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Abstract

Referring is one of the most basic and prevalent uses of language. How do speakers choose
from the wealth of referring expressions at their disposal? Rational theories of language use
have come under attack for decades for not being able to account for the seemingly irrational
overinformativeness ubiquitous in referring expressions. Here we present a novel production
model of referring expressions within the Rational Speech Act framework that treats speakers as
agents that rationally trade off cost and informativeness of utterances. Crucially, the assumption
of deterministic meanings is relaxed. This allows us to capture a large number of seemingly
disparate phenomena within one unified framework: the basic asymmetry in speakers’ propensity
to overmodify with color rather than size; the increase in overmodification in complex scenes; the
increase in overmodification with atypical features; and the preference for basic level reference
in nominal reference. The findings cast a new light on the production of referring expressions:
rather than being wastefully overinformative, reference is rationally redundant. This implicates
a production system geared towards communicative efficiency.

Keywords: reference; referring expressions; informativeness; probabilistic pragmatics; ex-
perimental pragmatics
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1 Introduction

Reference to objects is one of the most basic and prevalent uses of language. But how do speakers
choose amongst the wealth of referring expressions they have at their disposal? How does a speaker
choose whether to refer to an object as the animal, the dog, the dalmatian, or the big mostly
white dalmatian? The context within which the object occurs (other non-dogs, other dogs, other
dalmatians) plays a large part in determining which features the speaker chooses to include in
their utterance – speakers aim to be sufficiently informative to uniquely establish reference to
the intended object. However, speakers’ utterances often exhibit what has been claimed to be
overinformativeness: referring expressions are often more specific than necessary for establishing
unique reference, and they are so in systematic ways. However, providing a unified theory for
speakers’ systematic patterns of overinformativeness has so far proved elusive.

This paper is concerned with modeling precisely this choice of referring expression (RE). We
restrict ourselves to definite descriptions of the form the (ADJ ?)+ NOUN, that is, noun phrases
that minimally contain the definite determiner the followed by a head noun. In addition, any
number of adjectives may occur between the determiner and the noun.1 A model of these REs will
allow us to unify two domains in language production that have been typically treated as separate,
and that have typically been treated as interesting for different reasons: the production of so-called
overmodified referring expressions on the one hand, which a lot of literature in language production
has been devoted to (Herrmann & Deutsch, 1976; Pechmann, 1989; Nadig & Sedivy, 2002; Maes,
Arts, & Noordman, 2004; Engelhardt, Bailey, & Ferreira, 2006a; Arts, Maes, Noordman, & Jansen,
2011; Koolen, Gatt, Goudbeek, & Krahmer, 2011; Rubio-Fernandez, 2016); and the production
of simple nominal expressions, which has so far mostly received attention in the concepts and
categorization literature (Rosch, 1973; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). In
the following, we review some of the key phenomena and puzzles in each of these literatures which
have for the most part been treated as unrelated. We then present a model of RE production
within the Rational Speech Act (M. C. Frank & Goodman, 2012) framework, which treats speakers
as boundedly rational agents who optimize the tradeoff between utterance cost and informativeness.
Our key innovation is to relax the assumption that semantic truth functions are deterministic. [jd:
one sentence here that inspires intuition, or a paragraph foreshadowing, making it seem like the
obvious solution?] It is this crucial innovation that allows us to provide a unified explanation for a
great number of seemingly disparate phenomena from the modified and nominal RE literature.

1In contrast, we will not provide a treatment of pronominal referring expressions, indefinite descriptions, names, or
definite descriptions with post-nominal modification, though we offer some speculative remarks on how the approach
outlined here can be applied to these cases.
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1.1 Production of referring expressions: a case against rational language use?

How should a cooperative speaker produce referring expressions? Grice, in his seminal work,
provided some guidance by formulating his famous conversational maxims, intended as a guide
to listeners’ expectations about good speaker behavior (Grice, 1975). His maxim of Quantity,
consisting of two parts, requires of speakers to:

1. Quantity-1: Make your contribution as informative as s required (for the purposes of the
exchange).

2. Quantity-2: Do not make your contribution more informative than is required.

That is, speakers should aim to produce neither under- nor overinformative utterances. While
much support has been found for the former (?, ?), speakers seem remarkably happy to systemat-
ically violate Quantity-2. In modified referring expressions, they routinely produce modifiers that
do not uniquely establish reference (e.g., the small blue thumbtack instead of the small thumbtack in
contexts like Figure 1a (?, ?)). In simple nominal expressions, speakers routinely choose to refer to
an object with a basic level term even when a superordinate level term would have been sufficient
for establishing reference (e.g., the dog instead of the animal in contexts like Figure 2d (?, ?)).

These observations have posed a challenge for theories of language production, especially those
positing rational language use (including the Gricean one): why this extra expenditure of useless
effort? Why this seeming blindness to the level of informativeness requirement? Many have argued
from these observations that speakers are in fact not economical (?, ?). Some have derived a built-in
preference for referring at the basic level from considerations of [jd: bla] and [jd: bla] (Rosch et
al., 1976). Others have argued for salience-driven effects on willingness to overmodify (?, ?). In
all cases, it is argued that informativeness cannot be the key factor in determining the content of
speakers’ referring expressions.

Here we revisit this claim and show that systematically relaxing the requirement of a deter-
ministic semantics for referring expressions also systematically changes the informativeness of ut-
terances. This results in a reconceptualization of what have been termed overinformative referring
expressions as rationally redundant referring expressions. We begin by reviewing the phenomena
of interest that a revised theory of definite referring expressions should be able to account for.

1.2 Modified referring expressions

Most of the literature on overinformative referring expressions has been devoted to the use of over-
informative modifiers in modified referring expressions. The prevalent observation is that speakers
frequently do not include only the minimal modifiers required for establishing unique reference,
but often also include redundant modifiers (Pechmann, 1989; Nadig & Sedivy, 2002; Maes et al.,
2004; Engelhardt et al., 2006a; Arts et al., 2011; Koolen et al., 2011). However, not all modifiers
are created equal: there are systematic differences in the overmodification patterns observed for
size adjectives (e.g., big, small), color adjectives (e.g., blue, red), material adjectives (e.g., plastic,
wooden), and many others. Here we review some of the intriguing patterns of overmodification that
have plagued that literature, focusing for the most part on size and color.
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(a) Size sufficient. (b) Color sufficient.

Figure 1: Example contexts where size vs. color is sufficient for unique reference. A green border
marks the intended referent.

Figure 2: Example contexts in which different levels of reference are necessary for establishing
unique reference to the target marked with a green border: sub (dalmatian, a), basic (dog, b, c), or
super (animal, d).
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Table 1: Proportions of minimally informative color or size and overinformative color size mentions
in color-sufficient vs. size-sufficient conditions across experiments.[jd: keep filling in.]

Color sufficient Size sufficient
Study Language color size color size color size color size

Pechmann (1989) Dutch 99 0 1 9 36 55
Gatt et al. (2011) English 92 0 8 3 17 80
Gatt et al. (2011) Dutch 90 0 10 0 21 79
Our baseline study English 94 0 6 2 52 46

1.2.1 Asymmetry in redundant use of color and size adjectives

In Figure 1a, singling out the object with the green border requires only mentioning its size, as in
the small thumbtack. But it is now well-documented that speakers routinely include redundant color
adjectives as in the small blue thumbtack, which do not uniquely single out the intended referent
in these kinds of contexts (Pechmann, 1989; Belke & Meyer, 2002; Gatt, van Gompel, Krahmer,
& van Deemter, 2011). However, the same is not true for size: in contexts like Figure 1b, where
color is sufficient for unique reference (the blue thumbtack), speakers overmodify much more rarely
with size. Table 1 shows proportions of color, size, and (overinformative) color-and-size mentions
in conditions like those depicted in Figure 1 across different experiments. In all cases there is a
preference for overmodifying with color but not with size.2

Explanations for this asymmetry have varied. Pechmann (1989) was the first to take the asym-
metry as evidence for speakers following an incremental strategy of object naming: speakers initially
start to articulate an adjective denoting a feature that listeners can quickly and easily recognize
(i.e., color) before they have fully inspected the display and extracted the sufficient dimension.
However, this would predict that speakers routinely should produce expressions like the blue small
thumbtack, which violate the preference for size adjectives to occur before color adjectives in English
(?, ?). While Pechmann did observe such violations in his dataset, most cases of overmodification
did not constitute such violations, and he himself concludes that incrementality cannot (on its own)
account for the asymmetry in speakers’ propensity for overmodifying with color vs. size.

Another explanation for the asymmetry is that speakers try to produce modifiers that denote
features that are reasonably easy for the listener to perceive, so that, even when a feature is not fully
distinguishing in context, it at least serves to restrict the number of objects that could plausibly be
considered the target. Indeed, there has been some support for the idea that overmodification can
be beneficial to listeners by facilitating target identification (Arts et al., 2011; Rubio-Fernandez,
2016; Paraboni, van Deemter, & Masthoff, 2007).

[jd: try to find a quote from someone who says it’s all just a matter of cost?]
There have been various attempts to capture the color-size asymmetry in computational natural

language generation models. The earliest contenders for models of definite referring expressions
like the Full Brevity algorithm (Dale, 1989) or the Greedy algorithm (Dale, 1989) focused only on
discriminatory value – that is, an utterance’s informativeness – in generating referring expressions,
which resulted in an inability to capture the color-size asymmetry: the models only produced

2There is quite a bit of variation in the actual numbers. We will discuss this variation in the Discussion of Section
3.
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the minimally specified expressions. Subsequently, the Incremental algorithm (Dale & Reiter,
1995) incorporated a preference order on features, with color ranked higher than size. The order is
traversed and each encountered feature included in the expression if it serves to exclude at least one
further distractor. This results in the production of overinformative color but not size adjectives.
However, the resulting asymmetry is much greater than that evident in human speakers, and is
deterministic rather than exhibiting the probabilistic production patterns that human speakers
exhibit. More recently, the PRO model (Gatt, van Gompel, van Deemter, & Krahmer, 2013) has
sought to integrate the observation that speakers seem to have a preference for including color terms
with the observation that a preference does not imply the deterministic inclusion of said color term.
The model is specifically designed to capture the color-size asymmetry: in a first step, the uniquely
distinguishing property (if there is one) is first selected deterministically. In a second step, an
additional property is added probabilistically, depending on both a salience parameter associated
with the additional property and a parameter capturing speakers’ eagerness to overmodify. If both
properties are uniquely distinguishing, a property is selected probabilistically depending on its
associated salience parameter. The second step proceeds as before.

However, while the PRO model – the most state-of-the-art computational model of human
production of modified referring expressions – can capture the color-size asymmetry in and of
itself, it is neither flexible enough to be extended straightforwardly to other modifiers beyond color
and size, nor can it straightforwardly be extended to capture the more subtle systematicity with
which the preference to overmodify with color changes based on various features of context. We
delve into these more subtle patterns in the next two sections before presenting our alternative
model within the Rational Speech Act framework.

1.2.2 Scene variation

Speakers’ propensity to overmodify with color is highly dependent on features of the distractor
objects in the context. In particular, as the variation present in the scene increases, so does the
probability of overmodifying with color (Davies & Katsos, 2013; Koolen, Goudbeek, & Krahmer,
2013). How exactly scene variation is quantified differs between papers. One very clear demonstra-
tion of the scene variation effect was given by Koolen et al. (2013), who quantified scene variation
as the number of feature dimensions along which objects in a scene vary. Over the course of three
experiments, they compared a low-variation condition in which objects never differed in color with
a high-variation condition in which objects differed in type, color, orientation, and size. They
consistently found higher rates of overmodification with color in the high-variation (28-27%) than
in the low-variation (4-10%) conditions.

The effect of scene variation on propensity to overmodify has typically been explained as the
result of the demands imposed on visual search: in low-variation scenes, it is easier to discern the
discriminating dimensions than in high-variation scenes, where it may be easier to simply start
naming features of the target that are salient (Koolen et al., 2013).

The PRO model does not have a straightforward way of capturing the effect of scene variation on
probability of overmodification. One way of doing so is to make the salience and overmodification
parameters directly dependent on the amount of variation in the scene. However, this requires
additional free parameters and makes the model prone to overfitting. [jd: elaborate? throw out?]
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1.2.3 Feature typicality

Overmodification with color has been shown to be systematically related to the typicality of the
color for the object. Building on work by ? (?), Westerbeek, Koolen, and Maes (2015) (and more
recently, Rubio-Fernandez (2016)) have shown that the more typical a color is for an object, the
less likely it is to be mentioned when not necessary for unique reference. For example, speakers
never refer to a yellow banana as the yellow banana, but they sometimes refer to a brown banana as
the brown banana, and they almost always refer to a blue banana as the blue banana. In fact, color
typicality and probability exhibit a linear negative correlation (Westerbeek et al., 2015). Similar
typicality effects have been shown for other (non-color) properties. For example, Mitchell (2013)
showed that speakers are more likely to include an atypical than a typical property (either shape
or material) when referring to everyday objects like boxes when mentioning at least one property
was necessary for unique reference.

Whether speakers are more likely to mention atypical properties over typical properties because
they are more salient to them or because they are trying to make reference resolution easier for the
listener, for whom presumably these properties are also salient, is an open question (Westerbeek
et al., 2015). Some support for the audience design account comes from a study by Huettig and
Altmann (2011), who found that listeners, after hearing a noun with a diagnostic color (e.g., frog),
are more likely to fixate objects of that diagnostic color (green), indicating that typical object
features are rapidly activated and aid visual search. Nevertheless, the benefit for listeners and
the salience for speakers might simply be a happy coincidence and speakers might not, in fact,
be designing their utterances for their addressees. We will remain agnostic about the underlying
reason for typicality effects [jd: will we, though? the model assumes that typicality affects the
literal listener, who speakers reason about, so in a sense we’re making a strong audience design
claim.]

