
IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

Implementing a BNC-Compare-able Web Corpus

William H. Fletcher
1

United States Naval Academy

Abstract

This paper details the author’s plans for and progress with compiling and analyzing a new gigaword
English corpus from the web to complement his BNC-based online database “Phrases in English”.

This new corpus represents the principal English-speaking countries in proportion to their population
and will be linguistically annotated with the CLAWS4 tagger using a PoS-tagset comparable to those
of the BNC and ANC. Parallel processing on multiple PCs will facilitate reaching the targeted size.

This corpus will continue to grow dynamically in response to actual user queries to the author’s
various web as corpus interfaces, but “snapshots” of each generation of the corpus will be preserved to
ensure replicability of results. This report on work in progress will inspire discussion of the

underlying concepts and suggestions for improvement.

 Keywords : web corpus, corpus annotation, BNC, Phrases in English

1. Concept and Background

1.1. Concept

WebAsCorpus.org (WaC) will provide an exploratory environment to investigate and

discover patterns of English words and phrases similar to my BNC-based “Phrases in

English” (PIE) site (http://pie.usna.edu and http://phrasesinenglish.org). PIE permits

search by word-form, lemma and part-of-speech-tag (PoS), with full support for

wildcards and regular expressions. There are database tables of n-grams for values of

n in the range 1-8. Search results display words and phrases matching the user’s query

along with frequency data and PoS tags; datasets can also be downloaded as tab-

separated value text files for direct import into a database or spreadsheet. Users can

view concordances of a matching word-form by clicking on it in the search results.

Other search interfaces allow one to explore PoS-n-grams, character-n-grams and

phrase-frames, i.e., sets of variants of an n-gram identical except for a single word.

Drill-down queries show variant phrases of different values of n in which the user’s

search term appears.

1 Language Studies Department, United States Naval Academy, fletcher@usna.edu. The research

described in this paper was funded in part by the Naval Academy Research Council.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

Initially WaC is aiming for quantity: to achieve the critical mass necessary for

investigating the phraseology of contemporary and emerging English it will recreate

most of the functionality of PIE with a corpus of Web documents at least ten times

larger than the BNC. It will be fully compare-able with if not truly comparable to the

BNC. Since it will not necessarily be a representative sample of English as a whole or

even of the language of the Web, frequency data may be only a rough guide to

predominant actual usage. In addition, a significant amount of noise may persist in the

corpus. Nevertheless, it should excel as an environment for discovering, studying and

documenting linguistic innovation and evolving trends in language use. In later

iterations it will be refined and made more balanced using genre detection and

boilerplate removal techniques developed by others (e.g. CLEANEVAL).2

A key element of the WaC concept is dynamic expansion weighted toward actual user

needs and interests. WaC already provides a query interface to generate concordances

directly via Microsoft’s Live Search (LS, http://live.com, formerly known as MSN

Search) application programming interface (API).3 As matching documents are

retrieved and excerpted, both the original source HTML and the plain-text document

derived from it are saved for later analysis and incorporation into the database. In

addition, query terms from user searches with WaC, PIE and KWiCFinder serve as

seeds to collect new documents for the corpus as described below.

1.2. Precursors

With the AltaVista’s (AV) debut in the final days of 1995 I recognized the Web’s

potential both for consultation directly as a corpus and for machine-readable texts to

compile offline corpora. In 1997 I piloted KWiCFinder (Fletcher 2007), a Windows

concordancer which queries AV and downloads and excerpts matching documents,

optionally saving them locally for further analysis. With KWiCFinder I have compiled

several Web corpora ranging in size up to 180 MW (Fletcher 2004b; 2007). The last

of these can be queried on the WaC website, with live generation of Web

concordances based on queries to LS.

At TALC 2002 I proposed establishing a Web Corpus Archive (WCA) and a Search

Engine for Applied Linguists (SEAL). In the conference publication I detail my vision

and compare it to alternatives (Fletcher 2004a : 285-291). In a later presentation

(Fletcher 2005) I update the concept and sketch both the path and the obstacles to a

2 In view of the ever-dropping cost of storage (one of my hosting providers now allows up to 1 TB webspace for

a few dollars a month!) it may be useful to have both “clean” and “dirty” versions of this web corpus, the latter

consisting of all raw data as downloaded. Compare e.g. the number of results for a search for *bot(s) in the clean

(249) and dirty (425) 1-gram data from my 2006 web corpus (http://webascorpus.org/searchwc.html), especially

in the “long tail” of hapaxes.

