weighted likelihood bootstrap (Newton and Raftery 
1994). 

Any of these methods gives us a sample approximately 
drawn from the posterior density ir*( 0) = pr(O I D) 
= pr(D I 0) ir(O)/pr(D). Substituting into Equation ( 10) 
yields as an estimate for pr(D), 

I m - 
pr2(D)= - 1 pr(D 1(i))O , (11) 

the harmonic mean of the likelihood values (Newton and 
Raftery 1994). This converges almost surely to the correct 
value, pr(D), as m -* oo, but it does not generally satisfy a 
Gaussian central limit theorem. This manifests itself by the 
occasional occurrence of a value of 0 (i) with small likelihood 
and hence large effiect on the final result. But it is very easy 
to calculate, and experience to date suggests that although 
it is indeed unstable, it often gives results that are accurate 
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enough for interpretation on the logarithmic scale of Section 
3.2 (Carlin and Chib 1993; Raftery 1994; Rosenkranz 1992). 

Several modifications of the harmonic mean estimator 
(11) have been suggested to get around its instability. Newton 
and Raftery (1994) suggested using as importance sampling 
function in (10) a mixture of the prior and posterior densities, 
ir*(0) = bir(0) + (17 )pr(0ID), where 0 < a < 1. The 
resulting estimator, pr3(D), has the efficiency of pr2(D) be- 
cause it is based on many values of 0 with high likelihood, 
but avoids its instability and does satisfy a Gaussian central 
limit theorem. But it has the irksome aspect that one must 
simulate from the prior as well as the posterior. This may 
be avoided by simulating all m values from the posterior 
distribution and imagining that a further bm/( 1 - 6) values 
of 0 are drawn from the prior, all of them with likelihoods 
pr(D I 0 (i)) equal to their expected value pr(D). The result- 
ing estimator, pr4(D), may be evaluated using a simple 
iterative scheme. 

A simple modification of (11) is to instead calculate 
itm 

pr5(D) m - t f(O ()/(pr(DI 0 (i)) r( (i))), (12) 

where f(.) is any d-dimensional probability density. This 
was mentioned by Gelfand and Dey (1994). It is an unbiased 
and consistent estimator of the marginal likelihood pr(D), 
and satisfies a Gaussian central limit theorem if the tails of 
f(*) are thin enough, specifically if f {ff()2/(pr(D I 0)r(O)) } 
dO < oo. High efficiency would seem most likely to result if 
f(O) were roughly proportional to pr(D I 0). The very 
limited experience to date indicates that for low- 
dimensional problems with a good choice off, pr5(D) can 
be very accurate. For high-dimensional problems, however, 
it may be hard to find an appropriate f, and the results can 
be very poor. Meng and Wong (1993) considered an optimal 
choice of f and showed how this could be computed itera- 
tively from an initial guess. [Their framework actually applies 
to the computation of a ratio of integrals of the form (3).] 
Their approach appears promising but has not yet been ex- 
tensively tested. 

Raftery (1995a) suggested what he called the "Laplace- 
Metropolis" estimator of pr(D), obtained by using the pos- 
terior simulation output to estimate the quantities needed 
to compute the Laplace approximation (4), namely the pos- 
terior mode, 0, and minus the inverse Hessian at the posterior 
mode, X. The posterior mode can be estimated as the (i) 
that maximizes (pr(D 0 (i)) 7r( (i))). This requires computing 
the likelihood for each simulated 0 (i); if this takes too much 
computer time, then an alternative is to use the multivariate 
or componentwise posterior median or to estimate the pos- 
terior mode by nonparametric density estimation. The ma- 
trix X can be estimated by the estimated posterior covariance 
matrix; it is wise to use a high-breakdown point robust es- 
timator. The resulting estimator has performed well in nu- 
merical experiments (Lewis and Raftery 1994). A similar 
combination of simulation with Laplace's method was sug- 
gested by Kass and Wasserman (1992a), who provided a 
correction term as well. From recent unpublished studies we 
have conducted with T. J. DiCiccio and L. Wasserman, the 
latter method appears to be quite promising. 

In the case of nested models in which the priors satisfy 
(13) of Section 5.1 and /t and 4' are independent, then 

- 7r(V/o I HI) B1 
pr(o'| ID, HI) 

(Actually, instead of a priori independence of /t and 4', it is 
enough to have ir(fl I Ho) = ir(l AIV = VI0, H1).) This result 
is apparently due to L. J. Savage and was called the "Savage 
density ratio method" by Dickey (1971). It has been ex- 
ploited in several applications (e.g., McCulloch and Rossi 
1991) . Verdinelli and Wasserman (1993a) pointed out that 
a method of generating marginal posterior densities discussed 
by Chen (1992) may then be applied advantageously in this 
case. This leads to a method similar to pr5 (D), and the choice 
of f is again crucial and difficult. 

Carlin and Chib (1993) suggested including a model in- 
dicator variable in the MCMC scheme and defining "pseudo- 
priors" for (01 I H2) and (02 H1). This involves designing and 
running a special MCMC algorithm to calculate Bayes fac- 
tors. Similar suggestions have been made by Carlin and Pol- 
son (1991) and George and McCulloch (1993). 

An alternative approach is available when many param- 
eters, z, are present in all the models considered. These might 
be missing data, the values of a random effect in a hierarchical 
model, or "latent data" chosen in such a way that the "com- 
plete data likelihood" pr(D, z 1 0) has a simple form (Tanner 
and Wong 1987). Then the Bayes factor can be simulation- 
consistently estimated by the average of the quantities 
B I (z () = pr(D, z(i) HI)/pr(D, z (ilHo), where the z(i 
are simulated from the posterior distribution of z under Ho; 
this is often possible using MCMC methods. The B1o(z(i)) 
are then often easy to calculate or at least to approximate 
fairly well; for example, using the Laplace method. When z 
is present in H1 but not in Ho, we again recover the harmonic 
mean estimator of pr(D I HI) (Raftery 1993a). This is related 
to previous work of Thompson and Wijsman (1990) on the 
calculation of likelihood ratios. 

Finally, some general methods of calculating I have been 
considered in the statistical physics literature under the name 
"free energy estimation." The approaches are not automatic 
and require analytical effort to tailor them to statistical ap- 
plications; however, they may be of use in certain problems 
(See Neal 1992 for references.) 

4.4 Comparison of Methods 

The different methods for calculating and approximating 
Bayes factors have been compared by Rosenkrantz (1992) 
in the contexts of normal models and of Poisson-gamma 
models for counts with independent variables, unobserved 
heterogeneity, and outliers, and by Raftery (1993c) in the 
context of generalized linear models. 

Exact analytic evaluation is best because it is most accurate 
and usually also most efficient computationally, but it is fea- 
sible only for a narrow class of models. The Laplace method 
for integrals yields accurate approximations and is usually 
quite computationally efficient. In particular, the approxi- 
mation using the posterior mode in (4) or its one-step ap- 
proximation given by Equations (7) and (8) can be very 
accurate. The latter is easy to compute using the output from 
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standard software. For cases of modest dimensionality, the 
adaptive quadrature method of Genz and Kass (1993) is 
effective. The Monte Carlo integration and importance sam- 
pling methods are less precise and more computationally 
demanding, but they may well be the only ones available in 
complex models. The methods using MCMC seem promising 
but have not yet been applied in many demanding problems. 
In addition, they can require large numbers of likelihood 
function evaluations, which in some cases is itself difficult. 

The Schwarz criterion is the easiest approximation to 
compute and has the advantage of not requiring that the 
user specify the prior distributions. It is suitable for com- 
municating results even when more detailed calculations are 
made using other methods (as in Application 5). As an 
asymptotic approximation it is admittedly rough, but, as long 
as the number of degrees of freedom involved in the com- 
parison is reasonably small relative to sample size, it does 
not seem to be grossly misleading in a qualitative sense. It 
can be very poor, however, when the number of degrees of 
freedom involved in the comparison is large and the prior 
is very different from that for which the approximation is 
best; McCulloch and Rossi ( 1991 ) gave an example of this 
with 115 degrees of freedom. 

5. THE CHOICE OF PRIORS 

In order to compute a Bayes factor, the prior distributions 
rr(Ok lHk) on the parameters of each model must be specified. 
Sometimes, as in Application 1, there are closely related data 
with which to construct priors. This nicest situation is rare, 
however. More often, as in Application 5, some combination 
of relevant data, information from the literature, and rough 
guesses must be used. In that case there will be doubts about 
the accuracy of the prior distribution. Thus a first concern 
is how to choose prior distributions to represent the available 
information, but once this is done, an important issue is the 
sensitivity of the Bayes factor to the choices of priors. 