Irrespective of the source of typicality effects, it is unclear how the PRO model could accommo-
date them. As for the scene variation effects, it is possible to make the salience and overmodification
eagerness parameters directly dependent on the typicality of the feature value for the object the
speaker wants to refer to. However, as mentioned above, in the absence of a principled motivation
for the way in which these parameters interact, this is simply an exercise in model-fitting without
adding explanatory value. In addition, one is left with the task of explaining how scene variation
and typicality should interact.

1.3 Nominal referring expressions

A problem related to the issue of how many additional features to include in a modified referring
expression, but which has received much less attention in the language production literature, is
that of deciding at which taxonomic level to refer to an object to in a simple nominal expression.
That is, even in the absence of adjectives, a referring expression can be more or less informative:
the dalmatian communicates more information about the object in question than the dog, which in
turn is globally more informative than the animal. Thus, this choice can be considered analogous
to the choice of adding more modifiers – in both cases, the speaker has a choice of being more or
less specific about the intended referent. However, the choice of reference level in simple nominal
referring expressions is also interestingly different from that of adding modifiers in that there is
no additional word-level cost associated with being more specific – the choice is between different
one-word utterances, not between utterances of different lengths (in words).
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Table 2: List of effects a theory of referring expression production should account for.

Effect Description

Color/size asymmetry More redundant use of color adjectives than size adjectives
Scene variation More redundant use of color adjectives with increasing scene variation
Color typicality More redundant use of color adjectives with decreasing color typicality

Basic level preference Preference for basic level term when superordinate level term sufficient
Subordinate level mention Unnecessary use of sub level term when basic or super level sufficient

Nevertheless, cost affects the choice of reference level: in particular, speakers prefer more fre-
quent nouns over less frequent ones (?, ?), and they prefer shorter ones over longer ones (?, ?).
This may go part of the way towards explaining the well-documented effect from the concepts and
categorization literature that speakers prefer to refer at the basic level (Rosch et al., 1976; Tanaka
& Taylor, 1991). That is, in the absence of other constraints, even when a superordinate level term
would be sufficient for establishing reference (as in Figure 2d), speakers prefer to say the dog rather
than the animal.

However, there are nevertheless cases of contexts where either the superordinate (Figure 2d)
or the basic level (Figure 2b and Figure 2c) term would be sufficient for unique reference, where
speakers prefer to use the subordinate level term the dalmatian. This is the case when the object
is a particularly good instance of the subordinate level term or a particularly bad instance of the
basic level term. For example, penguins, which are rated as particularly atypical birds, are often
referred to at the subordinate level penguin rather than at the basic level bird, despite the general
preference for the basic level (Jolicoeur, Gluck, & Kosslyn, 1984).

1.4 Summary

In sum, the production of modified and simple nominal referring expressions is governed by a rich
interplay of many factors, including an utterance’s informativeness, its cost relative to alternative
utterances, and the typicality of an object or its features. We are here especially interested in cases
where speakers appear to be overinformative – either by adding more modifiers or by referring at
a more specific level than necessary for establishing unique reference. A summary of the effects we
will focus on in the remainder of the paper is provided in Table 2.

To date, there is no theory to account for all of these different phenomena; and no model has
attempted to unify overinformativeness in the domain of modified and nominal referring expressions.
We touched on some of the explanations that have been proposed for these phenomena. We also
highlighted where computational models have been proposed for individual phenomena, and how
they fall short. In the next section, we present the Rational Speech Act modeling framework,
within which we will provide precisely the kind of theory that can account for at least all of the
phenomena listed here and holds great promise for scaling up to many other overinformativeness
phenomena.
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2 Modeling speakers’ choice of referring expression

Here we propose an extension to the production component of the Rational Speech Act (RSA
M. C. Frank & Goodman, 2012; Goodman & Stuhlmüller, 2013) modeling framework. This ex-
tension provides a principled explanation for the phenomena reviewed in the previous section and
holds promise for being generalizable to many further production phenomena related to overinfor-
mativeness, which we discuss in the General Discussion. We proceed by first presenting the general
framework in Section 2.1, and show why the most basic model cannot account for any of the phe-
nomena outlined above, due to its strong focus on maximizing the informativeness of one-word
expressions under a deterministic semantics. In Section 2.2 we introduce the crucial innovation:
relaxing the assumption of a deterministic semantics. We show that the model can qualitatively
account both for speakers’ asymmetric propensity to overmodify with color rather than with size
and (in Section 2.3) for speakers’ propensity to overmodify more with increasing scene variation.
In Section 3 we report an interactive reference game experiment which functions as a quantita-
tive test of the model. In Section 4 we explore how the model captures feature typicality effects.
In Section 5 we apply the model to the choice of simple nominal referring expressions and show
that the qualitative preference for referring at the basic level (and the exceptions from that rule)
emerges from the interaction of informativeness, utterance cost, and typicality. We test the model
on a second interactive reference game experiment that provides data for a quantitative test of
the model. For all cases we report – modified and nominal referring expressions – we find that
introducing non-determinism into the semantic truth functions results in excellent quantitative fits
to the data.

2.1 Basic RSA

As has been pointed out by Gatt et al. (2013), the basic Rational Speech Act model as formulated
by M. C. Frank and Goodman (2012) cannot generate overinformative referring expressions for two
reasons: first, it trivially cannot do so because it is limited to one-word utterances (see also Bau-
mann, Clark, & Kaufmann, 2014). But even when allowing two-word (or n-word) utterances, the
speaker’s utility will never allow for producing more redundant than minimal referring expressions
as long as words contribute non-negative costs to the overall utterance cost. To see this, and as a
basis for the innovations introduced in Section 2.2 and Section 5.2 it is useful to reiterate the basic
form of the model.

Intuitively, the production component of RSA aims to soft-maximize the utility of utterances,
where utility is defined in terms of the contextual informativeness of an utterance, given each
utterance’s literal semantics. Formally, this is treated as a pragmatic speaker S1 reasoning about
a literal listener L0, who can be described by the following formula:

PL0(o|u) ∝ [[u]](o). (1)

The literal listener L0 hears an utterance u from the set of available one-word utterances U
in the context of a set of objects O and forms a distribution over the referenced object, o ∈ O.
Here, [[u]](o) is the deterministic lexical meaning of the utterance u when applied to object o. That
is, PL0(o|u) returns a uniform distribution over all o denoted by u. For example, in the context
shown in Figure 1a, U = {big , small , blue, red} and O = {obig blue, obig red, osmall blue}. The values
of PL0(o|u) for each u are shown on the left in Table 3.
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Table 3: Literal listener distributions PL0(o|u) for each utterance u in the context depicted in
Figure 1a, allowing only one-word utterances (left) or one- and two-word utterances (right).

obig blue obig red osmall blue

big .5 .5 0
small 0 0 1
blue .5 0 .5
red 0 1 0

obig blue obig red osmall blue

big .5 .5 0
small 0 0 1
blue .5 0 .5
red 0 1 0
big blue 1 0 0
big red 0 1 0
small blue 0 0 1

The pragmatic speaker in turn produces an utterance proportional to the utility of that utter-
ance, where utility is a function of both the utterance’s informativeness with respect to the literal
listener lnPL0(o|u) and the utterance’s cost c(u):

PS1(u|o) ∝ eλ lnPL0
(o|u)−βcc(u) (2)

Both the informativeness and the cost term receive a weight.3 Informativeness is weighted by
λ. To understand the effect of λ, assume that costs are equal and the cost function can thus
be disregarded. As λ approaches infinity, the speaker increasingly only chooses utterances that
maximize informativeness; if λ is 0, informativeness is disregarded and the speaker chooses randomly
from the set of all available utterances; if λ is 1, the speaker probability-matches. For our example in
Table 3, if the speaker wants to refer to osmall blue she has two semantically possible utterances, small
and blue, where small is twice as informative as blue. She will produce small with the following
probabilities as λ varies: PS1(small |osmall blue;λ = ∞) = 1, PS1(small |osmall blue;λ = 1) = 2

3 ,
PS1(small |osmall blue;λ = 0) = 1

4 . Similarly, if we ignore informativeness and focus only on costs,
any asymmetry in costs will be exaggerated with increasing βc, such that the speaker will choose
the least costly utterance with higher and higher probability as βc increases.

As noted above, this model cannot generate redundant referring expressions for multiple reasons.
One of these is trivial: U only contains one-word utterances. We can ameliorate this easily by
allowing complex two-word utterances. We assume an intersective semantics for complex utterances
ucomplex consisting of two sub-utterances usize ∈ {big , small} and ucolor ∈ {blue, red}, such that
[[ucomplex]] = [[usize]] ∧ [[ucolor]]. The resulting literal listener distributions are shown on the right

in Table 3.
Does this now allow for generating redundant referring expressions? To answer this, let’s turn

again to the case where the speaker wants to communicate the small blue object. There are now two
utterances, small and small blue, which are both more informative than blue and equally informative
to each other, for referring to the small blue object. Because they are equally informative in context,
what we need is for the complex utterance to be the cheaper one in order to tilt the scales in its

3In fact, M. C. Frank and Goodman (2012) did not include a cost weight in their formulation and since they
ultimately assumed equal costs for all utterances, they made no use of the cost function. Subsequent work has shown
that taking into account utterance cost is necessary for modeling certain interpretation phenomena like cost-based
quantity implicatures (Degen, Franke, & Jäger, 2013) and M-implicature (?, ?). The cost function will become
important for our purposes in a little while.
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favor. While this achieves the desired effect mathematically, the cognitive plausibility of complex
utterances being cheaper than simple utterances is highly dubious. But this is the only circumstance
under which overinformative referring expressions will be produced with a greater probability than
minimally specified referring expressions. Thus, unless we want to introduce a highly dubious cost
assumption into the model, we must look elsewhere to account for overinformativeness: to the
computation of informativeness itself. This is what we turn to next.

2.2 RSA with non-deterministic semantics – emergent color-size asymmetry

Here we introduce the crucial innovation: rather than assuming a deterministic truth-conditional
semantics that returns 1 (true) or 0 (false) for any combination of expression and object, we assume a
non-deterministic semantics that can return intermediate values. That is, rather than assuming that
an object is unambiguously big or unambiguously blue, we allow for a non-deterministic semantics,
capturing that objects count as big or blue to varying degrees [jd: mention prototype theory and
cite?]. In particular, consider some of the notable differences between color and size adjectives:
color adjectives are considered absolute adjectives while size adjectives are inherently relative (?,
?). That is, while both size and color adjectives are vague, size adjectives are arguably context-
dependent in a way that color adjectives are not – whether an object is big depends inherently on
its comparison class; whether an object is red does not.4 In addition, color as a property has been
claimed to be inherently salient in a way that size is not (?, ?, ?). Finally, we have shown in recent
work that color adjectives are much less subjective in their interpretation than size adjectives (?,
?). We use these observations as motivation for exploring the effects of the assumption that the
semantics of size adjectives is inherently noisier than the semantics of color adjectives.

Formally, [[u]](o) = exp(fidelity(u, o)), where fidelity(u,o) returns a number between 0 and 1.
The higher an utterance type’s fidelity, the less noisy it is and the more likely it is to correctly
pick out objects with the denoted property. The lower an utterance type’s fidelity, the noisier the
utterance is and the more likely it is to incorrectly pick out objects that don’t exhibit the denoted
property. We defer a discussion of the meaning of these fidelity values to the Discussion in Section
3.3. [jd: or straight to the GD?]

The effects of assuming non-deterministic truth functions in contexts like those depicted in
Figure 1a and Figure 1b are visualized in Figure 3.5 To orient the reader to the graph: the
standard truth-functional semantics of the utterances are approximated where both fidelities are
close to 1 (.999, right-most edge of each graph). In this case, the simple sufficient and complex
redundant utterance are equally likely around .5 (because they are both equally informative and we
are ignoring costs), and all other utterances are highly unlikely. The interesting question is under
which circumstances, if any, the standard color-size asymmetry emerges: redundant size-color
utterances are more likely than sufficient utterances where the fidelity of the sufficient dimension
is lower than the fidelity of the insufficient dimension, for fidelities greater than .5.

Let’s focus on a particular example. Assume the context in Figure 1a, where size is sufficient for
uniquely singling out the target. If color fidelity is high (e.g., .999, dark blue line) and size fidelity is

4This is not entirely true, as has been pointed out by cite: red hair has a very different color than red wine, which
in turn has a different color from a red bell pepper. If presented out of context, only the last red is likely to be judged
as red (?, ?). For our purposes, it suffices that one can give a color judgment but not a size judgment for an object
presented in isolation.

5Here we show the results for λ = 30 and no utterance cost (i.e., βc = 0). For a visualization of model behavior
under varying λs, see Appendix A.
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Figure 3: Probability of producing insufficient, sufficient, and redundant utterance in contexts as
depicted in Figure 1a and Figure 1b, as a function of fidelity of sufficient and insufficient utterance
type (for λ = 30 and βc = 0).

relatively high, but not as high as color fidelity (e.g., .8 on x-axis), the probability of the redundant
size-color utterance small blue thumbtack is ≈ .8 and the probability of the simple size utterance
small thumbtack is ≈ .2. If we assume the same fidelity values for color and size in the color
sufficient context in Figure 1b, the probability of the redundant size-color utterance is ≈ .05 and
the probability of the simple color utterance blue thumbtack is ≈ .95. Thus, when size adjectives
are noisier than color adjectives, the model produces overinformative referring expressions with
color, but not with size – precisely the pattern observed in the literature. Indeed, these particular
values are very similar to those found by Gatt et al. (2011). Note also that no difference in adjective
cost is necessary for obtaining the overinformativeness asymmetry. However, assuming a greater
cost for size than for color does further increase the observed asymmetry. We defer a discussion
of costs to Section 3.1, where we infer the best parameter values (size and color cost and fidelity)
given data from a reference game experiment.