3 An API provides a protocol to query the search engine directly, specify the information desired, and receive the

results in form easily parsed by a program.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

linguistic search engine (SE). When Paul Rayson (UCREL, Lancaster University, UK)

proposed an annotated Web as corpus project to implement a similar concept (Rayson

et al. 2006), I joined enthusiastically in the effort. Since that project was not funded, I

now have revived the idea of carrying out a similar plan alone.

2. Implementing WaC

2.1. Data collection

2.1.1. Source of texts

Compilers of large Web corpora (e.g. Baroni and Kilgarriff: 2006) have frequently

relied on crawling techniques: after identifying a number of entry pages via SE

queries, their software retrieves and saves these pages, then extracts and follows links

from them, repeating the process until enough useful pages are downloaded. With

today’s inexpensive bandwidth, storage and processing power, a massive text

collection can be accumulated in a matter of hours with this discovery strategy.

In contrast, WaC relies on LS to both find and deliver candidate documents. Several

factors played a role in this decision. First, of the SEs which provide free APIs to

developers, LS is the most generous by far: it allows 10,000 queries per application id

(AppID) per IP address per day. In other words, running the query software on

multiple machines multiplies the daily quota. In contrast, Google is phasing out its API

and license conditions that would support such software, and it permits only 1000

queries daily per application for those who still have legacy keys. While Yahoo

(which has taken over and replaced the AltaVista SE) may agree to grant more than

1000 queries per day upon request, permission is by no means automatic. All three

SEs limit search result sets to 1000 items per query.

Moreover, LS provides high-quality search results, with relatively few pages from link

farms or “scraper sites”, which repeat content from or link to other pages merely for

advertising revenue.4 In addition, one can tweak the search results ranking by

adjusting on a scale of 1-100 the relative weight of parameters like exactness of match

to the search terms (e.g. to block automatic stemming), page popularity and

“freshness”, i.e. how recently a webpage was created or updated. In effect these

adjustable parameters permit a single set of query terms to match many times the

nominal limit of 1000 items. This feature is particularly valuable to deemphasize page

popularity to avoid the bias toward commercial sites so evident on Google.

LS also supports search by location, i.e. by country or even latitude and longitude.

This is more precise than search by the server’s IP address or domain, especially for

4 Whether this is due to better spam detection or smaller index size overall is unclear (F. McCown, p.c.).

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

location-independent domains like .COM, .NET and .BIZ.5 In addition, studies have

shown LS to be more responsive to changes on the Web: there is faster turnover in the

top hits returned for a given query (McCown and Nelson 2007 a and b) than with

Google or Yahoo!, and documents in the cache tend to be “fresher”, i.e. updated more

frequently.

Finally, the LS cache provides quick, reliable access to the original texts. In

documents retrieved from the cache, LS generally detects the character set encoding

accurately and converts it to UTF-8, thereby eliminating a potential source of

variability and errors.

LS also converts Adobe Acrobat PDF documents to HTML which closely reflects the

formatting of the original. While PDF does not encode the logical formatting of the text

(headings, paragraphs, captions etc.), the structure can be inferred from the converted

HTML. Each style within a PDF document is assigned to a CSS class; since the body of

the text belongs to the most frequent class, it is easy to distinguish major content from

headers and footers. Each line or column is encoded as a element with

absolute top and left positioning, which facilitates recognition of new paragraphs and

columns (greater left offset for indenting and right-hand column, greater top offset for

non-indented paragraph breaks). One problem that plagues all PDF to text converters

persists: spaces are occasionally dropped or inserted between or within words, an

artifact of the PDF encoding.

LS’ API provides direct links to the cache, and the site responds rapidly and at a high

transfer rate, permitting very efficient data collection without delays, redirections or

dead links.6 As part of the U.S. Department of Defense my institution is required to

block traffic to and from a large number of potentially “hostile” IP addresses (which

has even included the Université catholique de Louvain); by retrieving documents

from LS’ cache I can circumvent these restrictions. One final benefit is that a HEAD

request to LS’ cache server always returns the CONTENT-LENGTH, which allows one to

skip documents too large or too small to be interesting.7

Of course, LS does not offer a perfect solution. Apparently its crawls are shallower

(i.e. include fewer pages from a given site) than those of Google or Yahoo, and the

overall size of the index is smaller. Like those of its competitors, LS’ hit counts can

vary significantly across multiple instances of the same query, even reporting 0 hits for

5 The location appears to be determined by address or other geographical information on the webpage or

elsewhere on the website. Consequently sites lacking such information cannot be classified by country and are

excluded from country-specific queries.

6 Intermittently the API search interface was out of synchronization with the cache, so some searches had to be

repeated.