The easiest way to deal with the problem of prior choice 
is to ignore it and simply use the Schwarz criterion or Jef- 
freys's variant of it (see Sec. 4.1.3). Although this will lead 
to appropriate conclusions in sufficiently large samples, there 
is not much available guidance as to the operational meaning 
of "sufficiently large." Also, in contrast with Bayesian point 
estimates such as the posterior mean, the Bayes factor does 
tend to be sensitive to the choices of priors on the model 
parameters. We discuss informative prior selection and the 
problem of sensitivity in Section 5.1 and review results and 
methods for assessing sensitivity over a range of priors in 
Section 5.2. In Section 5.3 we consider the use of improper 
priors and note the resulting difficulties. 

Sensitivity analysis concerns distributional forms for 
models pr(D 1Ok, Hk) as well as priors. When alternatives 
are introduced (e.g., the Student's t distribution in place of 
the normal), Bayes factors may be used to determine which 
best fits the data. One may also assess the influence of in- 
dividual data values by computing the Bayes factor after 
omitting each observation in turn ( Pettit and Young 1990) . 
Asymptotic approximation makes the "leave-one-out" di- 
agnostic approach easy; see Application 5. 

5.1 Prior Information 

The problem of determining a prior distribution from 
available information appears throughout Bayesian infer- 
ence. The information may come from other data or from 
the subjective knowledge of experts, or it may be too hard 
to express as a prior distribution. Even when there are other 
data, judgment must be used because a distribution must be 
chosen (as in Application 1), but this is familiar. The use 
of subjective opinion is different. For the most part, in both 
of these cases the formulation of priors is problem-specific 
and there is not much general methodology for it. There is, 
however, a modest literature on "eliciting" probabilistic in- 
formation from individuals. One psychologically appealing 
device is the method of imaginary observations (Good 1950). 
Kadane, Dickey, Winkler, Smith, and Peters (1980) dis- 
cussed a formal elicitation procedure in the context of linear 
regression; Garthwaite (1992) included more recent refer- 
ences. Formal representation of opinion may be useful for 
private analysis and in verifying that a simpler public analysis 
leads to appropriate conclusions, as in Application 5. Prior 
distributions sometimes become communally accepted after 
much research and discussion; this happened in the esti- 
mation of bowhead whale population size (Raftery and Zeh 
1993). 

In choosing priors, just as in choosing models for data 
distributions, simplifications are often made. This occurs 
notably when there are nested models in which a hypothesis 
Ho: A = 40 is being tested in the presence of an additional 
parameter ,B. For example, it is often assumed that 

r(f3IHo) = fr(1, 3 ,IH) d+. (13) 

If in addition it is assumed that ,B and 4A are independent a 
priori under HI, then one needs only to choose one prior 
for ft and another for 4'. 

Sometimes instead of (13), it is assumed that ir(f I HO) 
= I(,B 4' = 400 HI ). But this prescription depends on the 
choice of parameterization used. If an alternative parame- 
terization (Q, X) is used under HI, with Ho then being specified 
by X = X0, and if i(r, XI H1) is obtained from ir(f, 4A H1) 
by the change-of-variables formula (introducing the appro- 
priate Jacobian determinant), then it may happen that 
r I HO) is not obtained by a change of variables from 
r(fl I Ho). (In a personal communication, J. Dickey has noted 
that L. J. Savage discussed this as an instance of the "Borel 
paradox" in a 1963 lecture; see also Dickey 1985.) Variations 
on the marginal and conditional density methods have been 
discussed by McCulloch and Rossi (1993) and Verdinelli 
and Wasserman (1993a). 

Again as in data modeling, simplifications involving priors 
should be considered carefully, because they may affect the 
results and yet may not be justified. Here testing is different 
from estimation. In frequentist theory, estimation and testing 
are complementary, but in the Bayesian approach, the prob- 
lems are completely different. In testing, Bayesians put pos- 
itive prior probability on models that represent hypotheses, 
whereas in estimation, continuous priors are used that would 
assign zero probability to special values such as 4' = 4'o* In 
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estimation, priors are often picked for convenience, knowing 
that if the sample is fairly large, then the effect of the prior 
is small. In testing this is not so. As expression (5) shows, 
to order O(n'- ) the prior density may not be eliminated as 
the sample size increases, which contrasts with the case of 
estimation, where the MLE approximates the posterior mean 
to this order. As a result, the Bayes factor tends to be more 
sensitive to the choice of prior than the posterior probability 
of an interval (e.g., Kass 1993; Kass and Greenhouse 1989). 

In fact, it may happen that conclusions based on esti- 
mation seem to contradict those from a Bayes factor (as 
illustrated in Kass and Greenhouse 1989). This occurs when 
an estimate, say of At, is found to be distant from a null- 
hypothetical value it0. In this case the data seem unlikely 
under Ho, but if the Bayes factor turns out to be in favor of 
Ho, then the data are even more unlikely under HI than they 
would have been under Ho. (This is one cause of discrep- 
ancies between conclusions reached with Bayes factors and 
those reached using P values; see Sec. 8.2.) A consequence 
is that using a prior with a very large spread on At under HI 
in an effort to make it "noninformative" will force the Bayes 
factor to favor Ho. This was noted by Bartlett ( 1957 ) and is 
sometimes called "Bartlett's paradox." As Jeffreys recog- 
nized, to avoid this difficulty, priors on parameters being 
tested ('I in the discussion here) generally must be proper 
and not have too big a spread; thus the standard improper 
priors that he used for estimation are not applicable to testing. 
We return to the use of improper priors on nuisance param- 
eters in Section 5.3. 

5.2 Sensitivity Analysis 

Because Bayes factors can be sensitive to the prior, it is 
important to evaluate the Bayes factor over a range of pos- 
sibilities. This involves specifying classes of priors to use un- 
der HI and H2, and it also makes the issue of computation 
more urgent, because many multidimensional integrals [as 
in Eq. (2)] must be calculated. We mention here several 
classes of priors that may be used. When there is enough 
information to yield initial priors with given hyperparameters 
(such as a N(v, 4)2) prior in which the hyperparameters are 
v and 4)), the hyperparameters may be perturbed (e.g., by 
halving and doubling 4) or changing v to v ? 4)) and the Bayes 
factor recomputed, as in Applications 1, 4, and 5 (see also 
McCulloch and Rossi 1991 ). 

An important computational device is to use Equation 
(5 ) as an approximation to (2) substituted in ( 1). From this, 
if we change from an original pair of priors under HI and 
H2 to a new pair and thus compute a new Bayes factor 
B12 , we obtain 

B(NEW) . /(NEW) (61 I HI) \ / (62AlH)i, 1 
B12 B12= l .(NEW)( H2) r(OI IHI) / 

with an error of order O(n-'), which also holds if (5) is 
used to evaluate the original Bayes factor B12. Because the 
ratio of prior ordinates at the MLE is easy to evaluate, (14) 
makes results for large numbers of priors easy to obtain; see 
Application 5. The accuracy of the method was explored in 
detail for the case of testing equality of two binomial pro- 
portions by Kass and Vaidyanathan ( 1992) . 

The maximum of Blo (and thus the maximal evidence 
against Ho) over classes of priors was discussed by Edwards, 
Lindman, and Savage (1963) in contrasting Bayes factors 
with P values and was further developed by Berger and 
Delampady (1987), Raftery (1988b), and others (see Sec. 
8.2). Suppose, first, that 4A is one-dimensional and that there 
is no additional parameter ,B. In this case, under Ho we have 
A = 4'o, and there is no prior. Under HI, taking 4 - N( 410, 
4)2) leaves only the parameter 4)2 to be determined; sensitivity 
in the Bayes factor is then reflected in its sensitivity to the 
choice of 4). Edwards et al. (1963) computed the maximum 
of Blo over all choices of 4), which we will denote by 

( NORMAX ) B jO . There is no corresponding minimum; it is gen- 
erally the case that Blo -O 0 as 4) -s oo. 

Edwards et al. (1963) also considered the maximum of 
Blo over all possible priors on 4, which in simple cases occurs 
for the prior with all its mass at the MLE 4. This class is 
wider, but it can be too large and can yield bounds on Blo 
that are too big. As a result, Berger and Delampady (1987) 
examined the class of "symmetric unimodal" priors, which 
are symmetric about 4'0 and nondecreasing in 4' - 4'o 1, and 
obtained an expression for the maximum of Blo. They also 
considered other classes, which opens up the question of 
what class should be used. Note that B (NORMAX) is also the 
maximum of Blo over all priors that are scale mixtures of 
the N(4o, 4)2) distribution. This seems a reasonably large 
and interesting class. Berger and Delampady (1987) showed 
that B (NORMAX) is not very different from the bound obtained 
using the symmetric unimodal class. A computationally 
simple approximation to B (NORMAX) may be obtained using 
Laplace's method [Eq. (5)] together with the argument 
leading to equation (15); the formula may be found in Kass 
and Raftery (1993) . 