A final observation regarding the probability of producing the insufficient utterance (e.g., blue
thumbtack in the size sufficient contexts in Figure 1a). The probability of producing the insuf-
ficient utterance is very high where its fidelity is high and the fidelity of the sufficient utterance
is intermediate. This is because intermediate fidelity values lead to an utterance being randomly
interpreted correctly or incorrectly; that is, small thumbtack with fidelity(usize) = .5 will apply
equally to big and small objects in the context. The effect of this is that the literal listener returns
a uniform distribution over all three objects in context upon observing small thumbtack, adding no
information. In contrast, a literal listener that observes blue thumbtack assigns equal probability to
the target and the color competitor, but lower probability to the distractor. Thus, even though the
literal listener cannot distinguish between target and color competitor, the increased probability of
correctly choosing the target by chance, due to the reduced probability of choosing the distractor,
warrants the use of the insufficient blue thumbtack utterance.

To summarize, we have thus far shown that RSA with non-deterministic adjective semantics can
give rise to the well-documented color-size asymmetry in the production of overinformative referring
expressions when size adjectives are noisier than color adjectives. But this basic asymmetry is only
one of many intriguing patterns in the literature on referring expressions, including effects of scene
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variation and feature typicality, discussed in the Introduction. We turn to these phenomena next.

2.3 RSA with non-deterministic semantics – scene variation

As discussed above, increased scene variation has been shown to increase overinformativeness, but
scene variation can be quantified in many different ways. For concreteness sake we simulate the
conditions reported by Koolen et al. (2013), who quantified scene variation as the number of feature
dimensions along which pieces of furniture in a scene varied: type (e.g., chair, fan), size (big, small),
and color (e.g., red, blue).6 In particular, we simulate the high and low variation conditions from
their Experiments 1 and 2, reproduced in Figure 4.

In both conditions in both experiments, color was not necessary for establishing reference; that
is, color mentions were always redundant. The two experiments differed in the dimension necessary
for unique reference. In Exp. 1, only type was necessary (fan and couch in the low and high
variation conditions in Figure 4, respectively). In Exp. 2, size and type were necessary (big chair
and small chair in Figure 4, respectively). Koolen et al. (2013) found lower rates of redundant
color use in the low variation conditions (4% and 9%) than in the high variation conditions (24%
and 18%).

We generated model predictions for precisely these four conditions. Note that by adding the type
dimension as a distinguishing dimension, we must allow for an additional type fidelity parameter.

Koolen et al. (2013) counted any mention of color as a redundant mention. In Exp. 1, this
includes the simple redundant utterances like blue couch as well as complex redundant utterances
like small blue couch. In Exp. 2, where size was necessary for unique reference, only the com-
plex redundant utterance small brown chair was truly redundant. The results of simulating these
conditions for λ = 30, βc = c(usize) = c(ucolor) = 1, fidelity(usize) = .8, fidelity(ucolor) = .999,
fidelity(utype) = .9 are shown in Figure 5.7

For both experiments, the model retrieves the empirically observed effect of variation on the
probability of redundant color mention: when variation is greater, redundant color mention is more
likely. Note that the absolute values predicted by the model (≈ 8% to ≈ 75%) are different from
the values observed by Koolen et al. (2013) (≈ 4% to ≈ 24%). This need not concern us here: our
goal was to investigate whether, using the same parameter values that best fit the few data points
from the Gatt et al. (2011) study, the model predicts the qualitative effect of scene variation on
redundancy. Indeed it does.

Differences in exact values may stem from various sources. First, the best λ value to assume
may differ from experiment to experiment. Second, fidelity values may differ between experiments.
Indeed, assuming a lower color fidelity of .9 maintains the qualitative effects but lowers to highest
probability of redundancy to .26. Importantly, the basic requirements to yield the empirical scene
variation effect are that size, type, and color fidelities follow the following ranking: fidelity(usize)
≤ fidelity(utype) < fidelity(ucolor). If type fidelity is greater than color fidelity, the probability of
redundantly mentioning color is close to zero and does not differ between variation conditions. This
is because in those cases, color mention reduces, rather than adding, information about the target.
Third, the values reported by Koolen et al. (2013) were averaged over many different items – here,
we only reported model predictions for the example items they reported.

6They also included orientation (left-facing, right-facing) as a dimension along which objects could vary in certain
cases. We ignore this dimension here for simplicity’s sake – we simply wish to demonstrate that the model does
indeed predict increased color redundancy with an increase in number of dimensions along which there is variation.

7See Appendix B for a visualization of model predictions under a fuller exploration of parameter combinations.
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Figure 4: Contexts from Koolen et al.’s low variation (left column) and high variation (right column)
conditions in Exp. 1 (top row) and Exp. 2 (bottom row).
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Figure 5: Model predicted probability of redundant color utterance in Koolen conditions for λ = 30,
βc = c(usize) = c(ucolor) = 1, fidelity(usize) = .8, fidelity(ucolor) = .999, fidelity(utype) = .9.
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These results are encouraging: RSA not only predicts a systematic color-size asymmetry in
propensity to redundantly produce adjectives when size is noisier than color; it also predicts that
there should be more redundant color mention as the number of dimensions along which objects in
the scene vary increases. However, thus far we have only probed the model for qualitative effects
from very few data points previously reported in the literature. Independently evaluating the utility
of the model requires testing it on a large dataset. This is what we turn to next.

3 Non-deterministic RSA for modified referring expressions

Adequately assessing the explanatory value of RSA with non-deterministic truth functions requires
evaluating how well it does at predicting the probability of various types of utterances in large
datasets of naturally produced referring expressions. To this end we proceed in two steps. First we
report the results of a web-based interactive reference game in which we systematically manipulate
scene variation (in a somewhat different way than Koolen et al. (2013) did). We then perform
Bayesian data analysis to generate model predictions, conditioning on the observed production
data. This will both allow us a) to assess how likely the model is to generate the actually observed
data – i.e., to obtain a measure of model quality – and b) to infer the posterior probability of
parameter values – i.e., to understand whether the assumed asymmetries in adjective fidelity and/or
cost discussed in the previous section are warranted.

3.1 Experiment 1: scene variation in modified referring expressions

We saw in Section 2.3 that non-deterministic RSA correctly predicts effects of scene variation on
redundant adjective use. In particular, we saw that color is more likely to be used redundantly
as the number of dimensions along which objects in a scene vary increases. However, we would
like to a) go beyond a qualitative investigation of scene variation effects and also b) ask whether
redundant size mention is also affected by scene variation. The notion of scene variation we employ
is the proportion of distractor items that do not share the value of the insufficient feature with the
target, that is, as the number of distractors ndiff that differ in the value of the insufficient feature
divided by the total number of distractors ntotal:

scenevar =
ndiff

ntotal

To explain, let’s turn again to Figure 1a. Here, the target item is the small blue thumbtack
and there are two distractor items: a big blue thumbtack and a big red thumbtack. Thus, for the
purpose of establishing unique reference, size is the sufficient dimension and color the insufficient
dimension. There is one distractor that differs from the target in color (the big red thumbtack)
and there are two distractors in total. That is, scenevar = 1

2 = .5. Scene variation is minimal
when all distractors are of the same color as the target, in which case it is 0. Scene variation is
maximal when all distractors except for one (in order for the dimension to remain insufficient for
establishing reference) are of a different color than the target. That is, scene variation may take
on values between 0 and

ntotal−1

ntotal
, i.e, approaching but never reaching 1.

Using the same parameter values as in the previous two model explorations (λ = 30, βc =
c(usize) = c(ucolor) = 1, fidelity(usize) = .8, fidelity(ucolor) = .999), we generate model predictions for
size-sufficient and color-sufficient contexts, varying scene variation by varying number of distractors
(2, 3, or 4) and number of distractors that don’t share the insufficient feature value. The resulting
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Figure 6: Probability of minimal and redundant utterance as a function of scene variation and
sufficient dimension (for λ = 30, βc = c(usize) = c(ucolor) = 1, fidelity(usize) = .8, fidelity(ucolor) =
.999).

model predictions are shown in Figure 6: the probability of redundant adjective use increases with
increasing scene variation when size is sufficient, but not when color is sufficient. This can be
explained by noise distributions in the literal listener across contexts: in size-sufficient contexts, as
the number of distractors of a different color than the target increases, using the relatively noiseless
color term in addition to the more noisy size term reduces uncertainty about the target object.
However, the same is not true of the color-sufficient contexts: there is very little uncertainty about
the target upon observing the minimal color utterance – adding the size term only introduces
more uncertainty about the target, regardless of the amount of scene variation. For slightly lower
color fidelities a small increase in redundant size use is also predicted. In general: increased scene
variation is predicted to lead to more redundant adjective use for less noisy adjectives.

To test non-deterministic RSA predictions, we conducted an interactive web-based written
production study within a reference game setting.8 Speakers and listeners were shown arrays of
objects of that could vary in color and size. Speakers were asked to produce a referring expression
to allow the listener to identify a target object. We manipulated the number of distractor objects
in the grid, as well as the variation in color and size among distractor objects.

3.1.1 Method

Participants We recruited 58 pairs of participants (116 participants total) over Amazon’s Me-
chanical Turk who were each paid $1.75 for their participation. Data from another 7 pairs who
prematurely dropped out of the experiment and who could therefore not be compensated for their
work, were also included. Here and in all other experiments reported in this paper, participants’
IP address was limited to US addresses and only participants with a past work approval rate of at
least 95% were accepted.

8See Appendix C for a validation of the general paradigm, in which we qualitatively replicate the findings of Gatt
et al. (2011) with a different set of stimuli.
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(a) Speakers’ perspective

(b) Listeners’ perspective.

Figure 7: Example displays from the (a) speaker’s and the (b) listener’s perspective on a size-
sufficient 4-2 trial.

18



Procedure Participants were paired up through a real-time multi-player interface (Hawkins,
2015). For each pair, one participant was assigned the speaker role and one the listener role. They
initially received written instructions that informed participants that one of them would be the
Speaker and the other the Listener. They were further told that they would see some number of
objects on each round and that the speaker’s task is to communicate one of those objects, marked
by a green border, to the listener. They were explicitly told that using locative modifiers would
be useless because the order of objects on their partner’s screen would be different than on their
own screen. Before continuing to the experiment, participants were required to correctly answer a
series of questions about the experimental procedure. These questions are listed in Appendix D.

On each trial participants saw an array of objects. The array contained the same objects for
both speaker and listener, but the order of objects was randomized and was typically different for
speaker and listener. In the speaker’s display, one of the objects – henceforth the target – was
highlighted with a green border. See Figure 7 for an example of the listener’s and speaker’s view
on a particular trial.

The speaker produced a referring expression to communicate the target to the listener by typing
in a chat window. After pressing Enter or clicking the ‘Send’ button, the speaker’s message was
shown to the listener. The listener then clicked on the object they thought was the target, given the
speaker’s message. Once the listener clicked an object, a red border appeared around that object
in both the listener and the speaker’s display for 1 second before advancing to the next trial.

Both speakers and listeners could write in the chat window, allowing listeners to request clari-
fication if necessary. Listeners could only click on an object and advance to the next trial once the
speaker had sent a message.

Materials Participants proceeded through 72 trials. Of these, half were critical trials of interest
and half were filler trials. On critical trials, we varied the feature that was sufficient to mention for
uniquely establishing reference, the total number of objects in the array, and the number of objects
that shared the non-sufficient feature with the target.

Objects varied in color and size. On 18 trials, color was a sufficient property for distinguishing
the target. On the other 18 trials, size was sufficient. See Figure 7 for an example of a size-sufficient
trial from both the speaker’s and the listener’s perspective.

We further varied the amount of variation in the scene by varying the number of distractor
objects in each array (2, 3, or 4) and the number of distractors that did share the non-sufficient
feature value with the target. That is, when size was the sufficiently distinguishing property, we
varied the number of distractors that shared the same color as the target. This number had to
be at least one, since otherwise the non-sufficient property would have been sufficient for uniquely
establishing reference, i.e. it would not have been redundant to mention it. Each total number
of distractors was crossed with each possible number of distractors that shared the non-sufficient
property, leading to the following nine conditions: 2-1, 2-2, 3-1, 3-2, 3-3, 4-1, 4-2, 4-3, and 4-4,
where the first number indicates the total number and the second number the shared number of
distractors. Each condition occurred twice with each sufficient dimension. Objects never differed in
type within one array (e.g., all objects are thumbtacks in Figure 7 but always differed in type across
trials. Each object type could occur in two different sizes and two different colors. We deliberately
chose photo-realistic objects of intuitively fairly typical colors. The 36 different object types and
the colors they could occur with are listed in Appendix E.

Fillers were target trials from Exp. 2, a replication of (?, ?). Each filler item contained a three-
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object grid. None of the filler objects occurred on target trials. Objects stood in various taxonomic
relations to each other and required neither size nor color mention for unique reference. See Section
?? for a description of these materials.

3.1.2 Data pre-processing and exclusion

We collected data from 2171 critical trials. Of these, 33 (1.5%) were excluded because the listener
did not select the target.

Because we did not restrict participants’ utterances in any way, they produced many different
kinds of referential expressions. Testing the model’s predictions required, for each trial, either
excluding it or classifying the produced utterance as an instance of a color -only mention, a size-
only mention, or a color-and-size mention. To this end we conducted the following semi-automatic
data pre-processing.