7 Owing to the increasing prevalence of dynamically-generated content, servers now more frequently transfer

documents in a number of “chunks”. Since each chunk reports only its own length, one must download an entire

document to know its total length.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

a very frequent phrase; the hit count typically stabilizes after a couple of repetitions of

a given query. Sporadically, especially when traffic is heavy, LS rejects an otherwise

valid AppID, forcing one to query the Web user interface (WUI) and “scrape” (i.e.

parse and extract the links from) the results page.8 Finally, there is a nuisance factor:

LS returns at most 50 results per query, but usually the result sets fall short by several

documents, necessitating re-querying.

2.1.2. Search strategy

Several approaches to selecting search terms to “seed” data collection have been

discussed in the literature (Baroni and Kilgarriff 2006; Sharoff 2005 and 2006). These

seed terms can have a crucial bearing on the composition of the resulting corpus

(Ueyama 2006). For my earliest Web corpus the 20 most frequent words in the BNC

were chosen on the assumption that they would have the least direct influence on the

content (Fletcher 2004b:194). Searching for specific content words becomes a self-

fulfilling prophecy, skewing the results toward pages in which those words are

prominent. For example, a search for morphological variants of hone to explore the

metaphoric use (hone one’s skills etc.) leads almost exclusively to websites offering

hones for brake cylinders or stone. This danger even lurks in function words: a search

for well matches primarily pages with pumps and well-drilling equipment and services.

For my 2006 Web corpus I used a different strategy to ensure variety across the

semantic spectrum in the hits: I chose “prototypical example” words from each sub-

classification of UCREL’s USAS semantic categories (Archer, Wilson and Rayson

2002:3) which are used and spelled the same in all Anglophone countries and searched

on alternate wordforms (e.g. result OR results OR resulted OR resulting). For WaC I

am using these content word search terms in conjunction with function words

specifying a low value for LS’ “exact match” parameter in order to match

morphological variants. Search terms are also drawn from my database of actual

queries from WaC, PIE and KWiCFinder.9 Any query that matches fewer than 30,000

HTML pages or 10,000 PDF pages is discarded. Finally, all pages excerpted by my LS-

based Web concordancer (http://webascorpus.org/searchwac.html) are being archived

for possible inclusion in the WaC database.

Ideally WaC will represent the entire range of native-speaker English found online,10

but how to ensure or even measure representativeness remains elusive. Toward this

goal I aim for proportional geographic representation based on population of the major

national variants of native-speaker English weighted to reduce the preponderance of

8 These idiosyncrasies occasioned much frustration while developing LS-based web concordancing for

http://webascorpus.org/searchwac.html. Cf. also McCown and Nelson (2007 a and b).

9 An alternative would be to attempt a near-random sample of the SE indices using techniques like those

proposed by Bar-Yossef Z. and Gurevich (2006) or Anagnostopoulos, Broder and Carmel (2005).

10 Leech (2007) offers a detailed discussion of the concept and challenges of “representativeness” in a web

context.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

American English on the one hand and to allow sufficient sample size of the smallest

English-speaking countries on the other. Initially, for each 100 pages sampled, 10

come from Australia, 13 from Canada, 2 each from Ireland and New Zealand, and 30

from the UK, leaving just 43 for the US.11 For each set of query terms several back-up

documents per country will be downloaded to replace any weeded out by subsequent

filtering. In addition to HTML pages, about 10% of the corpus will be from PDF files,

which typically have higher-quality text and represent specific genres of interest (e.g.

scholarly papers, print media and government documents).

2.1.3. Download and analysis

To net a billion words requires downloading and processing on the order of a million

webpages. To expedite this phase I ran a suite of programs on multiple PCs. Here I

will first describe the original plan, then the procedure that was actually followed. I

intended to use the 42 networked PCs running under Windows XP in our language

laboratory.12 The week before the practical phase of this project was to begin I found

out that a planned renovation of the facilities was being moved up by six months, so

the room had to be vacated immediately.

The original plan is outlined in this section, and the procedure actually followed is

described in 2.1.4. To simplify things as well as comply with my institution’s security

policies, a parallel processing strategy was envisioned instead of a master-slave or

peer-to-peer collaborative environment. Querying SEs and fetching and analyzing

webpages is well suited for what has been called “naturally” or even “embarrassingly”

parallel computation: the only aspects that require coordination are initial tasking,

prevention of duplicates, and data aggregation at the end. Each worker PC (wPC) is

assigned a set of query terms to fetch and process independently. Since wPCs process

a single webpage at a time and keep track of their progress through the tasklist in a

local database13 (LDB), they can be scheduled to (re)start their work after normal

11 These figures represent roughly twice the population percentages of the countries other than the US, taking

into account Canada’s large Francophone population, but disregarding other linguistic minorities in all countries.