When 4' may be a vector and there is also, under both Ho 
and H1, a nuisance parameter ,B (again possibly a vector), 
the problem is more complicated. Jeffreys (1961, pp. 249- 
250) showed that under certain conditions, the prior on the 
nuisance parameter ,B is much less relevant than that on the 
parameter being tested 4 if the simplification (13) is used 
together with a priori independence under HI. Kass and 
Vaidyanathan (1992) extended and sharpened the result, 
which we now describe, by considering local alternatives (4' 
near 0o). 

In addition to the simplification of (13) together with a 
priori independence of ft and 4 under H1, assume that ft 
and 4 are null-orthogonal in the sense that the Fisher infor- 
mation matrix J (ft, 4') is block-diagonal when 4' = 4'0. Kass 
and Vaidyanathan (1992) noted that this condition often 
holds, at least approximately, and by a transformation of 
parameters it can always be made valid. They assumed that 
4 - lA0 = O(n-1/2), as would be the case if the "true" value 
of 4' were either 40 or a neighboring alternative 4n such that 
lAn - 4o = O(n-'/2): when this situation does not hold, the 
Bayes factor will quickly become decisive, and issues of 
asymptotic approximation will no longer be of concern. Now 
let B10 be the Bayes factor for one prior on ,B and let B%l be 
the Bayes factor for a different prior. Then (under suitable 
regularity conditions), 
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Blo = B*-(I + (n-')). (15) 
That is, up to order O(n' ), the Bayes factor no longer de- 
pends on the choice of prior on ft. Thus when the parameters 
are null-orthogonal, sensitivity analysis may be confined to 
examination of priors on if. In practice if, under H1, ft and 
A are approximately uncorrelated (they are "observed- 
orthogonal," which may be easier to check), then the relative 
insensitivity to choice of prior on ft may be expected to hold 
(this was done in Application 5). Furthermore, the same 
argument (under the null, or for local alternatives) shows 
that ( 15 ) holds to order O( n ̀1/2) even if the parameters are 
not null-orthogonal. 

When there is little prior information, Raftery (1993c) 
argued that subjective priors will often be relatively flat in 
the region where the likelihood is large and that their impact 
on Bayes factors for the comparison of both nested and non- 
nested models should be small. Thus an alternative to careful 
and time-consuming prior elicitation in this case may be to 
use a set of priors constructed to have this property. Raftery 
( 1 993c) showed how this can be done for generalized linear 
models. These models relate a dependent variable yi to in- 
dependent variables xi = (xi l, . . ., xij), where xil = 1 in 
such a way that E[yi l xii = 1ui, var[yi I xi ] = a2v(,ui), and 
g(,ui) = xi#, where ft = (f1, .. , fJ)T . The idea is to narrow 
down an initial class of baseline priors for ft, here taken to 
be such that when g(,u) = ,u, v(,u) = 1, and the variables have 
been standardized to have mean zero and variance 1, the 3,B 
are independent normal a priori with #I - N(v, i72) and f3, 
- N(O, 02) (j = 2, . . . , J). Bayes factors tend to be insen- 
sitive to v and iq (as indicated by the remarks following ( 15 )), 
but they can be quite sensitive to the choice of k. 

One way of defining a reasonable range of priors is to 
require that the ratio of prior ordinates at the MLE, given 
in Equation ( 14), not be too far from 1 for any of the possible 
values of j, namely I 21 1 when J = 2. We wish the same 
to be true when Ho and HI are not nested. This corresponds 
to requiring that the prior not contribute much evidence in 
favor of either model, whether the models being compared 
are nested or not. This requirement involves a tradeoff: for 
nonnested models, it implies that 0 be large, whereas for 
nested models it implies that X not be too large. Balancing 
these two desiderata in a certain sense gives 0 = e'/2 = 1.65, 
and requiring that the priors not contribute evidence "worth 
more than a bare mention" beyond what is unavoidable leads 
to the range 1 < 0 < 5. The resulting priors are then trans- 
formed back to the original scale for the variables; results 
for other choices of g(,u) and v(,u) are obtained by weighting 
the cases appropriately. 

The result is what Raftery (1993c) calls a reference set of 
proper priors for generalized linear models. These are used 
in the GLIB software; see Section 9. Although they are mildly 
data-dependent, they do have properties that one would as- 
sociate with genuine subjective data-independent priors that 
represent a small amount of prior information. Similar rea- 
soning can be applied to other classes of baseline priors and 
to other models. 
5.3 Bayes Factors with Improper Priors 

In Section 5.1 we indicated that improper priors on pa- 
rameters of interest (i,t when we have Ho: AI = 'I') are prob- 

lematic because, when used under H1 and not under Ho, 
they force B1o to become zero. But Jeffreys (1961) used im- 
proper priors on nuisance parameters appearing in both null 
and alternative models (e.g., in testing the value of a Normal 
mean Ho: u = u0, he took the prior on ,u under H1 to be 
proper but set r( a) = 1 / a; p. 268). This leads to an improper 
predictive distribution specified by (2), but the value of (2) 
for the given data remains well defined, so this impropriety 
did not seem to bother Jeffreys; others also are untroubled 
by the procedure (Moulton 1991; Robert 1992; Robert and 
Caron 1992). Equation (15) shows that in many cases the 
choice of prior on the nuisance parameter does not greatly 
affect the results. 

Some authors have used improper priors for all parameters 
appearing in the models. This has the problem that flat priors 
are specified only up to an undefined multiplicative constant. 
Thus the Bayes factor in this case also contains undefined 
constants. One effort to resolve this difficulty is the "imag- 
inary training sample device" of Smith and Spiegelhalter 
(1981) and Spiegelhalter and Smith (1982). This consists 
of imagining that a data set is available that involves the 
smallest possible sample size permitting a comparison of Ho 
and H1 and provides maximum possible support for Ho, and 
then arguing that B1o = (1 + e)-', where e 2 0 is small; they 
took e = 0. This yields a value for the ratio of constants. 

The authors of several published applications of the 
method found it useful (Akman and Raftery 1986a; Racine, 
Grieve, Fluhler, and Smith 1986; Raftery 1987, 1988; Raftery 
and Akman 1986b). The dimensionalities of the alternative 
models in these examples were not very different, however, 
and it is not clear how the method will perform in the more 
difficult case where this is not so. 

Another solution is to set aside part of the data to use as 
a training sample which is combined with the improper prior 
distribution to produce a prior prior distribution. The Bayes 
factor is then computed from the remainder of the data. This 
idea was introduced by Lempers (1971), and other imple- 
mentations have been suggested more recently under the 
names partial Bayes factors (O'Hagan 1991), intrinsic Bayes 
factors (Berger and Perrichi 1993), and fractional Bayes fac- 
tors (O'Hagan 1995). 

6. ACCOUNTING FOR MODEL UNCERTAINTY 

Practical model-building often involves far more than the 
comparison of two models; there are usually many other 
choices to be made. For example, in regression the analyst 
must choose the independent variables, decide which if any 
of the observations are outliers, and determine how if at all 
to transform the variables. Each possible combination of 
choices defines a different model, so that the model-building 
process consists of comparing many competing models. 
Strategies for doing this are commonly guided by a series of 
significance tests, often based on the approximate asymptotic 
distribution of a test statistic. 

There are several problems with this. The sampling prop- 
erties of the overall strategy, as distinct from those of the 
individual tests, are not well understood (Freedman 1983; 
Miller 1984, 1990). The models being compared are often 
not nested. Power considerations are usually not taken into 
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account when setting significance levels; indeed, the power 
characteristics of the tests are often unknown. Any approach 
that selects a single model and then makes inference con- 
ditionally on that model ignores the uncertainty involved in 
model selection, which can be a big part of overall uncer- 
tainty. This leads to underestimation of the uncertainty about 
quantities of interest, sometimes to a dramatic extent. See 
Application 4 for an example of this. 

All of these difficulties can be avoided, at least in principle, 
if one adopts a Bayesian approach and calculates the posterior 
probabilities of all the competing models, which follow di- 
rectly from the Bayes factors (e.g., Leamer 1978; Stewart 
1987). A composite inference can then be made that takes 
account of model uncertainty in a simple and formally jus- 
tifiable way. In Section 6.1 we review this approach, and in 
Sections 6.2-6.5 we discuss methods for handling the difficult 
situation where the number of models is very large. 
6.1 Basic Ideas 

When several models are being considered, Bayes factors 
yield their posterior probabilities as follows. Suppose that 
(K + 1 ) models, HO, H1, . . ., HK, are being considered. 
Each of HI, ._. , HK is compared in turn with HO, yielding 
Bayes factors Blo, . .. , BKO. Then the posterior probability 
of Hk is 

/K 
pr(HkID) = akBko/ > arBro, (16) 

r=O 

where ak = pr(Hk)/pr(HO) is the prior odds for Hk against 
HO (k = 0, ... , K); here BOO = ao = 1. Taking all the prior 
odds ak equal to 1 is a natural choice, but other values of ak 

may be used to reflect prior information about the relative 
plausibility of competing models. 