First, 33 trials on which the listener selected the wrong referent were excluded, leading to
the elimination of 1.5% of trials. Then, an R script automatically checked whether the speaker’s
utterance contained a precoded color (i.e. black, blue, brown, gold, green, orange, pink, purple,
red, silver, violet, white, yellow) or size (i.e. big, bigger, biggest, huge, large, larger, largest, little,
small, smaller, smallest, tiny) term. In this way, 95.7 % of cases were classified as mentioning
size and/or color. However, this did not capture that sometimes, participants produced meaning-
equivalent modifications of color/size terms for instance by adding suffixes (e.g., bluish), using
abbreviations (e.g., lg for large or purp for purple), or using non-precoded color labels (e.g., lime or
lavender). Expressions containing a typo (e.g., pruple instead of purple) could also not be classified
automatically. In the next step, one of the authors (CG) therefore manually checked the automatic
coding to include these kinds of modifications in the analysis. This caught another 1.5% of trials.
Most of the time, participants converged on a convention of mentioning simply the target’s size
and/or color, e.g., purple or big blue, without even using an article (e.g., the) or mentioning the
object’s type (e.g., comb). Articles were omitted in 93.1 % of cases and object types were omitted
in 71.5 % of cases. We did not analyze this any further.

There were 50 cases (2.3%) in which the speaker made reference to the distinguishing dimension
in an abstract way, e.g. different color, unique one, ripest, very girly, or guitar closest to viewer.
While interesting as utterance choices,9 these cases were excluded from the analysis. There were 3
cases that were nonsensical, e.g. bigger off a shade, which were also excluded. Finally, there were 6
cases where only the insufficient dimension was mentioned – these were excluded from the analysis
reported in the next section, where we are only interested in minimal or redundant utterances, not
underinformative ones, but were included in the Bayesian data analysis reported in Section 3.2.
After the exclusion, 2079 cases classified as one of color, size, or color-and-size entered into the
analysis.

3.1.3 Results

Proportions of redundant color-and-size and minimal color or size utterances are shown in Figure
8 alongside model results (to be explained further in Section 3.2). There are three main questions
of interest: first, do we replicate the color/size asymmetry in probability of redundant adjective

9Certain participants seemed to have deliberately used this as a strategy even though simply mentioning the
distinguishing property would have been shorter in most cases. In all, only 12 participants produced these kinds of
utterances: one 18 times, one 8 times, one 6 times, two 3 times, one 2 times, and the remaining six only once each.
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Figure 8: Empirical utterance proportions (red) alongside point-wise maximum a posteriori (MAP)
estimates of the model’s posterior predictives for utterance probability (blue) as a function of scene
variation. Rows indicate the sufficient dimension, columns the produced utterance. Here and in all
following plots, error bars indicate 95% bootstrapped confidence intervals.

use? Second, do we replicate the previously established effect of increased redundant color use with
increasing scene variation? Third, is there an effect of scene variation on redundant size use and
if so, is it smaller compared to that on color use, as is predicted under asymmetric color and size
adjective fidelities?

We addressed all of these questions in one fell swoop by conducting a mixed effects logistic
regression analysis predicting redundant over minimal adjective use from fixed effects of sufficient
property (color vs. size), scene variation (proportion of distractors that does not share the insuf-
ficient property value with the target), and the interaction between the two. The model included
the maximal random effects structure that allowed the model to converge: by-speaker and by-item
random intercepts as well as by-speaker random slopes for scene variation.

We observed a main effect of sufficient property such that speakers were more likely to re-
dundantly use color than size adjectives (β = 3.61, SE = .23, p < .0001), replicating the much-
documented color-size asymmetry. We further observed a main effect of scene variation such that
redundant adjective use increased with increasing scene variation (β = 4.11, SE = .49, p < .0001).
Finally, we also observed a significant interaction between sufficient property and scene variation
(β = 3.03, SE = .81, p < .0002). Simple effects analysis revealed that the interaction is driven by
the scene variation effect being much smaller in the color-sufficient condition (β = 2.59, SE = .78,
p < .0009) than in the size-sufficient condition (β = 5.63, SE = .45, p < .0001), as predicted under
the assumption that size modifiers are noisier than color modifiers.
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Figure 9: Scatterplot of point-wise maximum a posteriori (MAP) estimates of the model’s posterior
predictives against empirical proportions (r =.99).

3.2 Model evaluation: scene variation

We performed Bayesian Data Analysis to generate model predictions and infer likely parameter
values, conditioning on the observed production data (coded into size, color, and size-and-color
utterances as described above) and integrating over the following free parameters: color fidelity fc,
size fidelity fs, color cost ccolor, size cost csize, cost weight βcost, and speaker rationality parameter
λ. We assumed uniform priors for each parameter: fc ∼ U(0, 1), fs ∼ U(0, 1), ccolor ∼ U(0, 2),
csize ∼ U(0, 2), βcost ∼ U(0, 10), λ ∼ U(0, 40). We implemented both the cognitive and data-
analysis models in the probabilistic programming language WebPPL (Goodman & Stuhlmüller,
electronic). Inference for the cognitive model was exact, while we used Markov Chain Monte Carlo
(MCMC) to infer posteriors for the six free parameters.

Point-wise maximum a posteriori (MAP) estimates of the model’s posterior predictives for each
combination of utterance, sufficient dimension, number of distractors, and number of different
distractors (collapsing across different items) are compared to empirical data in Figure 9. At this
level, the model achieves a correlation of r = .99. Looking at results additionally on the by-
item level yields a correlation of r = .85. The model thus does a very good job of capturing the
quantitative patterns in the data. This can also be seen in Figure 8, where model predictions are
plotted alongside the empirical proportions by condition. The only clear flaw is that the model
predicts greater redundant adjective use than empirically observed when there is no scene variation
at all.

Parameter posteriors are shown in Figure 10. Crucially, the fidelity of color is inferred to be
higher than that of size – there is no overlap between the 95% highest density intervals (HDIs) for
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Figure 10: Posterior distribution over model parameters. Maximum a posteriori (MAP) fs = 0.79,
95% highest density interval (HDI) = [0.76,0.80]; MAP fc = 0.88, HDI = [0.86,0.91]; MAP csize =
.08, HDI = [0, 1.5]; MAP ccolor = 0.07, HDI = [0,0.9]; MAP βc = 0.04, HDI = [0,1.6]; MAP λ =
34.0, HDI = [30.8,36.5]

the two parameters. That is, size modifiers are inferred to be noisier than color modifiers. The
relatively high inferred λ suggests that this difference in fidelity contributes substantially to the
observed color-size asymmetries in redundant adjective use. As for cost, there is a lot of overlap
in the inferred cost of size and color modifiers, suggesting that no cost difference is necessary to
obtain the color-size asymmetry and the scene variation effects. These results are compatible with
previous claims cite cite that part of the explanation for the color-size asymmetry stems from the
low cognitive cost involved in producing color modifiers compared to size modifiers. However, the
results do suggest that a cost asymmetry is not the driving force behind the asymmetry in redundant
adjective use. Note further that the asymmetry cannot be reduced to cost differences: in Section
2.2 we showed that the color-size asymmetry in redundant adjective use requires an asymmetry
in modifier fidelity. An asymmetry in cost only serves to further enhance the asymmetry brought
about by the fidelity asymmetry, but cannot carry the redundant use asymmetry on its own.

3.3 Discussion

As should be apparent from this section, non-deterministic RSA provides an excellent fit to data
of freely produced modified referring expressions. In particular, we have shown that the crucial
element in obtaining the much-documented color-size asymmetry in the propensity to overmodify
is that the semantic truth functions of size adjectives be noisier than those of color adjectives.
Asymmetries in cost of adjectives only serve to further enhance the asymmetries resulting from
asymmetries in utterance fidelity. In addition, we showed that asymmetric effects of scene variation
on overmodification are also well captured by non-deterministic RSA: scene variation leads to a
greater increase in overmodification with less noisy than with more noisy modifiers.

Some readers may have found themselves wondering about the status of the fidelity term: are
we claiming that color modifiers have inherently higher fidelity than size modifiers? Is the difference
constant? What if the color modifier is a less well known one like mauve? The way we have set the
model up thus far, there would indeed be no fidelity difference between red and mauve. Moreover,
the model is not equipped to handle potential object-level idiosyncracies in fidelity such as the
typicality effects discussed in Section 1.2.3. We defer a fuller discussion of the status of the fidelity
term to the General Discussion and turn first to non-deterministic RSA’s potential for capturing
typicality effects.
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Table 4: Hypothetical fidelity values for utterances (rows) as applied to objects (columns).

Utterance yellow banana brown banana blue banana other

banana .9 .35 .1 .015
yellow banana .99 .015 .015 .015
brown banana .015 .99 .015 .015
blue banana .015 .015 .99 .015
other .015 .015 .015 .99

4 Feature typicality

In Section 3 we showed that non-deterministic RSA successfully captures both the basic asymmetry
in overmodification with color vs. size as well as effects of scene variation, quantified in various dif-
ferent ways. But in Section 1.2.3 we discussed a further characteristic of speakers’ overmodification
behavior: speakers are more likely to redundantly produce modifiers that denote atypical rather
than typical object features, i.e., they are more likely to refer to a blue banana as a blue banana
rather than as a banana, and they are more likely to refer to a yellow banana as a banana than as
a yellow banana (Sedivy, 2003; Westerbeek et al., 2015). Non-deterministic RSA as we have set it
up thus far does not capture this asymmetry: it knows that a particular modifier is a color modifier
with a particular fidelity; it does not know anything about the typicality of the denoted properties
for the referent.

We would like to warn and disillusion the reader upfront: we will not solve the problem of how
to get overmodification behavior from the typicality of features compositionally. This is a problem
for all theories of modification (?, ?). However, we would like to offer a proof of concept showing
that, if the non-determinism in the RSA semantics is not at the adjective type (color, size) level,
but instead at the level of combinations of referring expressions and objects, the model produces
precisely the sorts of typicality effects reported in the literature.

Let us elaborate. Where before we took a fidelity to be a number between 0 and 1 indicating
how likely a type of modifier (size, color) was to correctly apply to an object, we now treat it as
indicating how good an instance of a particular referring expression the object in question is. For
example, take the banana case: assume three contexts of objects with yellow, brown, and blue
objects. Assume further that one of the objects is a banana, and the only difference between the
three contexts is whether the banana is blue, brown, or yellow. In every context there is another
object of the same color as the banana, so color is redundant, while there are no other bananas,
so object category mention is sufficient for reference. Assume further the fidelity values shown in
Table 4. These values should be read as follows: a yellow banana is a very good or typical instance
of abanana – banana applied to yellow bananas has a high fidelity of .9. In contrast, brown bananas
are less typical instances of bananas (.35), and blue bananas are highly atypical bananas (.1) but
still better than objects of an other non-banana type (.015). Going along the diagonal, you can see
that we assume for each remaining utterance that its fidelity is very high (.99) when applied to an
object in its extension and very low otherwise (.015).

With λ = 12 and βc = 5 (that is, both informativeness and utterance cost receive a substantial
weight), the resulting speaker probabilities for the (minimal) banana are .99, .37, and .05, respec-
tively, to refer to the yellow banana, the brown banana, and the blue banana. In contrast, the
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resulting speaker probabilities for the redundant yellow banana, brown banana, and blue banana
are .01, .63, and .95, respectively. That is, redundant color mention increases with decreasing
fidelity of the simple banana utterance.

So far we have shown that non-deterministic RSA can capture typicality effects in principle if we
assume that fidelity does not operate at the adjective type level but instead captures the typicality
of an object for the alternative (minimal and redundant) referring expressions. If an object is more
typical for the redundant expression than for the minimal expression, then the bigger the difference
in typicality, the greater the relative informativeness of the redundant expression, and the greater
the probability of it being produced.

We can now ask whether taking into account this more fine-grained notion of non-deterministic
semantics plays a role in the dataset collected in Exp. 1. A note upfront: the stimuli for Exp. 1
were specifically designed to be realistic objects; that is, very low typicality values or even a large
degree of variation in typicality would be surprising. Nevertheless, it is plausible that typicality
differences exist. If they do, there are two interesting questions to ask: first, do we replicate the
typicality effects reported in the literature – that is, are less typical objects more likely to lead
to redundant adjective use than more typical objects? Second, does including empirically elicited
typicality values at the object-utterance level further improve the quality of the RSA model? We
address the first question in Section 4.1 and the second question in Section 4.2.

4.1 Experiment 1a: Typicality effects in Exp. 1

To assess whether we replicate the color typicality effects previously reported in the literature
(Sedivy, 2003; Westerbeek et al., 2015; Rubio-Fernandez, 2016), we elicited color typicality norms
for each of our items and then included typicality as an additional predictor of redundant adjective
use in the regression analysis reported previously.

4.1.1 Methods

Participants We recruited 60 participants over Amazon’s Mechanical Turk who were each paid
$0.25 for their participation.

Procedure and materials On each trial, participants saw one of the big versions of the items
used in Exp. 1 and were asked to answer the question “How typical is this for an X ?” on a
continuous slider with endpoints labeled “very atypical” to “very typical.” X was a referring
expression consisting of either only the correct noun (e.g., stapler) or the noun modified by the
correct color (e.g., red stapler). Figure 11 shows an example of a modified trial.

Each participant saw each of the 36 objects once. An object was randomly displayed in one
of the two colors it occurred with in Exp. 1 and was randomly displayed with either the correct
modified utterance or the correct unmodified utterance, in order to obtain roughly equal numbers
of object-utterance combinations.

Importantly, we only elicited typicality norms for unmodified utterances and utterances with
color modifiers, but not utterances with size modifiers. This was because it is virtually impossible
to obtain size typicality norms for objects presented in isolation, due to the inherently relational
nature of size adjectives. Consequently, we only test for the effect of typicality on size-sufficient
trials.
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Figure 11: A modified example trial from the typicality elicitation experiment.
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Figure 12: Typicality densities for modified and unmodified utterances (left) and histogram of
typicality gains (differences between modified and unmodified typicalities, right).