With this formula, even NZ and IE will have roughly 20 M words each in the gigaword corpus, a useful starting

sample size. One obvious but defensible omission in this stage is the large number of countries in which standard

English is the / a national language, but not the first language of the majority. A later iteration of WaC could

include a category “commonwealth English”.

12 The most frequent reaction I hear to this plan is “why Windows?” Two important reasons: I have a fleet of

Windows machines standing idle 12 or more hours per day (and none running Linux), and I have already

programmed and assembled a suite of Windows tools for each phase of the project. As a bonus this model and

these tools can be adapted by others with similar computing environments.

13 I have found SQLite 3 (Owens 2006) an excellent performer for such tasks. It is compact (small memory

footprint, occupied only when needed) and fast, outperforming MySQL on some queries even against hundreds

of megabytes of data. Moreover, SQLite databases occupy a single file, easily copied to another computer for

analysis or uploaded to a server for data aggregation. Weaknesses are gaps in implementation of SQL (not

regular expressions!) and poorer performance in a multiuser setting with high concurrency rates.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

instructional hours and suspend it again when the computers are needed for other

purposes. It remains to be seen how many PCs can work simultaneously without

overtaxing the available 10 Mb bandwidth (1 Gb after renovation). When all workers

have completed their tasks, the data are merged and n-gram and text databases are

built. A network file server acts as central depository for seed search term lists and for

final data aggregation, and one wPC is a dedicated central MySQL server (CDB) for

duplicate prevention.

At the start of data collection, each wPC reads its search terms into the LDB and starts

querying LS with the goal of netting 100 “keeper” texts per search term pair in the

geographic proportion discussed above, with a minimum of 10% / 5 documents

oversampling per country to replace rejected ones. A list of target and corresponding

cache URLs is compiled working backwards from the last item in each hitlist.14

Before addition to the “fetchset” each URL is verified for likely productive document

length by a HEAD request to LS’ cache.15 Candidate URLs are hashed and compared

first to the LDB, then to the CDB to eliminate duplicate URLs; surviving “keeper”

URLs are added to both DBs.

Next a wPC works its way through the URLs one document at a time:

• fetch page from LS’ cache, strip HTML, normalize full text and calculate
wordcount and mean paragraph length (PL)16 in words; discard text under 500
words or with PL < 13 or > 500 (the former are likely lists or text fragments, the
latter server logs, repetitive forum postings etc)

• hash survivors and compare to LDB and CDB; discard duplicates and highly
repetitive documents, reduce boilerplate17 and create a second normalized full
text; discard documents under 500 words and near-duplicates ;18 for very long

14 i.e. starting with the 1000th or last item in each list of hits, to reduce the proportion of commercial sites or

pages with unusual salience of the search terms due to repetition, short text, SE spam etc.

15 As a guideline I have proposed 5kB minimum, 250kB maximum HTML file size (see Fletcher 2004b:198-9 for

rationale and consequences); since PDFs in LS’ cache are converted to extremely verbose HTML, the guidelines

are 10kB / 500kB respectively.

16 The following tags are assumed to start a new paragraph: division (<DIV>), paragraph (<P>), blockquote

(<BLOCKQUOTE>), two or more successive line breaks (
), heading (<H1> etc.), horizontal rule (<HR>), table

row <TR>, list item (, <DT>, <DD>), form (<form>), text area (<TEXTAREA>), select option <OPTION>, and

two or more successive line feeds in a preformatted text block (<PRE>). During normalization table cells (<TD>,

<TH>) are also separated by spaces.

17 As a simple approximation to boilerplate stripping my software finds the first and last paragraph of 13 words

or more; text preceding the former and following the latter is dropped.

18 Near-duplicates are detected with shingling and hashing techniques, surveyed and compared by Henzinger

(2006); cf also Bar-Yossef, Keidar and Schonfeld (2007). While traditional hashes can yield very different

values for texts that differ by a single byte, an intriguing new technique uses simhash, a 64-bit hash claimed to

produce similar values for similar texts (Manku et al. 2007); if the recall proves high enough, only a small subset

of the texts would require the high overhead of shingle-wise comparison.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

texts, sample a 40,000 word chunk for PoS tagging and inclusion in the WaC
database.

• preprocess survivors for input to CLAWS19 and tag them; reformat raw output
and remap tagset onto the one used by the BNC and save in two files, one of
actual word-forms, one of lemmas

• repeat for next URL

When a search term pair has been processed, verify that a proportional number and

volume of texts remain from each country, then process additional documents as

necessary. Select proportional random subset of texts for inclusion in WaC.