The posterior model probabilities given by Equation ( 16) 
lead directly to solutions of the prediction, decision-making 
and inference problems that take account of model uncer- 
tainty. For a quantity of interest A that is well-defined for 
every model, the posterior density given model Hk is pr(A I D, 
Hk) = f pr(A ID, Ok, Hk)pr(OkI D, Hk) dOk. This can be used 
to make inferences about A conditionally on model Hk, but 
instead we may use the posterior density of A without con- 
ditioning, namely 

K 

pr(A I D)= E pr(A ID,Hk)pr(HkI D) (17) 
k=O 

(Leamer, 1978, p. 117). This accounts for the uncertainty 
about model form by weighting the conditional posterior 
densities according to the posterior probabilities of each 
model. The posterior mean and standard deviation of A are 
as follows (Leamer, 1978, p. 118): 

K 

E[AID] = E E[AID,Hk].pr(HkID) (18) 
k=O 

and 
K 

var[AI|DI = E (var[A I D, HkI 
k=O 

+ (E[ ID, HkI)2).*pr(HkI D)-E[AI|DI2. ( 19) 

Racine et al. (1986) showed how this method can be used 
to make inference about a treatment effect in the presence 
of uncertainty about the existence of a carryover effect. 

The decision-making problem is solved by maximizing 
the posterior expected utility of each course of action con- 
sidered. The latter is equal to a weighted average of the pos- 
terior expected utilities conditional on each of the models, 
with the weights equal to the posterior model probabilities 
pr(HkID). Smith (1991) discussed the situation where a 
model is to be chosen and then a decision made. Our view 
is that if possible, a single model should not be selected before 
decision making, and that model uncertainty should be ac- 
counted for in the calculation of posterior expected utilities. 

Much of the literature on statistical analysis in the presence 
of a set of rival models has focused on the selection of a 
single model. Equation (17) shows that selecting a single 
model and proceeding conditionally on it may be reasonable 
if one of the pr(Hkl D) is close to unity or if the sum is 
dominated by models for which the values of pr(A I D, Hk) 
are similar. If not, then analyses conditional on a single se- 
lected model fail to take account fully of uncertainty about 
structure and so may well underestimate the uncertainty as- 
sociated with their conclusions. This can lead to, for example, 
policy choices that are riskier than one thinks (Hodges 1987). 

6.2 Occam's Window 

Despite the importance of model uncertainty and the ex- 
istence of a general strategy for dealing with it, at least since 
the work of Leamer (1978), there have been three major 
obstacles to the widespread adoption of the method outlined 
in the previous section. The first is the difficulty of calculating 
Bayes factors; we have shown in Section 4 that there is now 
a range of feasible computational strategies for doing this. 

The second obstacle is that the number of terms in Equa- 
tion (17) can be enormous. For example, in regression with 
n cases and J candidate independent variables, considering 
all possible subsets, the possibility of outliers and four possible 
transformations of each variable gives an initial set of around 
(2J X (onax) X 4J+l) models, where rmax is the maximum 
number of possible outliers envisaged. Even for a relatively 
small problem, with n = 40, J = 12, and Omax = 5, this is 
on the order of 1016 models. 

The third obstacle is that prior distributions for the pa- 
rameters must be specified for each model. Various possible 
ways around this now exist. One approach is to use the 
Schwarz criterion, relying on the result of Kass and Wasser- 
man (1995) that this gives an accurate approximation for a 
particular, reasonable prior. Another way is to specify prior 
distributions for one or several "big" models within which 
all or most of the models considered are nested, and then 
obtain the priors for the nested models by conditioning on 
the constraints that define them (as in Raftery 1993c). 

In this section and the next we describe two general al- 
gorithmic approaches to solving this problem that lead to 
feasible methods. The first, known as "Occam's window," 
was proposed by Madigan and Raftery (1994) and selects a 
subset of the models initially considered. This involves av- 
eraging over a much smaller set of models than in (17), 
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thereby facilitating effective communication of model un- 
certainty. 

Those authors argue that if a model is far less likely a 
posteriori than the most likely model, then it has been dis- 
credited and should no longer be considered. Thus models 
not belonging to 

= H:max,{Ipr (HIhID)} c} 
{pr(Hkl D)) 

should be excluded from Equation ( 17), where C is a fairly 
large number (>1) chosen by the data analyst, such as C 
= 20. Appealing to Occam's razor, they also exclude from 
( 17) complex models that receive less support from the data 
than their simpler counterparts, namely those belonging to 

Pr (H, D) 
13= {Hk: 3 H, E A, H, C Hk, P (k D)>1 

Then Equation ( 17) is replaced by 

pr(A ID) = lHkE=>4 pr(A I Hk, D)pr(D I Hk)pr(Hk) 
| Hke ,4 pr(D I Hk)pr(Hk) 

where A = A'\f3. 
One search strategy to identify the models in A consists 

of a sequence of pairwise comparisons of nested models. If 
a model is rejected in favor of a larger one, then all the 
models nested within it are also rejected. Also, if there is 
evidence for Ho. then HI is rejected; but to reject Ho. we 
require strong evidence for the larger model, HI. If the ev- 
idence is inconclusive (falling in "Occam's window"), then 
neither model is rejected. 

Typically the number of terms in ( 17) is reduced to 25 or 
less, and often to as few as 1 or 2. This procedure mimics 
the evolutionary process of model selection that is typical of 
science. The final solution is fairly independent of the initial 
class considered, in the sense that most initial classes that 
contain A give the same result. 

6.3 Markov Chain Monte Carlo Model 
Composition (MC3) 

Madigan and York ( 1992) proposed approximating ( 17) 
using MCMC methods, generating a process that moves 
through model space. They constructed an irreducible 
Markov chain { H( t) }, t = 1, 2, ... with state space X and 
equilibrium distribution pr(Hi I D), where X is the space of 
models considered. Then for any function u(Hi), if this 
Markov chain is simulated for t = 1, ... , m, the average, 

m 
U=- U(H(t)), 
m t=l 

converges with probability 1 to E[u(H)] as m -s oo. To 
compute ( 17) in this way, they set u(H) = pr(A I H, D). 

To construct the Markov chain, for each model H they 
defined a neighborhood nbd(H) consisting of H itself and 
the models that differ from H by just one parameter. They 
defined a transition matrix R by setting R(H -* H') = 0 for 
all H' g nbd(H) and R(H -*H') constant for all H' 
E nbd(H) . H' is then drawn from q(H -*H') and accepted 
with probability 

fpr (H' ID) min 15 pr(HI D)) 

Otherwise, the chain stays in state H. Madigan and York 
(1992) reported that this process is highly mobile, and that 
runs of 10,000 or less are typically adequate. 

George and McCulloch (1993) proposed a similar method 
in which the chain moves through both model space and- 
parameter space at once. To ensure that the chain is irre- 
ducible, they never actually eliminated a parameter from the 
model, but instead set it close to zero with high probability. 

6.4 Model Expansion 

Draper (1995) proposed the model expansion method, in 
which one model is selected initially and then generalized 
to a set of models that include the initially selected one as a 
special case but that relax some of the structural assumptions 
underlying it. Equation (17) is then used for inference about 
quantities of interest, but restricted to the set of models ob- 
tained in the generalization step. In regression, for example, 
a set of variables and functional forms might be selected 
initially and a normal distribution assumed for the errors. 
This might be generalized by embedding the normal error 
distribution in the symmetric power exponential family (Box 
and Tiao 1962). Model expansion can be continuous, as in 
that example, or discrete. 

Model expansion is useful for taking account of uncer- 
tainty about specific structural assumptions in a model but 
is not designed to take account of the uncertainty inherent 
in model building when many models are initially consid- 
ered, as in variable selection in regression. 

6.5 Evaluation of Methods 

The efficacy of a modeling strategy can be judged by how 
well the resulting predictive distributions predict future 
observations (Dawid 1984). Madigan and Raftery (1994) 
measured predictive performance by splitting complete data 
into two subsets, one (typically about 25%-50% of the total) 
used to calculate model probabilities and the other used as 
a set of test cases. Predictive performance was then measured 
using the logarithmic scoring rule of Good (1952); see Sec- 
tion 3.2. This method can be used to assess the performance 
of any method that generates predictive distributions, Bayes- 
ian or not, model based or not, statistical or not. With this 
scoring rule, Equation (17) is guaranteed in a certain sense 
to give better predictions on average than those based on 
any individual selected model (Madigan and Raftery 1994). 