4.1.2 Results and discussion

We coded the slider endpoints as 0 (“very atypical”) and 1 (“very typical”), essentially treating
each response as a typicality value between 0 and 1. For each combination of object, color, and
utterance (modified/unmodified), we computed that item’s mean. Mean typicalities were generally
lower for unmodified than for modified utterances: mean typicality for unmodified utterances was
.67 (sd=.17, mode=.76) and for modified utterances .75 (sd=.12, mode=.81). This can also be seen
on the left in Figure 12. Note that, as expected given how the stimuli were constructed, typicality
was generally skewed towards the high end, even for unmodified utterances. This means that there
was not much variation in the difference in typicality between modified and unmodified utterances.
We will refer to this difference as typicality gain, reflecting the overall gain in typicality via color
modification over the unmodified baseline. As can be seen on the right in Figure 12, in most cases
typicality gain was close to zero.

This makes the typicality analysis difficult: if typicality gain is close to zero for most cases
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Figure 13: Utterance probability for four items as a function of difference in typicality between
modified and unmodified utterance (x-axis) and sufficient dimension (columns).

(and, taking into account confidence intervals, effectively zero), it is hard to evaluate the effect
of typicality on redundant adjective use. In order to maximize power, we therefore conducted the
analysis only on those items for which for at least one color the confidence intervals for the modified
and unmodified utterances did not overlap. There were only four such cases: (pink) golfball, (pink)
wedding cake, (green) chair, and (red) stapler, for a total of 231 data points.

Predictions differ for size-sufficient and color-sufficient trials. Given the typicality effects re-
ported in the literature and the predictions of non-deterministic RSA, we expect greater redundant
color use on size-sufficient trials with increasing typicality gain. The predictions for redundant
size use on color-sufficient trials are unclear from the previous literature. Non-deterministic RSA,
however, predicts greater redundant size use with decreasing typicality gain: small color typicality
gains reflect the relatively low out-of-context utility of color. In these cases, it may be useful to
redundantly use a size modifier even if that modifier is noisy. If borne out, these predictions should
surface in an interaction between sufficient property and typicality gain. Visual inspection of the
empirical proportions of redundant adjective use in Figure 13 suggests that this pattern is indeed
borne out.

In order to investigate the effect of typicality gain on redundant adjective use, we conducted
a mixed effects logistic regression analysis predicting redundant over minimal adjective use from
fixed effects of scene variation, sufficient dimension, the interaction of scene variation and sufficient
property, and the interaction of typicality gain and sufficient property. This is the same model as
reported in Section 3.1.3, with the only difference that the interaction between sufficient property
and typicality gain was added. All predictors were centered before entering the analysis. The model
contained the maximal random effects structure that allowed it to converge: by-participant and
by-item (where item was a color-object combination) random intercepts.

The model summary is shown in Table 5. We replicate the effects of sufficient property and scene
variation observed earlier on this smaller dataset. Crucially, we observe a significant interaction
between sufficient property and typicality gain.10 Simple effects analysis reveals that this interaction

10Conducting the same analysis on the entire dataset (i.e., using all of the noisy typicality estimates, replicated the
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Table 5: Model coefficients, standard errors, and p-values. Significant p-values are bolded.

Coef β SE(β) p

Intercept −1.85 0.34 <.0001
Scene variation 4.29 1.16 <.001
Sufficient property 2.72 0.60 <.0001
Scene variation : Sufficient property 0.88 2.12 <0.68
Sufficient property : Typicality gain 9.43 2.68 <.001

is due to a positive effect of typicality gain on redundant adjective use in the size-sufficient condition
(β = 4.47, SE = 1.65, p < .007) but a negative effect of typicality gain on redundant adjective use
in the color-sufficient condition (β = −5.77, SE = 2.49, p < .03).

An important point is of note: the typicality elicitation procedure we employed here is somewhat
different from that employed by Westerbeek et al. (2015), who asked their participants “How typical
is this color for this object?” We did this for conceptual reasons: the values that go into the
semantics of the RSA model are most easily conceptualized as the typicality of an object as an
instance of an utterance. While the typicality of a feature for an object type no doubt plays into
how good of an instance of the utterance the object is, deriving our typicalities from the statistical
properties of the subjective distributions of features over objects is beyond the scope of this paper.
However, in a separate experiment we did ask participants the Westerbeek question. The correlation
between mean typicality ratings from the Westerbeek version and the unmodified “How typical is
this for X ” version was .75. The correlation between the Westerbeek version and the modified
version was .64. The correlation between the Westerbeek version and typicality gain was -.52.

For comparison, including typicality means obtained via the Westerbeek question as a predictor
instead of typicality gain on the four high-powered items replicated the significant interaction be-
tween typicality and sufficient property (β = −6.77, SE = 1.88, p < .0003). Simple effects analysis
revealed that the interaction is again due to a difference in slope in the two sufficient property
conditions: in the size-sufficient condition, color is less likely to be mentioned with increasing color
typicality (β = −3.66, SE = 1.18, p < .002), whereas in the color-sufficient condition, size is more
likely to be mentioned with increasing color typicality (β = 3.09, SE = 1.45, p < .04).11

We thus overall find moderate evidence for typicality effects in our dataset. Typicality effects
are strong for those items that clearly display typicality differences between the modified and
unmodified utterance, but much weaker for the remaining items. That the evidence for typicality
effects is relatively scarce is no surprise: the stimuli were specifically designed to minimize effects of
typicality. However, the fact that both ways of quantifying typicality predicted redundant adjective
use in the expected direction suggests that with more power or with stimuli that exhibit greater
typicality variation, these effects may show up more clearly.

In the next section we evaluate whether the fit of non-deterministic RSA to the data is improved
by using the empirically elicited typicalities as the values in the non-deterministic semantics.

scene variation and sufficient property effects. The interaction of typicality gain and sufficient property went in the
same direction numerically, but failed to reach significance (β = 1.52, SE = 1.45, p < .29).

11Again, conducting this analysis on the entire dataset yielded only a marginal interaction of sufficient property
and color typicality in the right direction (β = −1.10, SE = .64, p < .09).
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4.2 Model evaluation: color typicality

[jd: insert actual numbers below! figure out what’s going wrong in the bda that the returned color
fidelities are lower than the returned size fidelities]

In order to evaluate the effect of utterance-object level typicality we proceed in two steps: first,
we present the results of performing Bayesian data analysis in the same way as reported in Section
3.2, with the only difference that instead of fixed utterance type level fidelities we include the more
fine-grained fidelity values corresponding to the typicality norms. We will focus more closely on
the four items shown in Figure 13 in order to demonstrate the effect of including typicality in the
model once you know, actually put a summary sentence here instead of ”in order to see how the
model bla”. In a second step we then address the pressing question of whether more fine-grained
typicalities add any predictive value.

4.2.1 Model evaluation: empirical typicalities

In order to generate model predictions and infer likely parameter values for the dataset reported
above, we repeated the same Bayesian data analysis procedure as described above, with one differ-
ence: instead of using the utterance-type level fidelities we fed the model the empirically elicited
typicality norms. This was slightly less trivial than it sounds for two reasons. First, we only elicited
typicality norms for object-utterance pairs for which the utterance was either just the simple ob-
ject category noun (e.g., chair) or the color-modified noun (e.g., green chair); that is, we did not
elicit size typicality norms (for reasons described in the previous section). Second, we did not
elicit typicality norms for utterance-object pairs where the object would not be in the deterministic
semantics’ extension (e.g., green chair used to refer to a red chair). In order to fill in the typicality
gaps, so to speak, we assigned fidelity values to utterances as follows: object-utterance pairs where
the object is in the extension of the utterance were assigned the empirically elicited typicality for
that pair (e.g., chair typicality for any chair, red chair typicality for red chairs, see Table 6). If the
object was not in the utterance extension, it received a fidelity of 1− fc, where fc is an utterance
type level fidelity parameter for color (as in the basic non-deterministic model reported above).
For objects in the utterance extension where the utterance additionally contained a size modifier,
the empirical fidelity was multiplied by an utterance type level size fidelity fs. See Table 6 for an
overview of fidelity values for one item (red/green chair).

One final point of note: empirically elicited typicality values were rescaled to range from 0.5
to 1 (instead of from 0 to 1). This was done because a fidelity value of .5, when there are only
two potential feature values (e.g., two colors in the scene, red and green), leads to a random
choice between green and red items; that is, the modifier contains no information. When the
fidelity value is below .5 in these two-feature value scenarios, the modifier contextually acquires
the meaning of the other feature dimension, e.g., green is more likely to pick out red than green
objects. The typicality values we elicited were not degree of membership values (which is what
the model expects). Rather, they are more comparable to distance from prototype values (see ?,
?, for a discussion of the difference). By rescaling the empirical typicality values to fall above .5,
we guaranteed that the utterance would have at least an above chance of meaning what it would
mean under a deterministic semantics. Table 7 exemplifies the effect of rescaling the raw typicality
values for the red/green chair item.
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Table 6: Fidelity values (rescaled) for one example item (chair) that occurred in two colors (red,
green). Rows indicate different utterances, columns indicate different objects. See Table 7 for the
raw and rescaled empirical typicality values for the red/green chair item.

Utterance small red chair small green chair big red chair big green chair

chair .83 .67 .83 .67
red chair .84 1− fc .84 1− fc

green chair 1− fc .85 1− fc .85
small chair fs · .83 fs · .67 (1− fs) · .83 (1− fs) · .67
big chair (1− fs) · .83 (1− fs) · .67 fs · .83 fs · .67
small red chair fs · .84 fs · (1− fc) (1− fs) · .84 (1− fs) · (1− fc)
big red chair (1− fs) · .84 (1− fs) · (1− fc) fs · .84 fs · (1− fc)
small green chair fs · (1− fc) fs · .85 (1− fs) · (1− fc) (1− fs) · .85
big green chair (1− fs) · (1− fc) .(1− fs) · .85 fs · (1− fc) fs · .85

Table 7: Raw and rescaled typicalities for the red and green chair items.

Raw Rescaled
Utterance red chair green chair red chair green chair

chair .68 .41 .83 .67
red chair .69 NA .84 NA
green chair NA .70 NA .85
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Figure 14: Posterior distribution over model parameters. Maximum a posteriori (MAP) fs = 0.79,
95% highest density interval (HDI) = [0.76,0.80]; MAP fc = 0.88, HDI = [0.86,0.91]; MAP csize =
.08, HDI = [0, 1.5]; MAP ccolor = 0.07, HDI = [0,0.9]; MAP βc = 0.04, HDI = [0,1.6]; MAP λ =
34.0, HDI = [30.8,36.5]

Figure 15: Posterior distribution over model parameters. Maximum a posteriori (MAP) fs = 0.79,
95% highest density interval (HDI) = [0.76,0.80]; MAP fc = 0.88, HDI = [0.86,0.91]; MAP csize =
.08, HDI = [0, 1.5]; MAP ccolor = 0.07, HDI = [0,0.9]; MAP βc = 0.04, HDI = [0,1.6]; MAP λ =
34.0, HDI = [30.8,36.5]

Results Including typicality yielded similar item-wise model-data correlations as the basic model
XXX. Posteriors over parameters are shown in Figure ??. Discuss similarities/diffs to basic model.

Posterior predictives for the cases with greatest typicality gain – chair, golfball, weddingcake,
and stapler – are shown in Figure ?? alongside the posterior predictives from the basic model (with
utterance type level fidelities). In the basic non-deterministic model, probability of redundant
utterances is similar for items of different colors. In the model that includes empirically elicited
typicalities, the probability of redundant utterances is greater where typicality gain is greater; that
is, for cases where the unmodified utterance has low typicality and the modified utterance high
typicality, analogous to the blue banana case.

4.2.2 Model evaluation: interpolation analysis

Because the correlations between model-predicted utterance probability posterior predictives and
empirical proportions are very similar across the basic and empirical typicality model, the question
arises whether utterance-level typicalities add any predictive value whatsoever. In order to address
this question we present a second BDA analysis in which we introduce an additional parameter in
the model that functions as a weight on fidelity type: if the weight is 0, only the utterance-type
level fidelities are used; if the weight is 1 only the empirical typicalities are used. Therefore, if
the BDA returns posterior values for fidelity type weight greater than 0, empirical typicalities are
justified.

Results Posteriors over parameters are shown in Figure ??. insert figure The MAP estimate
for fidelity type weight is XXX (HDI = [X,X]), suggesting that utterance-level typicality adds
predictive value.

4.3 Discussion

main points: a) that non-deterministic RSA with utterance-level typicalities as fidelity values cap-
tures the color typicality effects reported in the literature qualitatively (yellow/blue banana); b)
that even in our dataset, where items were designed to not exhibit great typicality effects, we find
evidence of typicality effects on utterance probability, replicating previous studies; and c) BDA
shows that including empirically elicited typicality norms in the model adds predictive value. This
suggests that speakers are tracking typicality at a very fine-grained level.
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[jd: This is all well and good, but to what extent is non-deterministic RSA just a model of
modifier choice in modified referring expressions? Put differently, does non-deterministic RSA
provide a good account of content selection in referring expressions more generally? To answer
this question we move beyond modified referring expressions and turn to simple nominal referring
expressions.]

In the next section we turn to extending non-deterministic RSA beyond the choice of modifier.

5 Evaluating non-deterministic RSA for nominal choice

In this section we investigate whether non-deterministic RSA can account for referring expression
production beyond the choice of modifier. To do so, we begin by presenting a second production
experiment. This experiment investigates speakers’ choice of level of reference in nominal referring
expression (dalmation, dog, or animal). As discussed in Section 5, multiple factors have been shown
to play a role in the choice of nominal referring expression, including an expression’s contextual
informativeness, its cognitive cost (short and frequent terms are preferred over long and infrequent
ones) cite cite, and its typicality (an utterance is more likely to be used if the object is a good
example of it) is that true? cite. yes, caroline put ref in cogsci talk. We then evaluate non-
deterministic RSA on the nominal choice dataset by conducting the same type of Bayesian data
analysis as reported in the previous section.