When its search term set is exhausted, a wPC has the HTML and six plain-text versions

of each webpage: complete text, text less boilerplate, CLAWS input text and output

text with complete C7 tagset (140 tags), and two versions of tagged text mapped onto

the BNC’s reduced tagsets (C5 tagset, 57 word-class tags, plus the new simplified set

from the BNX XML Edition comprising 11 word-class tags), in addition to the original

HTML from every page downloaded. Fortunately this ridiculous level of redundancy is

feasible thanks to the falling cost of hard disk storage (currently around $200/TB), and

it permits future reanalysis, including other approaches to stripping boilerplate, tagging

and genre recognition. From the tagged text the wPC generates 1-8-gram frequency

lists of all the texts selected for WaC, one set for each country in the sample and one

merged set. These are uploaded to the file server, and one wPC merges datasets from

all the wPCs, a lengthy process that can begin as soon as two wPCs have finished their

search term lists.

2.1.4. Details of the procedure actually followed

Due to the unexpected availability of our PC laboratory facilities, the process of

querying LS and downloading matching pages was carried out over the period of a

week on three available PCs. These PCs were on different networks, so their actions

could not be coordinated. Each PC was assigned a set of queries and tracked URLs

and MD5 hashes of the webpages downloaded in an SQLite 3 database to eliminate

local duplicates; the LS cache id of each document provided some additional

protection against duplicates when the results were merged.20 A PHP script developed

for webascorpus.org was used to query LS, retrieve matching webpages, strip HTML

tags, and save HTML and plain-text versions of each webpage. This shortcut proved

unfortunate: not only did querying and downloading become a unnecessary bottleneck

19 I am grateful to Paul Rayson and UCREL for providing access to WinCLAWS, the Windows release of the

CLAWS4 part-of-speech tagger used for tagging the BNC (http://www.comp.lancs.ac.uk/ucrel/claws/).

20 Each webpage in the LS cache has a 12-digit id number which changes each time pages are crawled and the

cache is refreshed. Since crawling took place over the period of a week instead of 1-2 days as originally

envisioned, almost 1% of the documents appeared twice among the downloads under different cache ids. These

cache ids were used as filenames, so the file system eliminated most duplicates when they were copied to a

single directory automatically unless the cache id had changed.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

due to PHP’s single-threaded model, but subsequent analysis of hash collisions and text

yield revealed serious bugs in PHP’s strip_tags() function as well. HTML to

plain-text size ratios of 100:1 and greater for over 0.2% of the roughly 800,000 pages

downloaded resulted from PHP’s “greedy” stripping of HTML tags, which clearly

deleted content as well as markup. This necessitated complete restripping and

rehashing of all webpages using Windows routines originally developed for

KWiCFinder.

While downloading was still in progress I examined webpages from each LOCATION

(country) specified in the query. Many had specific geographic references, and the

content appeared to derive primarily from commercial, government or media sources.

To ensure broader representation of Web content I submitted a portion of the

remaining queries without specifying the country. The preliminary distribution of

unique and “first-pass keeper”21 documents appears in Table I below.

Some anomalies in the distribution of PDF files (e.g. very high yield of words per

document for all countries but US) may be artifacts of the range of document types

encoded as PDF in the various countries, of the PDF-to-HTML-to-text conversion

routines, or even of my winnowing algorithms. Since these anomalies require further

study to resolve, no PDF documents are included in WaC’s first release.

A single PC was used to consolidate and process webpages from the three worker PCs.

At this stage processing entailed elimination of duplicates by URL, HTML-to-text

conversion, elimination of duplicates by MD5 hash of the entire document, generation

and merging of 1-6-gram files by country, and merging of all n-gram files into a

composite database of all countries. At this writing (August 2007) only this composite

n-gram database based on roughly half a billion tokens is available online, but search

by country should also be implemented in time for WAC3.

PoS tagging has been deferred for several reasons. First, it is very costly in terms of

computing resources, which was the original rationale for a parallel processing

approach: preprocessing of the documents into acceptable input for the CLAWS4

tagger22, tagging, and postprocessing to map the tagger output onto something

comparable to the BNC encoding requires up to 2 hours per million words on a decent

PC (AMD Athlon 64 3500+ / 1.8 GHz processor, 512 MB memory), that is about 1000

hours (= 6 weeks on one PC, vs. a single day on a lab-full of PCs) for the HTML-only

documents. Moreover, I intend to take advantage of techniques identified by

CLEANEVAL as most successful at eliminating boilerplate to restrict tagging to the

21 My program kfWinnow discards duplicates and sorts out “keeper documents” with word counts between 500

and 50,000 and average paragraph length of 13 to 500 words. Shorter documents are ignored, while longer

documents will be reviewed individually for possible excerption and inclusion.