Model averaging by the Occam's window and MC3 meth- 
ods has given consistently and substantially better predictions 
than those methods based on any one model alone, for several 
data sets. The differences between individual "good" models 
were smaller than the gain due to taking model uncertainty 
into account. The MCMC method had better predictive per- 
formance than Occam's window, but at the cost of greater 
computational expense and less easily interpretable results. 
This is true for discrete graphical models (Madigan and Raf- 
tery 1994), linear regression models (Raftery, Madigan, and 
Hoeting 1993), and survival analysis (Raftery et al. 1995). 
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7. APPLICATIONS, REVISITED 

7.1 Application 1: E. coli Mutagenesis 

The raw data for each strain of E. coli were two pairs of 
sample sizes and corresponding proportions (n 1, IAp 1) and 
(ni2, Pi2). Here i = 1, ... , 13, with the 13th strain being 
the one in question, uvrE. The data were assumed to be 
distributed as binomial proportions and were transformed 
to the logit scale according to Yi = log[pj 1 ( -Pi2)/(A2( 1 
-Pi ))]. Then Y1 was assumed to be normally distributed, 
with a( taken to be known and equal to the first-order ap- 
proximate variance based on binomial sampling, namely 

2 = [ni l(1 i )] + [ni2i2 1 i2)I 
We write {i =lOg(Pi2(10 - AM2) 109?(Pi 1/( I - Pi M ))so 

that the null hypothesis is Ho: #13 = 0, and under this hy- 
pothesis, Y13 N(O, aD3). For the alternative H1, we begin 
with Y13 N(413, (r3) and then, considering the data from 
the first 12 strains to be directly relevant, we use them to 
formulate a prior for 4I13 (taking the strains to be exchange- 
able). This may be done by assuming that 4{i N(,u, T2), 

iid, i = 1, ..., 13, so that YI3 N(,u, T2 + (13). The quan- 
tities ,u and T may then be estimated from the data on the 
first 12 strains. This was done by maximum likelihood fol- 
lowing Kass and Steffey (1989), who used the transformed 
data (the uvrE strain is number 12 in their table 1 ). The 
Bayes factor is then 

B = n(y13; Ai, r2 ? 13) 

n(y13; 0, oj3) 

where n(x; m, v) denotes the normal density with mean m 
and variance v evaluated at x. The result was Blo = .065, 
indicating positive evidence in favor of Ho. 

7.2 Application 2: The Hot Hand 

Kass and colleague K. Hsiao-hereafter HK-analyzed 
the data for Vinnie Johnson. (Details may be found in Hsiao 
1994.) Under Ho we have Yi 

iid 
B(ni, p) (i = 1, ... ., 380), 

there being 380 games in the data set. Under the alternative, 
Yi..- B(ni, pi) independently for i = 1, ..., 380, and 
Pi ?- beta(a, b). HK began by reparameterizing the beta dis- 
tribution according to (a, b) = (t/I, (1 - t)/w). Then, 
under the beta-binomial, E(Yi/ni) = (, and the binomial 
becomes a limiting case of the beta-binomial as w -X 0. 
Thinking of this as a nested model and using the notation 
of Section 5.1, i1 becomes w and f, becomes (, which reduces 
to p when w = 0. The additional simplification mentioned 
there is then to take t and w to be a priori independent, with 
the distribution on t the same as that used on p under the 
binomial. HK put a uniform( 0, 1 ) prior on t and p and then 
examined the Bayes factor for several values of w. 

To think about the values of w that should be of interest, 
it is helpful to convert w to the standard deviation SD = t( 1 
- t)/(1 ?+ w-1), which may be done by taking t equal to 
Johnson's overall shooting rate, t = .43. Under H1, Johnson's 
underlying game shooting ability varies from good games 
with high values of Pi to bad games with low values. To 
consider the variation sufficiently large to represent inter- 
esting swings in ability, it seems to us that the pi's would 

have to vary frequently by about ?.05. That is, values of SD 
of at least .05 (roughly) would be needed to represent a 
meaningful amount of hot-handedness. With this in mind, 
here are several values of B1o: 

w SD Blo 

.005 .035 .16 

.01 .049 .017 

.03 .085 3 X 10-7 

From these calculations, the evidence does not rule out small 
degrees of game-to-game extra-binomial variability, but it is 
strongly against substantial game-to-game extra-binomial 
variability (as represented by the beta-binomial). In addition, 
HK used a normal prior on w for which "the information 
in the prior equals the information in one observation" as 
described in Section 4.1.3 (here the prior was half-normal, 
because w 2 0) and obtained Blo = Il using Laplace's 
method; the Schwarz criterion gave B1o ;j-. (A more ac- 
curate Laplace approximation accounting for co being at the 
boundary of the parameter space is described in Hsiao 1994; 
it yielded B1o = )- 

The uniform prior on t and p is a natural choice, but B1o 
may be sensitive to it. HK showed that this sensitivity is not 
enough to call the conclusions into question; indeed, the 
parameters are null-orthogonal, as discussed in Section 5.2. 

Thus these data show decisively that Vinnie Johnson did 
not have a "hot hand" in the sense that there was no sub- 
stantial game-to-game extra-binomial variability in his 
shooting percentage. (The data may be obtained by sending 
the e-mail message "send Vinnie.Johnson from data" to 
statlib@stat.cmu.edu.) 

7.3 Application 3: Ozone Exceedances 

Success of the regulatory efforts of the Texas Air Control 
Board would be indicated by a decrease in the rate of oc- 
currence of exceedances. If there were no trend, then the 
data would be close to being from a homogeneous Poisson 
process; we denote this model by Ho. An alternative hy- 
pothesis is that the exceedance rate has been decreasing 
smoothly and gradually. This may be represented by the log- 
linear Poisson process, HI: X(s) = pe-"s, where X(s) is the 
rate of occurrence at time s and y > 0. Another possibility 
is that the exceedance rate decreased fairly abruptly within 
a short time period. This may be represented by the change 
point Poisson process, H2: X(s) = XI if 0 < s < r and X(s) 
= X2 if r < s < T. 

Raftery (1989) calculated Bayes factors for these hy- 
potheses using improper reference priors and the imaginary 
training sample device of Spiegelhalter and Smith ( 1982). 
This is probably a reasonable approximation to vague prior 
information here, because degrees of freedom involved in 
the comparisons are small. The Bayes factor for a gradual 
change against no trend, Blo, is .02, indicating strong evi- 
dence (odds of 50) against a smooth decrease; the Bayes 
factor corresponds to strong evidencefor the null hypothesis. 
In contrast, the Bayes factor for an abrupt change against 
no trend, B20, is 2.75, indicating evidence for an abrupt 
change that is "worth no more than a bare mention." Note 
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Figure 1. Posterior Distributions of the Odds Ratio in the Educational 
Transitions Application: The results are indistinguishable for all the prior 
distributions (i.e., values of O) considered. 

that if there was a change, it is much more likely to been 
abrupt than smooth by odds of B21 = B20/B1o = 135. This 
is a nonnested model comparison, and one can see how easy 
it is with the Bayesian method. 

The finding of some evidence for an abrupt decrease in 
the exceedance rate gave rise to the suggestion that this was 
due not to a change in the underlying ozone levels, but rather 
to a change in measurement technology that led to lower 
variances and hence to fewer extreme values. Subsequent 
exploratory analyses of Smith (1989, rejoinder) suggested 
that this was plausible, especially because there were indeed 
changes in measurement instruments that could have led to 
such a change (Fairley 1989). It would be possible to expand 
the model to take this into account, and then to test for it 
explicitly by calculating the Bayes factors for the expanded 
model against the previously considered models. This ex- 
ample shows that Bayes factors are not restricted to tests of 
previously formulated hypotheses, but can also be used to 
guide an empirical model-building process. 

In this example Bayes factors have the advantage over 
frequentist approaches of being technically simpler. The 
comparisons between Ho and HI, and between Ho and H2 
both lead to nonstandard frequentist testing problems, even 
though their Bayesian solution is straightforward. Under HI, 
the expected total number of events over all time is finite, 
so that the usual asymptotic arguments do not apply. Under 
H2, the likelihood is highly discontinuous as a function of 
the change point r, so that the usual asymptotics based on 
smoothness of the likelihood do not apply at all. To see how 
much more cumbersome the frequentist approach to testing 
Ho against H2 is, compare the frequentist analyses of Worsley 
(1986) and Akman and Raftery (1986b) with the Bayesian 
analysis of Raftery and Akman (1986). And we know of no 
non-Bayesian testing procedures for comparing the non- 
nested and "irregular" models HI and H2. In particular, the 
methods of Cox (1961, 1962) do not apply, because the reg- 
ularity conditions that they require do not hold. 

7.4 Application 4: Educational Transitions 
We address the question of interest in this application 

using part of the longitudinal data collected by Greaney and 

Kelleghan (1984). In 1967, they selected a random sample 
of 11-year-old children in Irish elementary schools and fol- 
lowed them through the rest of their educational careers. Of 
the 441 students who entered second-level education, 230 
completed it by taking the Leaving Certificate Examination 
and 211 did not. Social class background and ability were 
both measured prospectively at age 11 by continuous-valued 
variables, whereas type of school was a dichotomous variable, 
indicating whether a secondary or vocational school was at- 
tended. 