5.1 Experiment 2: level of reference in nominal referring expressions

Exp 2 employed the same procedure as Exp. 1, but each display consisted of three objects.12 We
manipulated the contextual informativeness of each level of reference – subordinate (dalmatian),
basic (dog), and superordinate (animal) – by manipulating the distractor items.

5.1.1 Method

Participants We recruited 58 pairs of participants (116 participants total) over Amazon’s Me-
chanical Turk who were each paid $1.75 for their participation.

Procedure and materials The procedure was identical to that of Exp. 1. Participants proceeded
through 72 trials. Of these, half were critical trials of interest and half were filler trials (the critical
trials from Exp. 1). On critical trials, we varied the level of reference that was sufficient to mention
for uniquely establishing reference.

Stimuli were selected from nine distinct domains, each corresponding to distinct basic level
categories such as dog. For each domain, we selected four subcategories to form our target set
(e.g. dalmatian, pug, German Shepherd and husky). See Table 8 for a full list of domains and
their associated target items. Each domain also contained an additional item which belonged to
the same basic level category as the target (e.g., greyhound) and items which belonged to the same
supercategory but not the same basic level (e.g., elephant or squirrel). The latter items were used
as distractors.

Each trial consisted of a display of three images, one of which was designated as the target
object. Each pair of participants saw each target exactly once, for a total of 36 trials per pair.

12Exp. 2 constitutes a replication of Graf, Degen, Hawkins, and Goodman (2016).
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Table 8: List of domains and associated superordinate category, target stimuli, and mean length
(standard deviation) in characters of actually produced subordinate level utterances in Exp. 2.

Domain Super Targets Mean sub length (sd)

bear animal

black bear 9.9 (.14)
polar bear 8.8 (.35)
panda bear 5.5 (.2)
grizzly bear 9 (.98)

bird animal

eagle 4.9 (.1)
parrot 6.1 (.13)
pigeon 5.9 (.22)
hummingbird 10.1 (.5)

candy snack

MnMs 4.4 (.49)
skittles 6.9 (.43)
gummy bears 8.5 (.47)
jelly beans 9.3 (.44)

car vehicle

SUV 3 (0)
minivan 5.7 (.27)
sports car 9.8 (.23)
convertible 11.1 (.2)

dog animal

pug 3 (.08)
husky 4.7 (.22)
dalmatian 8.8 (.18)
German Shepherd 13.1 (.82)

fish animal

catfish 6.6 (.4)
goldfish 7.9 (.22)
swordfish 8 (.43)
clownfish 9.1 (.38)

flower plant

rose 4 (0)
tulip 4.4 (.18)
daisy 5.9 (.55)
sunflower 9 (.11)

shirt clothing

T-shirt 6.4 (.48)
polo shirt 6.7 (.79)
dress shirt 11 (0)
Hawaii shirt 12.6 (.46)

table furniture

picnic table 9.7 (.58)
dining table 12 (0)
coffee table 9.1 (.95)
bedside table 8.3 (.68)
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These target items were randomly assigned distractor items which were selected from four different
context conditions, corresponding to different communicative pressures (see Figure 2). We refer to
these conditions with pairs of numerals specifying which levels of the taxonomy are present in the
distractors: (a) item12 contexts contain one distractor of the same basic level and one distractor
of the same superlevel (e.g., target: dalmatian, distractor 1: greyhound (also a dog), distractor
2: squirrel (also an animal)); (b) item22 contexts contain two distractors of the same superlevel
but different basic level as the target (e.g., target: husky, distractors: hamster and elephant); (c)
item23 contexts contain one distractor of the same superlevel and one unrelated item (e.g., target:
pug, distractor 1: cow, distractor 2: table); and (d) item33 contexts contain two unrelated items
(e.g., target: German Shepherd, distractors: shirt and cookie).

This context manipulation served as a manipulation of utterance informativeness: any target
could be referred to at the sub (dalmatian), basic (dog) or super (animal) level. However, the level
of reference necessary for uniquely referring differed across contexts: in item12 contexts, the sub
level was necessary. In item22 and item23 contexts, the basic level was necessary (though the sub
level was also possible). In item33 contexts all three utterances were possible.

5.1.2 Data pre-processing and exclusion

We collected 2187 referential expressions. To determine the level of reference for each trial, we
followed the following procedure. First, 41 trials on which the listener selected the wrong referent
were excluded, leading to the elimination of 1.9% of trials. Then, speakers’ and listeners’ messages
were parsed automatically; the referential expression used by the speaker was extracted for each
trial and checked for whether it contained the current target’s correct sub, basic or super level term
using a simple grep search. In this way, 72.1% of trials were labelled as mentioning a pre-coded level
of reference. In the next step, remaining utterances were checked manually to determine whether
they contained a correct level of reference term which was not detected by the grep search due to
typos or grammatical modification of the expression. In this way, meaning-equivalent alternatives
such as doggie for dog, or reduced forms such as gummi, gummies and bears for gummy bears were
counted as containing the corresponding level of reference term. This covered another 15.1% of
trials. A total of 12.8% of correct trials were excluded because the utterance consisted only of an
attribute of the superclass (the living thing for animal), of the basic level (can fly for bird), of
the subcategory (barks for dog) or of the particular instance (the thing facing left) rather than a
category noun. These kinds of attributes were also mentioned in addition to the noun on trials
which were included in the analysis for 8.9% of sub level terms, 19.1% of basic level terms, and
66.7% of super level terms. On 1.2% of trials two different levels of reference were mentioned; in
this case the more specific level of reference was counted as being mentioned in this trial. After all
exclusion and pre-processing, 1870 cases classified as one of sub, basic, or super entered into the
analysis.

5.1.3 Results and discussion

Proportions of sub, basic, and super level utterances are shown in the top row of Figure 16. Overall,
super level mentions are highly dispreferred (< 2%), so we focus in this section only on predictors
of sub over basic level mentions. The clearest pattern of note is that sub level mentions are only
preferred in the most constrained context that necessitates the sub level mention for unique reference
(item12, e.g. target: dalmatian, distractor: greyhound). Nevertheless, even in these contexts there
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Figure 16: Utterance probabilities across different conditions. Columns indicate utterances, rows
indicate data type (empirical proportion, MAP estimates of posterior predictives for full model
with cost and non-deterministic semantics.

is a non-negligible proportion of basic level mentions (28%). In the remaining contexts, where the
sub and basic level are equally informative, there is a clear preference for the basic level.

What explains these preferences? In order to test for effects of informativeness, length, fre-
quency, and typicality on nominal choice we conducted a mixed effects logistic regression predicting
sub over basic level mention from centered predictors for the factors of interest and the maximal
random effects structure that allowed the model to converge (random by-speaker and by-target
intercepts).

Frequency was coded as the difference between the sub and the basic level’s log frequency, as
extracted from the Google Books Ngram English corpus ranging from 1960 to 2008.

Length was coded as the ratio of the sub to the basic level’s length. We used the mean empirical
lengths in characters of the utterances participants produced. For example, the minivan, when
referred to at the subcategory level, was sometimes called “minivan” and sometimes “van” leading
to a mean empirical length of 5.71. This is the value that was used, rather than 7, the length
of “minivan”. That is, a higher frequency difference indicates a lower cost for the sub level term
compared to the basic level, while a higher length ratio reflects a higher cost for the sub level term
compared to the basic level.13

Typicality was coded as the ratio of the target’s sub to basic level label typicality.14 That is,
the higher the ratio, the more typical the object was for the sub level label compared to the basic
level; or in other words, a higher ratio indicates that the object was relatively atypical for the basic
label compared to the sub label. For instance, the panda was relatively atypical for its basic level

13We replicate the well-documented negative correlation between length and log frequency (r = −.49 in our dataset).
14Typicalities were elicited in a separate norming study that was identical in procedure to that of Exp. 1a. See

Appendix F for details about the study.
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Figure 17: Proportion of sub level (over sub and basic level) terms across conditions. Left: when
the sub length is relatively short (.67,1.82] or long [1.82,4.3) compared to the basic level term.
Right: when the target object was relatively more [1.06,1.91) or less (.88,1.06] typical for the sub
compared to the basic level term. Intervals were generated by splitting data into groups of roughly
equal numbers of observations.

“bear” (mean rating 0.75) compared to the sub level term “panda bear” (mean rating 0.98), which
resulted in a relatively high typicality ratio.

Informativeness condition was coded as a three-level factor: sub necessary, basic sufficient,
and super sufficient, where item22 and item23 were collapsed into basic sufficient. Condition was
Helmert-coded: two contrasts over the three condition levels were included in the model, comparing
each level against the mean of the remaining levels (in order: sub necessary, basic sufficient, super
sufficient). This allowed us to determine whether the probabilities of type mention for neighboring
conditions were significantly different from each other, as suggested by Figure 16.

The log odds of mentioning the sub level term were greater in the sub necessary condition than
in either of the other two conditions (β = 2.05, SE = .17, p < .0001), and greater in the basic
sufficient condition than in the super sufficient condition (β = .54, SE = .15, p < .001), suggesting
that the contextual informativeness of the sub level mention has a gradient effect on utterance
choice.15 There was also a main effect of typicality, such that the sub level term was preferred for
objects that were more typical for the sub level compared to the basic level description (β = .4.84,
SE = 1.32, p < .001, see Figure 17). In addition, there was a main effect of length, such that as
the length of the sub level term increased compared to the basic level term (“chihuahua”/“dog”
vs. “pug”/“dog”), the sub level term was dispreferred (“chihuahua” is dispreferred compared to
“pug”, β = −.95, SE = .27, p < .001, see Figure 17). The main effect of frequency did not reach
significance (β = .07, SE = .10, p < .51).

Unsurprisingly, there was also significant by-participant and by-domain variation in sub level

15Importantly, model comparison between the reported model and one that subsumes basic and super under the
same factor level revealed that the three-level condition variable is justified (χ2(1) = 12.82, p < .0004), suggesting
that participants don’t simply revert to the basic level unless contextually forced not to.

36



term mention. For instance, mentioning the sub over the basic level term was preferred more in
some domains (e.g. in the “candy” domain) than in others. Likewise, some domains had a greater
preference for basic level terms (e.g. the “shirt” domain). Using the super term also ranged from
hardly being observable (e.g. the “flower” domain) to being used more frequently (e.g. in the
“table” and “car” domain).

We thus replicate the well-documented preference to refer to objects at the basic level, which
is partly modulated by contextual informativeness and partly a result of the basic level term’s
cognitive cost and typicality compared to its sub level competitor.

Perhaps surprisingly given the previous literature, we did not observe an effect of frequency
on sub level term mention. This may have a number of reasons. For instance, the modality of
the experiment may have mattered here: the current study was a written production study, while
most studies that have identified frequency as a factor governing production choices are spoken
production studies (cite cite). It may be that the cognitive cost of typing longer words may be
disproportionately higher than that of producing longer words in speech, thus obscuring a potential
effect of frequency.

5.2 Non-deterministic RSA for nominal choice

Here we show that non-deterministic RSA as presented in Section 2.2 can be straightforwardly
extended to modeling the choice of taxonomic level of reference. We include three modifications,
while leaving the general framework as is. The first modification concerns the utterance alternatives.
The second concerns the elicited typicality values and the resulting fidelity values. The third
concerns the cost function. We briefly elaborate on each in turn.

Utterance alternatives. Whereas the modifier choice model treats all individual features and
feature combinations represented in the display as utterance alternatives, the nominal choice model
considers only the three different levels of reference to the target as alternatives, e.g., dalmatian, dog,
animal. That is, assuming a German Shepherd as a distractor, German Shepherd is not considered
an alternative. This has consequences for the assumed fidelity values, which we turn to next. [jd:
we should probably discuss this in the GD? ie, if we also assumed distractor labels as alternatives,
we would have to do the rescaling – would results be different? or the othe rway round: if we
assume in modifier choice only the target’s features are available as alternatives, would results be
different?]

Fidelity values. Just as we did for capturing color typicality effects in Section 4.2, we elicited
empirical typicality values for object-utterance combinations.16 For each display, we know the
typicality of each object in the display as an instance of the three potential target utterances
(capturing, for instance, that the word “dog” describes a dalmatian better than a grizzly bear, but
it also describes a grizzly bear better than a tennis ball). This allows us to use the typicality values
as fidelity values directly, without rescaling as was necessary in the modifier choice model.

Cost function. Recall the pragmatic speaker’s utility function from Section 2.2, where the
weighted informativeness term λ lnPL0(o|u) traded off against the weighted utterance cost βcc(u).
In the modifier model we assumed a constant cost for each added modifier. Because all utterance

16See Appendix F for details of typicality elicitation experiment.
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Figure 18: Literal listener probability of choosing the target under different typicalities of the
target (x-axis) or the distractors (color) for the observed utterance. For simplicity we assume equal
typicality of both distractors. The remaining probability mass for each case is thus uniformly
distributed over both distractors.

alternatives in the nominal choice model have word length 1, we update the cost function to be
composed of each utterance’s length ĉl and frequency ĉf (as described in the previous section),
weighted by free parameters βf and βl :

PS1(u|o) ∝ eλ lnPL0
(o|u)+βf ĉf+βlĉl) (3)

To understand the qualitative behavior of the model, we briefly delve into two aspects of the
model: first, the effect of typicality on the literal listener (and, in consequence via the pressure to
be informative) the speaker. And second, the effect of cost (utterance length and frequency) on
the speaker.

5.2.1 Typicality effects

Literal listener behavior. The literal listener’s probability of choosing the target under different
typicalities for the observed utterance are shown in Figure 18. In general: as the target’s typicality
as an instance of the utterance increases and the distractors’ typicality decreases, the probability of
the literal listener choosing the target increases. Subordinate level terms tend to fall in the upper
right quadrant of this graph. Basic level terms in the sub necessary conditions tend to fall in the
lower right quadrant, while basic level terms in the basic sufficient conditions tend to fall in the
upper right quadrant as well.