22 CLAWS expects only lower-ASCII alphanumeric characters and sentence punctuation. Other symbols (e.g. $,

£) and upper-ASCII characters (e.g. é) must be mapped onto SGML entities. URLs are removed and reinserted

during postprocessing so they are not tagged and misinterpreted as erroneous text.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

coherent text in the documents. This likely will entail reanalyzing the original HTML

documents, a step that should precede tagging. In addition, I would like to understand

and resolve the anomalies in the PDF files outlined above. Finally, I want to find

another group of PCs to test the feasibility and efficiency of the parallel processing

approach of my original research design.

Unique documents downloaded

country type docs %
total /
country words %

total /
country

AU HTML 59,646 8.6% 104,987,928 12.7%

 PDF 11,779 12.6% 71,425 58,671,791 19.6% 163,659,719

CA HTML 75,875 11.0% 103,253,583 12.5%

 PDF 11,428 12.3% 87,303 41,944,225 14.0% 145,197,808

GB HTML 162,648 23.6% 172,776,173 20.9%

 PDF 21,615 23.2% 184,263 74,170,447 24.7% 246,946,620

IE HTML 18,542 2.7% 58,067,404 7.0%

 PDF 6,061 6.5% 24,603 53,440,750 17.8% 111,508,154

NZ HTML 18,850 2.7% 46,396,180 5.6%

 PDF 6,259 6.7% 25,109 46,276,141 15.4% 92,672,321

US HTML 230,904 33.5% 229,856,806 27.8%

 PDF 27,059 29.1% 257,963 6,396,250 2.1% 236,253,056

unspecified HTML 123,493 17.9% 112,865,921 13.6%

 PDF 8,932 9.6% 132,425 18,991,926 6.3% 131,857,847

TOTALS 783,091 1,128,095,525

 HTML 689,958 828,203,995

 PDF 93,133 299,891,530

First-pass keeper documents (not eliminated by automatic criteria)
AU HTML 30,351 9.9% 64,330,423 11.8%

 PDF 4,386 14.7% 34,737 43,365,583 17.0% 107,696,006

CA HTML 36,936 12.0% 67,734,290 12.4%

 PDF 3,558 11.9% 40,494 29,021,268 11.4% 96,755,558

GB HTML 71,468 23.3% 117,300,203 21.5%

 PDF 6,605 22.2% 78,073 50,113,983 19.6% 167,414,186

IE HTML 11,443 3.7% 34,717,520 6.4%

 PDF 3,849 12.9% 15,292 47,285,382 18.5% 82,002,902

NZ HTML 11,020 3.6% 27,514,457 5.1%

 PDF 3,336 11.2% 14,356 38,587,688 15.1% 66,102,145

US HTML 99,181 32.3% 156,308,220 28.7%

 PDF 6,152 20.7% 105,333 36,309,334 14.2% 192,617,554

unspecified HTML 46,742 15.2% 76,616,049 14.1%

 PDF 1,899 6.4% 48,641 10,643,254 4.2% 87,259,303

TOTALS 336,926 799,847,654

 HTML 307,141 544,521,162

 PDF 29,785 255,326,492

Table 1. Geographic and Document-Type Distribution

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

2.2. Deploying the WaC databases online

2.2.1. Building databases from the data

When all the data had been normalized23 and merged, MySQL databases were built

using a similar architecture to PIE. For PIE I was able to compile the databases on an

desktop machine, then copy them directly to MySQL’s data directory on the server,

which accelerated the process greatly: MySQL’s LOAD DATA INFILE syntax is much

faster than multiple inserts, and subsequently all the PC’s resources could be dedicated

to indexing and compressing the databases. This approach is only possible with

cooperation from the system administrator, as access to the database directory on the

server poses a potential security risk. In contrast, both my private hosting companies

only permit me to upload SQL scripts to build and index databases from scratch, an

arduous task in a hosting environment in which all resources must be shared and long-

running scripts are suspended by the host. For this reason I have limited the tables of

n-grams to those occurring 3 or more times for all but n = 1. Table 2 illustrates the

both the savings and the losses this practical decision entails. In later iterations I will

build separate tables of the low-frequency n-gram to enable their study without

hampering overall search performance for higher-frequency items.

 1-grams 2-grams 3-grams 4-grams 5-grams 6-grams

total 3,123,996 57,140,986 210,320,192 359,073,268 440,426,238 471,511,994

1x 57.0% 67.0% 79.5% 87.7% 92.5% 94.8%

2x 14.0% 13.1% 10.2% 7.3% 5.1% 3.9%

≥ 3x 29.1% 19.9% 10.3% 5.0% 2.3% 1.3%

Table 2. Frequency Distribution of 1-6-grams in WaC (518,129,710 tokens)

PIE supports full-text search to return a random set of concordances of a given n-gram.