We use logistic regression with the reference set of proper 
priors described in Section 5.2. It is clear that social class 
background does have an effect, with a Bayes factor exceeding 
2,000 for the model that includes it and ability against the 
model that includes only ability. Thus Greaney and Kel- 
leghan's conclusion about meritocracy was unwarranted. 
Also, gender has no effect. A frequentist analysis would say 
merely that the gender effect is "not significant," but the 
Bayesian analysis provides strong evidence (odds of more 
than 20) for the simpler model from which the gender effect 
is absent; as in Applications 1 and 2, the Bayes factor provides 
evidence for a null hypothesis. 

The main uncertainty is about the link function. The data 
provide some evidence (a Bayes factor of 3.7) for the com- 
plementary log-log (hereafter termed cloglog) link against 
the logit link, but this is not strong. This Bayes factor varied 
by less than .02 over the entire range of priors considered. 
The models corresponding to different links are not nested, 
so that a formal non-Bayesian comparison between these 
models would be cumbersome while the Bayesian compar- 
ison is straightforward. 

A question of policy interest is the difference between the 
attainments of secondary and vocational school students, 
after controlling for the other variables. Here we consider 
the ratio of the odds on completion of second-level education 
for secondary school students to that for vocational school 
students when both social class and ability are high (71 and 
127, corresponding to the 95th percentile in each case). We 
will refer to this quantity simply as the odds ratio. Even 
though the data do not distinguish clearly between the two 
link functions, the latter imply very different things about 
the odds ratio. With the logit link function, the MLE of the 
odds ratio is 23; with the cloglog link, the MLE is 91 -about 
four times larger. 

Approximate posterior distributions of the odds ratio un- 
der the two models are shown in Figure 1, as is the combined 
inference using the Bayesian mixture of Equation (17); the 
corresponding quantiles are shown in Table 1. The posterior 
distributions under the two models are very different; the 

Table 1. Posterior Quantiles of the Odds Ratio in the 
Educational Transitions Application 

Quantile 

Model .025 .5 .975 

logit link (H3) 10 23 52 
cloglog link (H4) 24 94 338 
Bayesian mixture 13 77 314 
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distribution for the logit link is more concentrated and cen- 
tered about a lower value. The combined posterior distri- 
bution has both the peak around 20 from the logit link and 
the long tail from the cloglog link. The combined 95% in- 
terval in Table 1 is close to the union of the intervals cor- 
responding to the individual models but is somewhat shorter; 
this is intuitively reasonable. 

For other analyses of these and related data, see the work 
of Raftery and Hout ( 1985, 1993). The data may be obtained 
by sending the e-mail message "send irish.ed from data" to 
statlib@stat.cmu.edu. 

7.5 Application 5: Predicting Working 
Memory Failure 

The analysis, including prior elicitation, was reported in 
detail by Carlin et al. (1992). Here we discuss several im- 
portant issues: the computational burden and the effective- 
ness of Laplace's method, the difficulty and effectiveness of 
eliciting the prior and assessing how sensitive the results are 
to it, the use of influence diagnostics, and the role of the 
Schwarz criterion. 

Computing (2) involved evaluating a one-dimensional 
integral nested within a five-dimensional integral for the 
number-of-conditions model and a six-dimensional integral 
for the query-complexity model. Laplace's method was pro- 
grammed in the S language; the result was B21 = 8.0 in favor 
of the query-complexity model. This was checked with 
subregion-adaptive integration, which yielded B21 = 10.8. 
Thus Laplace's method was somewhat inaccurate but clearly 
accurate enough for the inferential purpose at hand. 
(Subregion-adaptive integration was more difficult and was 
done by Alan Genz.) 

Simple forms were used for the priors, but there were still 
15 hyperparameters to be determined. Some of the infor- 
mation for this came from another related experiment, but 
some was based on the experience of the investigators and 
was really rough guesswork. Sensitivity analysis was carried 
out by shifting all prior means by one prior standard devia- 
tion unit in each direction and then doubling and halving 
each prior standard deviation, which resulted in approxi- 
mately IO0 alternative prior distributions. Even for this large 
number of priors, computations were performed quite easily 
using the Laplace approximation method of Equation (5). 
After eliminating certain of the alternative priors as unrea- 
sonable, the minimal value obtained over all remaining priors 
was B21 = 3.0. 

A concern was the influence that individual subjects might 
have on the results (via the normal distributional assumption 
of subject ability effects). Leave-one-out influence diagnostics 
were computed using the Laplace approximation methods, 
which are again quite easy to obtain in S. A small number 
of subjects in the experiment did carry much of the com- 
parative information. Taking these sensitivity analyses into 
account, the overall conclusion was that there was "some 
evidence, though not strong evidence" in favor of the query 
complexity model. The Schwarz criterion was S = 3.6, giving 
B21 6, which was consistent with the overall conclusion 
and thus could be used as a summary. 

8. ISSUES AND CONTROVERSIES 

8.1 Why Test Sharp Hypotheses? 

We introduced Bayes factors as a way of assessing the 
evidence in favor of a scientific theory. Our statement that 
Jeifreys's approach computes "the posterior probability that 
one of the theories is correct" invites argument, however. 
Some would say that theories are never correct, and thus 
any approach that assumes they are must be flawed. Those 
who make this argument generally prefer the use of interval 
estimates. 

Certainly we would agree with Jeifreys (1961, pp. 389- 
390) and Edwards et al. (1963, p. 235) when they say that 
often hypothesis testing is not applicable and estimation is 
more appropriate. We also recognize a legitimate worry on 
the part of many statisticians that empirical models are often 
taken too seriously, and that poor models are sometimes 
accepted merely because they fit the data better than other 
models that are even worse. 

But some authors see the introduction of sharp hypotheses 
as "silly" (e.g., Gelfand, Dey, and Chang, 1992). This view- 
point ignores the way scientific investigations usually pro- 
ceed: Though one rarely believes a scientific law in an ab- 
solute sense, it is a great convenience to speak and to act as. 
if laws are valid. When one says that a certain theory is cor- 
rect, one means that deviations from it are sufficiently minor 
to be irrelevant for all practical purposes at hand. Thus the- 
ories do become "accepted" for a period, during which they 
are used to make predictions about new phenomena. Jeffreys 
(1961, p. 391) pointed out that the best available law gets 
used for future calculations even when discrepancies are 
found, noting that "there has not been a single date in the 
history of the law of gravitation when a modern significance 
test would not have rejected all laws and left us with no law." 

The admission that minor discrepancies may exist between 
theory and data does not imply that estimation is more nat- 
ural than testing. For there are many ways in which a theory 
might err, and in representing the theory by a statistical model 
one should not presume that possible errors are eliminated 
simply by letting some parameter 41 take values other than 
a particular 410. Simple laws are preferred partly because one 
cannot be sure that by including more parameters to model 
one kind of error, the law will succeed better in some un- 
anticipated new situation. In some cases it may be worthwhile 
to include additional parameters, but this is an empirical 
question. In fact, it is exactly this empirical question that 
Bayes factors are supposed to answer. They do so by com- 
paring predictions made by the simpler and the more com- 
plicated theories. 

For example, in Application 1 an alternative to testing 
equality of the binomial proportions would be to assume 
that they are different and to ask how different they are. But 
how would this correspond to the scientific theory? One 
would have to say something like "we estimate the difference 
between the log odds to be less than .38 (with probability 
.95), which indicates that deviations from the error-prone 
DNA repair mechanism are quite small." But this is merely 
an elaboration of the more succinct "evidence in favor of 
the error-prone DNA repair mechanism." Careful exami- 
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Table 2. Approximate Minimum t Values for Different Grades of Evidence and Sample Sizes 

n= 
2 log B1o 

Evidence for H1 (Approximation (21)) 30 100 1,000 10,000 

Positive 0-6 1.84 2.15 2.63 3.03 
Strong 6-10 3.07 3.20 3.59 3.90 
Decisive >10 3.66 3.82 4.11 4.38 

nation of the data using either approach ought to lead an 
analyst to appropriate conclusions. We find that expressing 
results in terms of Bayes factors is simpler. It is also reassuring 
that, as Berger and Delampady (1987) noted, in testing a 
normal mean the point null is a good approximation to an 
interval null as long as the width of the interval is less than 
about one-half of the standard error of the sample mean (see 
also Dickey 1976 and Verdinelli and Wasserman 1993a). 
(For related discussion along these lines see Jeifreys 1961, 
p. 367, Raftery 1992, and Zellner 1987.) 