Pragmatic speaker behavior. To understand the effect of typicality on the speaker’s behavior
it is useful to think about the problem of deciding which taxonomic level to refer at in terms of
typicality gain, as we did in Section 4 for the choice between modified and unmodified expression.
There, we found that relatively large target (compared to distractor) typicality gains in going from
unmodified to modified expressions compared resulted in greater probability of overmodification.
Here we observe the same effect in going from a higher (less specific) to a lower (more specific)
taxonomic level. This can be seen in Figure 19, which shows the probability of each utterance (sub,
basic, or super) as a function of absolute target typicality as well as target typicality gain. Target
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Figure 19: Pragmatic speaker probability of choosing each utterance (sub, basic, super) under
varying absolute target sub typicalities (x-axis) and target typicality gains (y-axis), assuming equal
typicality values for both distractors. Rows indicate different simulated conditions.

typicality gain is the difference between the target’s sub level typicality and the target’s basic level
typicality. Probabilities are shown for contexts with three items, always assuming λ = 7, but
manipulating distractor typicality to simulate conditions analogous to our experimental conditions
sub necessary, basic sufficient, and super sufficient. Simulated distractor typicalities for sub, basic,
and super level reference are shown in Table 9.

The blue areas in the graph indicate highest-probability regions. For example, as expected in
the sub necessary condition, the sub level term is the most likely one. However, in certain cases
the basic level term also receives non-zero probability, notably when the target is a better instance
of the basic than the sub level term, or (not pictured) when the typicality of the distractor as an
instance of the basic level term is very low (e.g., the typicality of the koala bear as an instance
of ”bear” was only 0.50). Indeed, the grizzly (with high typicality for basic level “bear”, .97) is
referred to as “bear” rather than “grizzly bear” in 85% of sub necessary conditions when the koala
is the distractor.
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Table 9: Simulated distractor typicality (fidelity) values for sub, basic, and super level utterances in
simulated conditions. In contrast to the actual experimental conditions, we assume equal typicality
values for both distractors.

Condition
sub necessary basic sufficient super sufficient

Utterance
sub 0 0 0
basic .8 .1 0
super .8 .8 0

In the basic sufficient conditions, sub level reference is nevertheless strongly predicted when
target sub typicality gain is positive (i.e., when the target is a much better instance of the sub than
of the basic level term). An example of such a case is the panda bear, who received a sub level
typicality of .98 and a basic level typicality of only .75. Indeed, even when basic level reference was
sufficient, the panda was referred to as the “panda” 81% of the time.

These patterns mirror the typicality effects obtained via the mixed effects regression.

5.2.2 Cost effects

The additional effect of cost on nominal choice is straightforward: the costlier an utterance (relative
to its alternatives), the less likely it is to be used. This pattern, too, is one observed in the mixed
effects regression. For instance, the (short, less costly) pug is almost three times as likely as the
(long, more costly) German Shepherd to be referred to by its subordinate level term in the basic
sufficient and super sufficient conditions, where subordinate level reference is unnecessary.

In Section 5.2 we showed that non-deterministic RSA captures the right kinds of qualitative
effects as observed in the mixed effects regression. In the next section we evaluate how well the
model captures nominal choice preferences quantitatively.

5.3 Model evaluation: nominal choice

In order to evaluate non-deterministic RSA for nominal choice, we repeated the same Bayesian data
analysis as reported in Section 3.2 and Section 4.2 to generate model predictions and infer likely
parameter values. We did so by conditioning on the observed production data (coded into sub,
basic, and super level mentions as described above) and integrating over the three free parameters
λ ∼ U(0, 20), βf ∼ U(0, 5), βl ∼ U(0, 5).

Point-wise maximum a posteriori (MAP) estimates of the model’s posterior predictives for each
combination of utterance and informativeness condition (collapsing across different items) are com-
pared to empirical data in Figure 16. The model clearly captures the preference towards sub level
mentions in the sub necessary conditions and the basic level preference in all other conditions. It
also captures the further decrease in sub level mentions in the super sufficient condition. However,
it does overpredict super level mentions, though not as badly as models that either assume a deter-
ministic semantics or that ignore utterance cost.17 At this level, the model achieves a correlation of

17The reader is referred to Appendix G for a comparison of the models containing a) only informativeness with de-
terministic semantics; b) only informativeness with non-deterministic semantics; c) informativeness with deterministic
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Figure 20: Scatterplot of by-target empirical utterance proportions against model posterior predic-
tive MAP estimates. Gray line indicates perfect correlation line.

r = .94. Computing correlations additionally on the by-target level yields a correlation of r = .84
(see also the scatterplot in Figure 20).

Parameter posteriors are shown in Figure 21. Both informativeness and length receive significant
weight. In contrast, the effect of frequency appears to be much weaker with a MAP of .1 and the
HDIs overlapping with 0. This mirrors the null effect of frequency found in the regression analysis.
However, a large number of cases also received a non-zero frequency weight.

In order to ascertain whether typicality as incorporated in the non-deterministic semantics was
indeed contributing to the explanatory power of the model, we ran an additional Bayesian data
analysis with an added typicality weight parameter βt ∈ [0, 1]. This parameter interpolated between
empirical typicality values (when βt = 1) and deterministic (i.e., 0 or 1) a priori values based on the
true taxonomy (when βt = 0). We found a MAP estimate for βt of .95, HDI = [0.82,.99], strongly
indicating that it is useful to incorporate empirical typicality values and thus providing further
support for the value of non-deterministic truth functions in modeling referential expressions.

6 General Discussion

6.1 Summary

How do speakers choose a referring expression? Here we have shown that they do so by trading off
various factors: the contextual informativeness of the referring expression on the one hand, and the
cognitive cost of the expression on the other. Importantly, computing contextual informativeness
with respect to a non-deterministic underlying semantics was crucial for capturing various aspects
of speakers’ referring behavior. First, the non-deterministic semantics allowed us to capture the
basic well-documented asymmetry for speakers to be more likely to redundantly use color adjectives

semantics and cost; d) informativeness with non-deterministic semantics and cost (the current model).
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Figure 21: Posterior distribution over model parameters. Maximum a posteriori (MAP) βf = 0.10,
95% highest density interval (HDI) = [0.002,0.95]; MAP βl = 1.85, HDI = [1.23,2.65]; MAP λ =
9.19, HDI = [7.72,10.80].

rather than size adjectives. In addition, it predicted an interaction between sufficient dimension
and scene variation on the probability of redundancy, which was very clearly borne out in the data:
increased scene variation resulted in a much greater increase in redundant color than in redundant
size adjective use. Finally, the non-determinism in the semantics gave rise to well-documented
effects of typicality in both modifier choice and noun choice. A modifier was more likely to be
mentioned redundantly when the object was a substantially less good instance of the unmodified
than of the modified expression. Analogously, a noun at a taxonomically lower level than necessary
for establishing reference was more likely to be mentioned when the object was a substantially less
good instance of the higher than of the lower level.

We have thus shown that with one key innovation – a non-deterministic semantics – one can
retain the assumption that speakers rationally trade off informativeness and cost of utterances in
language production. Rather than being wastefully overinformative, adding redundant modifiers
or referring at a lower taxonomic level than strictly necessary is in fact informative when the
prima facie sufficiently informative expression is substantially noisier than its redundant/overly
specific counterpart. This innovation thus not only provides a unified explanation for a number of
key patterns within the overinformative referring expression literature that have thus far eluded a
unified explanation; it also extends to the domain of nominal choice.

In the following we discuss a number of intriguing questions this work raises and avenues for
future research that it suggests.

6.2 ‘Overinformativeness’

This work challenges the traditional notion of overinformativeness in the linguistic and psycholog-
ical literature (Engelhardt, Bailey, & Ferreira, 2006b; ?, ?). The reason that redundant referring
expressions became interesting for psycholinguists to study is because they seem to constitute a
clear violation of rational theories of language production. For example, Grice’s Quantity-2 maxim,
which asks of speakers to “not make [their] contribution more informative than is required” (Grice,
1975), appears violated by any redundant referring expression – if size is the only feature that
distinguishes the target object from the rest, the mention of color seems more informative than
required.

This conception of (over-)informativeness assumes that all modifiers are born equal – i.e., that
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there are no a priori differences in the utility of mentioning different properties of an object.
Under this conception of modifiers, there are hard lines between modifiers that are and aren’t
informative in a context. However, what we have shown here is that under a non-deterministic
semantics, a modifier that would be regarded as overinformative under the traditional conception
may nevertheless add some information about the referent. In particular, the more visual variation
there is in the scene and the less noisy the redundant modifier is compared to the modifier that
selects the dimension that uniquely singles out the target, the more information it adds about
the referent, and the more likely it therefore is to be mentioned. This work thus challenges the
traditional notion of utterance overinformativeness by providing an alternative that nicely captures
the quantitative variation observed in speakers’ production in a principled way while still assuming
that speakers are aiming to be informative.

What, then, would count as an overinformative utterance under non-deterministic RSA? The
answer is simple: the less expected the use of a redundant modifier is (given knowledge of utterance
noise and scene variation), the more the use of that modifier will be considered overinformative.

6.3 Comprehension

While the account proposed in this paper is not directly concerned with predicting listeners’ be-
havior in interpreting referring expressions, it can be extended to do so relatively straightforwardly.
RSA models typically assume that listeners, in interpreting utterances, are doing so by reasoning
about their model of the speaker. In this paper we have provided precisely such a model of the
speaker. In what way should the predicted speaker probabilities enter into comprehension? Here
we can make a direct connection to surprisal theory in sentence processing (?, ?), where it has been
shown that the effort involved in processing a sentence is a function of how surprising that sentence
is under the listener’s language model. While in these studies surprisal is usually estimated from
syntactically parsed corpora, here we are providing a speaker model from which we can derive
estimates of pragmatic surprisal. Generally, the more likely a redundant utterance is, the easier it
should be to process in context. We have shown that redundant expressions are more likely than
minimal expressions when the distinguishing dimension is relatively noisy and scene variation is
relatively high. In situations like these, one would thus expect the redundant expression to be
easier to process than in cases where the redundant expression is relatively less likely.

Is there evidence that listeners do behave in accordance with this prediction? While we have
not run processing studies ourselves, we can look into the literature. Indeed, there is evidence
that in situations where the redundant modifier does provide some information about the referent,
listeners are faster to respond and select the intended referent when they observe a redundant
referring expression than when they observe a minimal one (Arts et al., 2011; Paraboni et al.,
2007). However, there is also evidence that redundancy sometimes incurs a processing cost: both
Engelhardt, Demiral, and Ferreira (2011) and Davies and Katsos (2013) (Exp. 2) found that listeners
were slower to identify the target referent in response to redundant compared to minimal utterances.
It is useful to examine the stimuli they used. In the Engelhardt et al study, there was only one
distractor that varied in type, i.e., type was sufficient for establishing reference. This distractor
varied either in size or in color. Thus, scene variation was very low and overinformative expressions
therefore likely surprising. Interestingly, the incurred cost was greater for redundant size than for
redundant color modifiers, in line with the RSA predictions that color should be generally more
likely to be used redundantly than size. In the Davies et al study, the ‘overinformative’ conditions
contained displays of four objects which differed in type. Stimuli were selected via a production
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Table 10: Fidelity across models alongside the effects from Table 2 that each model captures.

Exp. Model Fidelity level How obtained Effect(s)

1 basic non-
deterministic

modifier type inferred color/size asymmetry &
scene variation

1 typicality (modi-
fied/unmodified)

utterance-object elicited (nominal, color)
and inferred (size)

color/size asymmetry,
scene variation, & color
typicality

2 typicality (level
of reference)

utterance-object elicited basic level preference &
subordinate level mention

pre-test: only those objects that in isolation were not referred to with a modifier were selected for
the study. That is, stimuli were selected precisely on the basis that redundant modifier use would
be unlikely.

While the online processing of redundant referring expressions is yet to be systematically ex-
plored under the non-deterministic RSA account, this cursory overview of the patterns reported
in the existing literature suggests that pragmatic surprisal (i.e., negative log-transformed speaker
probabilities) may be a plausible linking function from model predictions to processing times.

6.4 Fidelity

The model crucially relies on a non-deterministic semantics to capture the effects we have reported
in this paper. But what is the nature of this non-determinism? What does it represent? For the
purpose of Exp. 1 (modifier choise), fidelity initially applied at the modifier type level. The semantics
of modifiers was underlyingly truth-conditional and the fidelity term captured the probability that
a modifier’s truth conditions would accidentally be inverted. This model included only two fidelity
terms, one for size and one for color. We then extended the notion of fidelity to apply at the level
of utterance-object combinations (e.g., golf ball vs. pink golf ball as applied to a pink golf ball)
to account for color typicality effects. In this instantiation of the model, fidelity differed for every
utterance-object combination and captured how good of an instance of an utterance an object was.
Similarly, in Exp. 2 (nominal choice) fidelity differed for every utterance-object combination (e.g.,
dog vs. dalmatian as applied to a dalmatian). This is summarized in Table 10.

What we have said nothing about thus far is where these numbers come from; in particular,
which aspects of our experience – linguistic, perceptual, conceptual, communicative – they repre-
sent. We will offer some speculative remarks and directions for future research here.

First, it is possible that the numbers represent the difficulty associated with verifying whether
the property denoted by the utterance holds of the object. This difficulty may be perceptual –
for example, it may be relatively easier to visually determine of an object whether it is red than
whether it it is big. Similarly, at the object-utterance level, it may be easier to determine of a
yellow banana than of a blue banana whether it exhibits banana-hood, in consequence yielding a
lower typicality value for a blue banana than for a yellow banana as an instance of banana. It may
also be conceptual – for example, it may be easier to determine whether a box belongs to John
than whether XXX.