Unfortunately MySQL’s full-text indexing is both relatively limited and slow. In

particular, it ignores stopwords, words shorter than 4 characters and those occurring in

more than 50% of the fields indexed,24 all factors which make it worthless for finding

phrases with most function words. For phrases including stopwords PIE simply does a

wildcard search in a randomized version of the corpus. Alternatives to MySQL full-

text indexing will be evaluated. Of particular interest: Sphinx, which is tightly

23 For PIE and WaC I normalize to make the data more manageable by eliminating word-external punctuation,

converting all letters to lower case and mapping numerals onto #. Users who require further distinctions will

find them in the concordances available by clicking on a word or phrase that matches their query.

24 MySQL permits these lists and parameters to be modified, but a more inclusive index makes full-text

searching even slower.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

integrated with MySQL, and Lucene, which is readily scalable to gigacorpora.25 I also

am intrigued by the potential of the Bindings Engine (Cafarella and Etzioni 2005 and

2006), which is not yet available for general distribution.

2.2.2. WaC and PIE

While implementing WaC I will also revamp PIE’s database design and Web user

interface, overdue for revision after four years. The next step will be to update PIE

with data from the 2007 BNC-XML release. The revised PIE will be mirrored on a

neutral site, http://phrasesinenglish.org, that is independent from my institution, which

by policy must block traffic from “potentially hostile” sites (including respected

universities in Belgium and Brazil).

WaC will be tightly integrated with PIE: a query to either can be linked to or filtered

by the other, either to find comparable data from both or to identify data that exist in

one corpus but not the other. Experience suggests that there will be little in the BNC

that is not echoed by WaC, and much in WaC that has no counterpart in the BNC

(Fletcher 2004b:201). The rich variation inherent in large-scale Web-based corpora

rewards the user who understands and tolerates the uncertainties inherent in Web data.

The added value of grammatical annotation will allow us to complement fully the

now-classic (but static) BNC with a dynamically expanding corpus from the Web.

2.3. The future of Web as Corpus

We Web as Corpus evangelists have been rightly accused of preaching a mixed

message: on the one hand we extol the potential of the Web as a corpus and for corpus

compilation, yet on the other we caution against the inherent dangers and possible

misuse of Web data (e.g. Kilgarriff 2007). Now many of us are working

independently on parallel efforts to make the Web more accessible and more credible

as a linguistic resource (e.g. Renouf, Kehoe and Banerjee 2007; Baroni and Kilgarriff

2006; Sharoff 2006). Our shared challenge is to provide conscientiously compiled

Web corpora which enhance raw data with meaningful linguistic tools and support

responsible (and replicable) research by scholar and novice alike. Our mutual reward

will be general acceptance of reliable Web data for linguistic scholarship.

25 http://www.sphinxsearch.com/ and http://lucene.apache.org/

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

References

ANAGNOSTOPOULOS A., BRODER A. and CARMEL D. (2005), “Sampling Search-Engine
Results”, WWW 2005, May 10-14, 2005, Chiba, Japan.
 http://www2005.org/cdrom/docs/p245.pdf

ARCHER D., WILSON A. and RAYSON P. (2002), “Introduction to the USAS Category System”.
http://www.comp.lancs.ac.uk/ucrel/usas/usas%20guide.pdf

BAR-YOSSEF Z. and GUREVICH M. (2006), “Random Sampling from a Search Engine’s
Index”, WWW 2006, 23-26 May 2006, Edinburgh, Scotland.
http://www2006.org/programme/files/pdf/3047.pdf

BAR-YOSSEF Z., KEIDAR I. and SCHONFELD U. (2007), “Do Not Crawl in the DUST: Different
URLs with Similar Text”, WWW 2007, 8-12 May 2007, Banff, Alberta.
http://www2007.org/papers/paper194.pdf

BARONI M. and KILGARRIFF A. (2006), “Large Linguistically-Processed Web Corpora for
Multiple Languages”, in Keller F. and Proszeky G. (eds), Conference Companion EACL
2006 (11th Conference of the European Chapter of the Association for Computational
Linguistics), East Stroudsburg PA, ACL : 87-90.

CAFARELLA M. J. and ETZIONI E. (2005), “A Search Engine for Natural Language
Applications”, WWW 2005, May 10-14, 2005, Chiba, Japan.
 http://www2005.org/cdrom/docs/p442.pdf

CAFARELLA M. J. and ETZIONI E. (2006), “BE : A Search Engine for NLP Research”, Second
Web as Corpus Workshop, 11th Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2006), Trento, Italy, 3 April 2006.