It has been argued that a comprehensive account of 
Bayesian model selection requires decision theory (Kadane 
and Dickey 1980; Smith 1991) . The approach discussed here 
avoids the introduction of utilities, which would bring with 
it another layer of sensitivity concerns. 

8.2 Bayes Factors Versus Non-Bayesian 
Significance Testing 

There is a substantial literature on the controversy between 
Bayesian and non-Bayesian testing procedures. This is not 
a central theme of our article, but we do wish to briefly men- 
tion several points that have been made in the literature. 

1. There is no reason to expect a P value to be similar to 
the posterior probability that the null hypothesis is correct. 
But partly because this misinterpretation of P values is com- 
mon among nonstatisticians, it is of some interest to compare 
results. This was done by Jeifreys (1961, pp. 434-435) and 
many subsequent workers. There is a general feeling that 
Bayes factors are more conservative than P values, mainly 
because when comparisons are made, it becomes clear that 
a P value of .05 cannot represent much evidence against the 
null (Berger and Mortera 1991 and references therein; 
Edwards et al. 1963). 

2. Frequentist tests tend to reject null hypotheses almost 
systematically in very large samples, whereas Bayes factors 
do not. This has been a real problem in sociology, where 
data sets frequently have thousands of cases. A dramatic 
example with n = 113,556 was discussed by Raftery ( 1986b, 
1995b). There a substantively meaningful model that ex- 
plained 99.7% of the deviance was rejected by a standard 
chi-squared test with a P value of about 10-120 but was nev- 
ertheless favored by the Bayes factor. Faced with this prob- 
lem, sociologists had taken to ignoring significance tests and 
using other criteria of reasonableness and common sense in 
comparing models (e.g., Fienberg and Mason 1979; Grusky 
and Hauser 1984). Bayes factors are now widely used in 
sociology, usually with BIC as an approximation. 

3. Bayes factors, like Bayesian procedures generally, follow 
the likelihood principle (e.g., Berger and Wolpert 1984). As 

a result, in settings such as clinical trials where cases may 
accrue sequentially, Bayes factors may be applied without 
concerns about unscheduled analysis of the data (see, for 
example, Berger and Berry 1988 and Cornfield 1966a, b). 

4. Bayes factors can be applied as easily to nonnested 
models as to nested ones. In contrast, the application of non- 
Bayesian significance tests to nonnested models is difficult. 
The approach of Cox (1961, 1962), which has spawned a 
large literature, tends to be cumbersome to implement and 
requires the often arbitrary designation of one of the two 
nonnested models as the null hypothesis. One way around 
this arbitrariness is to carry out two tests rather than one 
test, with each model in turn as the null hypothesis. But 
there is no guarantee of getting the standard kind of result 
of a test, namely rejection of one model and nonrejection 
of the other. Both models may fail to be rejected, in which 
case it is not clear how to make inferences about quantities 
of interest, especially if the two models lead to different con- 
clusions. Both models may be rejected (as often happens 
with large samples), in which case the tests do not provide 
a comparison between the two models. 

5. Non-Bayesian significance tests were developed for the 
comparison of two models, but practical data analysis often 
involves far more than two models, at least implicitly. In 
this case, carrying out multiple frequentist tests to guide a 
search for the best model can give very misleading results 
(e.g., Freedman 1983). By allowing us to take into account 
model uncertainty, Bayes factors can avoid this problem (e.g., 
Raftery et al. 1993). 

With regard to Bayesian calibration of frequentist meth- 
ods, for large samples the Schwarz criterion may be used to 
obtain the required value of an approximate t statistic for it 
to represent strong or decisive evidence. Equation (9) implies 
that 

2 log Blo A - (di - do)log(n). (20) 

Now if Ho and HI are nested and differ by just 1 degree of 
freedom, so that (d1 - do) = 1, then A - t2 approximately 
in large samples, where t is the t statistic for (frequentist) 
testing of Ho against HI, obtained, for example, by dividing 
(VI - VI0) by its large-sample approximate standard error. 
Thus in this case Equation (20) implies that 

2 log Blo t2 - log(n). (21) 
The approximate t values corresponding to different grades 

of evidence (on the cruder scale in Sec. 3.2), and different 
sample sizes are shown in Table 2 (as in Raftery 1993b; 
see also Berger 1985). For "positive" evidence, this is t 
= 1l/og n; for "strong" evidence, it is t = Vlog n + 6; and 
for "decisive" evidence, it is t = Vlog n + 10. Note that the 
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critical values quickly become larger than the usual cutoffs 
based on P values as n becomes large. 

Atkinson (1978) has noted some instances of Bayes factors 
favoring the simpler model Ho even when a more complex 
model HI is correct. But Smith and Spiegelhalter (1980, p. 
216) showed that this occurs only when the two models are 
so close that there is nothing to be lost for predictive purposes 
by cutting back to the simpler model, so that the Bayes factor 
functions as afully automatic Occam's razor. 

I. J. Good has for many years advocated a Bayes/non- 
Bayes compromise, consisting essentially of calculating the 
Bayes factor and using it as a frequentist test statistic. He 
reviewed these ideas and listed nearly 50 of his own publi- 
cations on the topic, spanning 40 years (Good 1992). This 
is a frequentist testing proposal, and there seems to be no 
reason why it should escape the difficulties that other fre- 
quentist tests have. These arise from the way the test statistic 
is calibrated and not from the choice of test statistic. But 
Good has also pointed out that his compromise can be in- 
verted, with P values transformed to yield approximate Bayes 
factors; this is a sensible and useful point. 

Goodness-of-fit tests are different from other frequentist 
tests, because they do not aim to compare two competing 
models, but rather to detect departures from a null hypothesis 
even when no alternative has yet been formulated. One might 
question the use of "rejecting" a hypothesis if there is nothing 
to put in its place. Many Bayesians do, however, see a useful 
role for goodness-of-fit tests (Box 1980; Dempster 1971; 
Rubin 1984). They can be useful for calibrating the diag- 
nostic checks to which a model is subjected and thus guiding 
the search for a better model. In Jeffreys's view, a model 
should not be abandoned until a better one (in the posterior 
model probability sense) is found. 

8.3 Bayes Factors Versus the AIC 

Akaike (1973) advocated that, given a class of competing 
models for a data set, one choose the model that minimizes 

AIC = -2 (log maximized likelihood) 

+ 2 (number of parameters). (22) 

Two main justifications for the AIC have been advanced. 
The first, due to Akaike (1973), is based on a predictive 
argument. Suppose that, given current data and a set of pos- 
sible models, we want the predictive distribution of a future 
datum. Then, if the predictive distribution is conditional on 
a single model and on its estimated parameters, the AIC 
picks the model that gives the best approximation, asymp- 
totically, in the Kullback-Leibler sense. But such a predictive 
distribution is incorrect, because it does not incorporate 
the uncertainty about parameter values and model form 
(Aitchison and Dunsmore 1975). Shibata (1976) and Katz 
(1981) have shown that the AIC tends to overestimate the 
number of parameters needed, even asymptotically. Thus if 
one must ignore both parameter uncertainty and model un- 
certainty when making predictions, it may be worthwhile to 
have a model that is too big (Shibata 1976; Stone 1979). 
Related remarks have been given by Zellner (1978) and 
Stone (1979). 

A related argument is that the AIC picks the correct model 
asymptotically if the complexity of the true model grows 
with sample size (Shibata 1980, 1981) . Typically this is taken 
to mean that the model grows in one respect (e.g., the order 
of an autoregressive model) but remains fixed in all other 
respects (e.g., normality, linearity). Our experience with large 
data sets in sociology is that the AIC selects models that are 
too big even when the sample size is large, including effects 
that are counterintuitive or not borne out by subsequent 
research. 

The second main justification for the AIC, perhaps best 
described by Akaike (1983), is Bayesian. He wrote that 
model comparisons based on the AIC are asymptotically 
equivalent to those based on Bayes factors. But this is true 
only if the precision of the prior is comparable to that of the 
likelihood, but not in the more usual situation where prior 
information is small relative to the information provided by 
the data. In the latter more usual situation, the Schwarz cri- 
terion indicates that the model with the highest posterior 
probability is the one that minimizes 

BIC = -2 (log maximized likelihood) 

+ (log N)(number of parameters). (23) 

Comparing Equations (22) and (23) indicates that BIC tends 
to favor simpler models than those chosen by the AIC cri- 
terion. [Akaike (1977) proposed a modification of AIC that 
was consistent in Normal linear regression models; he called 
the new criterion BIC and, in fact, in this setting it is asymp- 
totically equivalent to (23).] 

Findley (1991) gave some cases in which BIC does not 
yield consistent model selection but AIC does. But these are 
cases in which standard asymptotics do not apply and thus 
the theory in Section 4.1.3 leading to the approximation (9) 
also does not apply. 