Another possibility is that the numbers represent aspects of agents’ prior beliefs (world knowl-
edge) about the correlations between features of objects. For example, conditioning on bananahood
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holding of objects and asking for the relative probabilities of various colors obtaining in that set
will yield a high number for yellow and a low one for blue.18

Another hypothesis is that the numbers capture the past probability of communicative success
in using a particular utterance (e.g., banana) to refer to an object with a particular set of features
(e.g., blue bananas vs. yellow bananas). However, this probability is likely itself not independent
of the first two possibilities discussed.

Finally, it is also possible that the numbers are simply an irreducible part of the lexical entry of
each utterance-object pair. This seems unlikely, given that this would require a separate number
for each utterance and object token. It also suggests that the numbers should not be updated in
response to further exposure of objects. For example, if the numbers were a fixed component of
the lexical entry banana, then even being exposed to a large number of blue bananas should not
change the value. This seems unlikely but deserves to be investigated further.

6.5 Audience design

One question which has plagued the literature on language production is that of whether, and to
what degree, speakers actually tailor their utterances to their audience (Clark & Murphy, 1982;
Horton & Keysar, 1996; Brown-Schmidt & Heller, 2014). This is also known as the question of
audience design. With regards to redundant referring expressions, the question is whether speakers
produce redundant expressions because they can’t help it (i.e., due to internal production pressures)
or specifically because it is helpful for their interlocutor (i.e., due to considerations of audience
design).

Non-deterministic RSA seems to make a claim about this issue (hm, I’m not sure about this):
the non-determinism is located in the literal listener component, with respect to which speakers are
trying to be informative. That is, it would seem that speakers produce referring expressions that are
tailored to their listeners. However, this is misleading. The ontological status of the literal listener
is as a “dummy component” that allows the pragmatic recursion to get off the ground. “Actual”
pragmatic listeners are, in line with previous work, more likely fall into the class of L1 listeners;
listeners who reason about the speaker’s intended meaning via Bayesian inference (M. C. Frank
& Goodman, 2012; Goodman & Stuhlmüller, 2013). Thus, the RSA model as formulated here
remains agnostic about whether the speaker’s (over)informativeness should be considered as geared
towards listeners or simply a production-internal process.

6.6 Other factors affecting redundancy

Non-deterministic RSA as presented in this paper straightforwardly accounts for effects of typicality,
cost, and scene variation on redundancy in referring expressions. However, other factors have
been identified as contributing to redundancy. For example, Rubio-Fernandez (2016) has shown
that colors are mentioned more often redundantly for clothes than for geometrical shapes. Her
explanation: knowing an object’s color is generally more useful for clothing than it is for shapes.
While she doesn’t provide a detailed explanation for why this is the case, it is plausible that agents’
knowledge of goals may be relevant here. For example, knowing the color of clothing is relevant
to the goal of deciding what to wear or buy. In contrast, knowing the color of geometrical shapes
is rarely relevant to any everyday goal agents might have. While the RSA model as implemented

18Though these probabilities cannot directly match up with the elicited typicality values, given that probabilities
will have to sum up to 1, while typicality values were not normalized.
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here does not accommodate an agent’s goals, it can be extended to do so via projection functions,
as has been done for capturing figurative language use (e.g., Kao, Wu, Bergen, & Goodman, 2014)
or question-answer behavior (Hawkins, Stuhlmüller, Degen, & Goodman, 2015). This should be
explored further in future research.

[jd: a note on incrementality? eg, pechmann says incrementality is to blame for redundancy: we
retrieve words when we can, and colors are easier to retrieve, so we throw them out there regardless
of whether or not they’re redundant. The problem with this is that this makes a prediction about
the order of adjectives; in particular, the preferred order should be reversed. Pechmann does find
some instances of this, but not very many. But there are other ways incrementality could play
a role. For example, throwing out the color word may help when the noun is hard to retrieve.
This predicts that in languages with post-nominal adjectives, where you can’t use this as a delay
strategy for holding off on planning the noun, there should be less color redundancy; indeed, Rubio-
Fernandez 2016 shows this for Spanish. The dynamic nature of language processing plays a role in
other ways, too: it allows us to update our beliefs about individual speakers’ use of modifiers and
generate better expectations about upcoming input. For example, Pogue et al 2016 have shown
that listeners, after being exposed to consistently overinformative speakers, stop drawing early
contrastive inferences based on modifier use.]

6.7 Extensions to other language production phenomena

In this paper, we have focused on providing an account of content selection (Gatt et al., 2013) in
modified referring expressions on the one hand (i.e., when to mention an object’s size or color)
and in nominal referring expressions on the other (i.e., at which taxonomic level to refer to an
object). Future work should investigate whether these models can be merged to jointly account
for the choice of content expressed in modifiers and in nouns. Further, in order to scale up to
more naturalistic conversational domains it will be necessary to consider richer language models.
Recall that we treated different color names (e.g., pink and purple) as simply a color mention.
Similarly, we treated different nouns that clearly referred at the same level (e.g., grizzly and grizzly
bear) as simple sub level mentions. For the purpose of predicting not only content selection but
also utterance choice, a richer inventory of utterance alternatives will need to be explored. An
interesting question is how this approach can be extended to other referring expressions mentioned
in the Introduction, e.g., names, pronouns, or referring expressions with post-nominal modification.

However, future research should also investigate the very intriguing potential for this approach to
be extended to any language production phenomenon that involves content selection. For example,
there is a large literature on optional instrument mentions. Brown and Dell (1987) showed that
atypical instruments are more likely to be mentioned than typical ones – if a stabbing occurred
with an icepick, speakers prefer ”The man was stabbed with an ice pick” rather than “The man
was stabbed”. If instead a stabbing occurred with a knife, “The man was stabbed” is preferred
over ”The man was stabbed with a knife”). This is very much parallel to the case of atypical color
mention. While Brown and Dell (1987)’s account of the effect is that speakers do or don’t mention
instruments for speaker-internal ego-centric reasons, later evidence suggests an explanation that is
rather more driven by audience design considerations. Lockridge and Brennan (2002) replicated
the original finding in a story retelling scenario while also manipulating whether or not addressees
saw pictures of the actions. Without pictures, speakers produced even more mentions of atypical
objects (presumably to prevent addressees from forming a faulty mental model of the situation),
suggesting that the typicality effect is in fact an audience design effect.
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More generally, the approach should extend to any content selection phenomenon that affords
a choice between a more or less specific chunk of linguistic signal. Whenever the chunk adds
sufficient information, it should be included. This is related to surprisal theories of production like
Uniform Information Density (UID, Jaeger, 2006; Levy & Jaeger, 2007; A. Frank & Jaeger, 2008;
Jaeger, 2010), where it has been found that speakers are more likely to omit linguistic signal if the
underlying meaning or syntactic structure is highly predictable. Importantly, UID diverges from
ours in that ours is (thus far) an account of content selection, while UID is an account of the choice
between meaning-equivalent alternative utterances.

6.8 Conclusion

In conclusion, we have provided an account of redundant referring expressions that challenges the
traditional notion of overinformativeness, unifies multiple language production literatures, and has
the potential for many further extensions. For the time being, we take this work to suggest that,
rather than being wastefully overinformative, speakers are rationally redundant.

[jd: What else needs to be included in GD?]

A Effects of fidelity on utterance probabilities

Here we visualize the effect of fidelity on the probability of producing the simple insufficient, simple
sufficient, or complex redundant referring expression to refer to the target in contexts like Figure
1a and Figure 1b, under varying λ values, in Figure 22. This constitutes a generalization of Figure
3, which is duplicated in row 6.

B Model exploration for Koolen scene variation contexts

In Figure ?? we visualize model predicted probability of redundantly using color under varying λ
values (columns), color fidelity values (rows), and size fidelity values (x-axis), for the high and low
variation conditions in their Exp. 1 (where type was sufficient for reference) and Exp. 2 (where
type and size was necessary for reference). The assumed type fidelity is .9.

C Validation of interactive web-based written production paradigm

make sure to discuss why overall we have lower overspecification rates – probably because of color
typicality!! we had pretty typical colors in our stimuli

D Pre-experiment quiz

Before continuing to the main experiment, each participant had to correctly respond “True” or
“False” to the following statements. Correct answers are given in parentheses after the statement.

• The speaker can click on an object. (False)

• The listener wants to click on the object that the speaker is telling them about. (True)
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Figure 22: Utterance probability as a function of sufficient and insufficient utterance fidelities
(x-axis, colors) and varying λ (rows).
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Figure 23: Probability of redundant color mention as a function of size fidelity (x-axis), color fidelity
(rows), and varying λ (columns).
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• The target is the object which has the red circle around it. (False)

• Only the speaker can send messages. (False)

• There are a total of 72 rounds. (True)

• The locations of the three objects are the same for the speaker and the listener. (False)

E Item types

The following table lists all 36 object types from Exp. XXX and the colors they appeared in:

Object Colors Object Colors

avocado black, green balloon pink, yellow
belt black, brown bike purple, red
billiard ball orange, purple binder blue, green
book black, blue bracelet green, purple
bucket pink, red butterfly blue, purple
candle blue, red cap blue, orange
chair green, red coat hanger orange, purple
comb black, blue cushion blue, orange
flower purple, red frame green, pink
golf ball blue, pink guitar blue, green
hair dryer pink, purple jacket brown, green
napkin orange, yellow ornament blue, purple
pepper green, red phone pink, white
rock green, purple rug blue, purple
shoe white, yellow stapler purple, red
thumb tack blue, red tea cup pink, white
toothbrush blue, red turtle black, brown
wedding cake pink, white yarn purple, red

F Experiment 2a: typicality norms for Experiment 2

Analogous to the color typicality norms elicited for utterances in Exp. 1, we elicited typicality
norms for utterances in Exp. 2. The elicited typicalities were used in the Bayesian Data Analysis
reported in Section 5.3.

F.0.1 Methods

Participants We recruited 240 participants over Amazon’s Mechanical Turk who were each paid
$0.50 for their participation.

Procedure and materials On each trial, participants saw one of the images used in Exp. 2
and were asked to answer the question “How typical is this for an X ?” on a continuous slider with
endpoints labeled “very atypical” to “very typical.” X was a nominal referring expression. In
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contrast to Exp. 1a, where we only elicited typicality norms for utterance-object pairs where the
object was in the extension of the utterance under a deterministic semantics (e.g., heredalmatian,
dog, or animal for a dalmatian), in this norming study we also elicited norms for utterance-object
pairs where that was not clearly the case (e.g., a bear for a bison, a car for an ambulance, or a
snack for a lobster). However, we did not test all utterance-object combinations, which would have
led to an explosion of conditions. Instead, we tested each target object with its three utterances
(e.g., the dalamtian was paired with dalmatian, dog, and animal ; the pug was paired with pug, dog,
and animal, etc.). That yielded a total of 108 combinations – four targets in nine domains with
three utterances each. We further tested each distractor item that shared the target’s superclass
category (dist-samesuper, e.g., cows share the superclass category animal with dogs) on both the
basic level and the super level term (e.g., dog for cow and animal for cow), for a total of 469
combinations. Finally, we also tested each distractor of a different super category than the target
on the target’s super level term (dist-diffsuper, e.g., animal for socks). This yielded another 168
combinations. Overall, we obtained typicality norms for 745 object-utterance combinations. All
other object-utterance combinations were assumed to have typicality 0.

Each participant rated 45 items: 7 targets, 10 dist-diffsuper, and 28 dist-samesuper cases. These
were randomly sampled from the overall pool of items in each category.

F.0.2 Results and discussion

Each combination was rated at least 5 times and at most 27 times. We coded the slider endpoints
as 0 (“very atypical”) and 1 (“very typical”). In order to evaluate the model, we used each object-
utterance combination’s typicality mean as input.

Typicality ratings by item type (target, dist-samesuper, dist-diffsuper) and utterance type (sub,
basic, super) are visualized in Figure 24. As expected, typicality was close to 0 for dist-diffsuper
cases and for sub/basic terms used with dist-samesuper cases. However, even for these cases, there
was some variation.

For targets, typicality of the object for the utterance decreased with increasing reference level,
mirroring the typicality ratings obtained for Exp. 1 – a particular object is a better instance of the
more specific term than of the more general term for that object.

G Nominal choice model comparison

[jd: This isn’t model comparison in the technical sense, just a side-by-side look at the different
models. Leave it in or throw out?]

Here we report correlations, MAP estimates of posterior predictives collapsed across targets
and items, and scatterplots of posterior predictive MAP estimates on the by-target level for the
model containing a) only informativeness with deterministic semantics; b) informativeness with
deterministic semantics and cost; c) only informativeness with non-deterministic semantics; d)
informativeness with non-deterministic semantics and cost (the model reported in the main text).
Table 11 shows correlations. Figure 25 shows the collapsed patterns for utterance choice. Figure
26 shows the scatterplots.
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Figure 24: Boxplots of typicality ratings. The lower and upper hinges correspond to the first
and third quartiles (the 25th and 75th percentiles). Upper and lower whiskers extend from the
respective hinge to the highest and lowest values that are within 1.5 times the inter-quartile range
of the hinge. Outliers are indicated as gray dots.

Table 11: Correlations (r and R2) of posterior predictive MAPs of four different models (see main
text) with empirical proportions of sub, basic, and super level choices.

Model
Semantics deterministic deterministic non-deterministic non-deterministic
Cost no yes no yes

r
collapsed .85 .88 .86 .94
by-target .63 .71 .71 .84

R2 collapsed .72 .77 .74 .89
by-target .40 .51 .51 .70
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Figure 25: Utterance probabilities across different conditions. Columns indicate utterances, rows
indicate data type (empirical proportion, MAP estimates of posterior predictives for the four dif-
ferent models).
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Figure 26: Scatterplot of by-target empirical utterance proportions against model posterior predic-
tive MAP estimates for the four different models. Gray line indicates perfect correlation line.
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