DAVIES M. (2005), “The Advantage of Using Relational Databases for Large Corpora: Speed,
Advanced Queries, and Unlimited Annotation”, in International Journal of Corpus
Linguistics, 10(3) : 307-334.

FLETCHER W. H. (2004a), “Facilitating the Compilation and Dissemination of Ad-Hoc Web
Corpora”, in Aston, G., Bernardini S. and Stewart D. (eds.), Corpora and Language
Learners, John Benjamins, Amsterdam: 271-300.

FLETCHER W. H. (2004b), “Making the Web More Useful as a Source for Linguistic Corpora”,
in Connor U. and Upton T. (eds.), Corpus Linguistics in North America 2002: Selections
from the Fourth North American Symposium of the American Association for Applied
Corpus Linguistics, Rodopi, Amsterdam: 191-205.

FLETCHER W. H. (2005), “Towards an Independent Search Engine for Linguists: Issues and
Solutions”, Web as Corpus Workshop, SSMILT, Forlì, Italy, 14 January 2005.
 http://www.kwicfinder.com/WaCForli2005-01.pdf

FLETCHER W. H. (2007), “Concordancing the Web: Promise and Problems, Tools and
Techniques”, in Hundt M., Nesselhauf N. and Biewer C. (eds), Corpus Linguistics and the
Web, Rodopi, Amsterdam: 25-45.

HENZINGER M. (2006), “Finding Near-Duplicate Web Pages: A Large-Scale Evaluation of
Algorithms”, SIGIR ’06, 6-11 August 2006, Seattle, Washington.
http://infoscience.epfl.ch/getfile.py?mode=best&recid=99373

KILGARRIFF A. (2007), “ Googleology is Bad Science”, in Computational Linguistics 33(1):
147-151.

IMPLEMENTING A BNC-COMPARABLE WEB CORPUS

LEECH G. (2007), “New Resources, or Just Better Old Ones? The Holy Grail of
Representativeness”, in Hundt M., Nesselhauf N. and Biewer C. (eds), Corpus Linguistics
and the Web, Rodopi, Amsterdam: 133-149.

MANKU G. S., JAIN A. and SARMA A. D. (2007), “Detecting Near Duplicates for Web
Crawling”, WWW 2007, 8-12 May 2007, Banff, Alberta.
http://www2007.org/papers/paper215.pdf

MCCOWN F. and NELSON M. L. (2007a), “Characterization of Search Engine Caches”, IS&T
Archiving 2007, 21-24 May 2007, Arlington, VA. http://arXiv.org/cs.DL/0703083

MCCOWN F. and NELSON M. L. (2007b), “Agreeing to Disagree: Search Engines and their
Public Interfaces”, ACM IEEE Joint Conference on Digital Libraries (JCDL 2007). June
17-23, 2007. Vancouver, BC.
http://www.cs.odu.edu/~fmccown/research/se_apis/pubs/se-apis-jcdl07.pdf

OWENS M. (2006), The definitive guide to SQLite, APress, Berkeley, AC.

RAYSON P., WALKERDINE J., FLETCHER W. H. and KILGARRIFF A. (2006), “Annotated Web as
Corpus”, in Kilgarriff A. and Baroni M. (eds), Proceedings of the Second Web as Corpus
Workshop, 11th Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2006), Trento, Italy, 3 April 2006: 27-33.
 http://acl.ldc.upenn.edu/W/W06/W06-1705.pdf//

RENOUF A., KEHOE A. and BANERJEE J. (2007), “WebCorp: an Integrated System for Web
Text Search”, in Hundt M., Nesselhauf N. and Biewer C. (eds), Corpus Linguistics and the
Web, Rodopi, Amsterdam: 47-67.

SHAROFF, S. (2005), “Open-Source Corpora: Using the Net to Fish for Linguistic Data”,
International Journal of Corpus Linguistics 11(4) : 435-46.

SHAROFF S. (2006), “Creating General-Purpose Corpora Using Automated Search Engine
Queries”, in Baroni M. and Bernardini S. (eds). Wacky! Working Papers on the Web as
Corpus. GEDIT, Bologna: 63-98. http://wackybook.sslmit.unibo.it/sharoff.pdf

UEYAMA M. (2006), “Evaluation of Japanese Web-Based Reference Corpora: Effects of Seed
Selection and Time Interval”, in Baroni M. and Bernardini S. (eds). Wacky! Working
Papers on the Web as Corpus. GEDIT, Bologna: 99-126.
http://wackybook.sslmit.unibo.it/ueyama.pdf