Linhart and Zucchini (1986) generalized Akaike's (1973) 
approach, replacing the Kullback-Leibler distance between 
true and estimated predictive distributions by any arbitrary 
distance and replacing the quantity to be predicted (the next 
data point in Akaike's development) by any quantity of in- 
terest. Their work shows, for example, that the "2" by which 
the number of parameters is multiplied in Equation (22) is 
arbitrary in that it depends crucially on the choices of distance 
and quantity of interest, and that other choices can lead to 
quite different multipliers, such as "4." But their approach 
is open to the same general criticisms as the AIC. In partic- 
ular, it provides no way of taking account of model uncer- 
tainty and so is somewhat at a loss when several models 
score almost equally well. 

9. BIBLIOGRAPHICAL REMARKS AND 
ADDITIONAL WORK 

The works of Jeffreys ( 1961) , Good ( 1952, 1983, 1985 ), 
Mosteller and Wallace (1964), and Zellner (1971) are im- 
portant basic sources for applications of Bayes factors. The 
literature on model selection also contains many papers on 
Bayes factors, particularly in econometrics (e.g., Leamer 
1983; McCulloch and Rossi 1991; Poirier 1985; Rossi 1985, 
1988; Schotman and van Dijk 1991) . 
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Several Bayesian methods of selecting models without 
Bayes factors have been proposed, often using some kind of 
sample-splitting as in cross-validation (Fornell and Rust 
1989; Geisser and Eddy 1979; Gelfand et al. 1992). 

Aitkin (1991) described so-called "posterior Bayes factors" 
in which the marginal likelihood pr(D I Hk) defined by 
Equation (2), which is the prior mean of the likelihood, is 
replaced in Equation (1) by the posterior mean of the like- 
lihood, namely f pr(DI0k, Hk)pr(OkID, Hk) dOk. Despite 
their name, these are quite different in practice from Bayes 
factors as defined in this article. Several discussants of Aitkin 
(1991) pointed out that the procedure has little Bayesian 
justification, does not have any known frequentist optimality 
properties, and yields counterintuitive results (e.g., discus- 
sions by Dawid, Fearn, Goldstein, Lindley, and Whittaker). 

We now give a noncomprehensive list of references in 
which explicit expressions for Bayes factors in different 
models appear. 

Multinomials: Jeffreys ( 1961 ); Good ( 1967 ); Dickey and 
Lientz (1970); Gunel and Dickey (1974); Good and 
Crook (1987); Albert (1990) 

Linear models: Zellner (1971); Dickey (1971); Dickey 
(1975); Zellner and Siow (1980); Smith and Spiegel- 
halter (1981); Zellner (1984); Broemeling (1985); 
Draper and Guttman (1987); Mitchell and Beauchamp 
(1988); Raftery, Madigan, and Hoeting (1993) 

Outliers: Pena and Guttman (1992); Pettit and Young 
(1990) 

Logistic regression and log-linear models: Raftery ( 1986a, 
1988b, 1993c); Stewart (1987); Madigan and Raftery 
(1994); McCulloch and Rossi (1991); Madigan and 
York (1992); Kass and Vaidyanathan (1992); also the 
GLIB software 

Survival analysis: Raftery, Madigan, and Volinsky (1995) 
Multivariate analysis: Dickey (1971); Dickey (1975); 

Dayal and Dickey (1976); Smith and Spiegalhalter 
(1981) [multivariate normal models]; Cooper and 
Herskovits (1992); Cowell, Dawid, and Spiegelhalter 
(1993), Madigan and Raftery (1994); Madigan, Raf- 
tery, York, Bradshaw, and Almond (1994) [discrete 
graphical models]; Banfield and Raftery (1993) [cluster 
analysis]; Raftery (1993b) [structural equation models 
(LISREL)] 

Stochastic processes: Dickey and Lientz (1970), Katz 
(1981) [Markov chains]; Broemeling (1985) [autore- 
gressive models]; Katz (1981) [Markov chains]; Ak- 
man and Raftery (1986a) [point processes]; Raftery 
and Akman (1986) [change-point Poisson processes]; 
Raftery (1987, 1988) [software reliability]; Le, Raftery, 
and Martin (1990) [autoregressive models with out- 
liers]. Polson and Roberts (1994) [diffusion processes] 

Deterministic models: Raftery, Givens, and Zeh (1995) 
Other models: Berry, Evett, and Pinchin (1992) [assess- 

ment of forensic evidence] 
Software: There is little general purpose software for Bayes 

factors, although the BIC approximation can often be 
easily calculated from the output of standard statistical 
software. GLIB (generalized linear Bayesian modeling) 

is an S-PLUS function that returns accurate Bayes fac- 
tors and posterior probabilities for generalized linear 
models, as well as inference about the parameters that 
takes account of model uncertainty. It can be obtained 
by sending the e-mail message "send glib from S" to 
statlib@stat.cmu.edu. BICREG and BIC.LOGIT are S- 
PLUS functions that do approximate Bayesian model 
selection and accounting for model uncertainty in linear 
regression and logistic regression, respectively. They can 
be obtained by sending the messages "send bicreg from 
S" and "send bic.logit from S" to statlib@stat.cmu.edu. 

1 0. CONCLUSION 
We have reviewed applications and developments of a 

method introduced by Jeffreys more than 50 years ago. The 
appeal of the concept was that it provided a simple and sat- 
isfying description of the process of accepting new scientific 
laws as replacements for older ones, which Jeffreys illustrated 
through the use of many examples in his book Theory of 
Probability. 

We have tried to show that Jeifreys's methodology has 
worn well with time and that the Bayesian approach to hy- 
pothesis testing has evolved to fill a niche in modern com- 
putationally intensive statistical practice. It applies to a lim- 
ited but important class of problems in scientific inference 
and also to the assessment of uncertainty when many models 
are considered initially. We wish to emphasize the following 
points: 

* From Jeffreys' Bayesian viewpoint, the purpose of hy- 
pothesis testing is to evaluate the evidence in favor of a 
scientific theory. 

* Bayes factors offer a way of evaluating evidence in favor 
of a null hypothesis. 

* Bayes factors provide a way of including other infor- 
mation when assessing the evidence for a hypothesis. 

* Bayes factors are very general. In particular, they do not 
require alternative models to be nested. 

* Several techniques are available for computing Bayes 
factors, including asymptotic approximations that are 
easy to compute using the output from standard pack- 
ages that maximize likelihoods. 

* In "nonstandard" statistical models that do not satisfy 
common regularity conditions, it can be technically 
simpler to calculate Bayes factors than to derive non- 
Bayesian significance tests. 

* The Schwarz criterion (or BIC) gives a rough approxi- 
mation to the logarithm of the Bayes factor, which is 
easy to use and does not require evaluation of prior dis- 
tributions. It is well suited for summarizing results in 
scientific communication. 

* When several models are considered initially, Bayes fac- 
tors can be used to calculate posterior model probabil- 
ities, yielding composite estimates or predictions that 
take account of model uncertainty. 

* Algorithms have been proposed that allow model un- 
certainty to be taken into account when the class of 
models initially considered is very large. 

* Bayes factors are useful for guiding an evolutionary 
model-building process. 
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* It is important, and feasible, to assess the sensitivity of 
conclusions to the prior distributions used. In our ap- 
plications we have found our conclusions to be robust 
to the prior in a qualitative sense, but this is not guar- 
anteed to be the case. 

Bayes factors have many of the strengths and limitations 
of the Bayesian approach generally. The essential strength is 
their solid logical foundation, which offers great flexibility. 
Some of the practical advantages of this were noted earlier; 
another is invariance with respect to stopping rules in clinical 
trials, mentioned in Section 8.2. Recently, advances in com- 
puting and the development of methods that take advantage 
of additional computational power have greatly extended 
the usefulness of Bayesian methods. Bayes factors can now 
be computed for a wide variety of models. 

The chief limitations of Bayes factors are their sensitivity 
to the assumptions in the parametric model and the choice 
of priors. We have discussed ways of doing sensitivity analysis 
in Section 5, which are illustrated in Applications 4 and 5. 
Application 4 illustrates the usefulness of a reference set of 
proper priors for sensitivity analysis, which has been imple- 
mented for generalized linear models in the GLIB software; 
this idea needs to be extended to other classes of models. 

The more situation-specific sensitivity analysis in Appli- 
cation 5 is rather cumbersome. It requires close attention to 
the details of model and prior. It may be argued that this is 
appropriate; we should not be cavalier in making inferences 
that depend on our assumptions. The Schwarz criterion (or 
BIC) may be used for reporting scientific results with other 
analysis omitted but serving as background support. The 
question of how much effort should be made before conclu- 
sions are drawn arises in any data analysis problem. This is 
part of the art of applied statistics, but there is room for 
research that would help the applied statistician decide 
whether or not to proceed with the full Bayesian analysis. 

[Received March 1993. Revised July 1994.] 
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