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This paper considers the broad theme of domain specificity and statistical 

computations in the specific instance of segmenting fluent speech into words. The non-

random statistical structure of language can provide important information to a learner. 

Both adults and infants have been shown to be successful in extracting the distributional 

structure of controlled artificial ‘languages’ and, further, to analogous stimuli in other 

perceptual domains. This has led to the proposal that domain-general statistical 

computations might be sufficient to solve several aspects of the problem of language 

acquisition. In contrast, it is shown here that even a relatively basic, input-driven 

computation like speech segmentation is constrained in various, seemingly arbitrary 

ways, making a truly domain-general computation unlikely. The larger issue of domain-

specificity is considered from a neurobiological perspective.  

 

 

1 The language faculty – innateness and domain specificity 

 

 Biological organisms are properly seen in their environmental context, where ‘environmental’ is 

understood as including the physico-chemical, the biochemical, the ecological and the social aspects. So, 

a tuna cannot survive outside an appropriate aquatic environment, a predator cannot survive in the 

absence of prey and, in more social creatures like macaques, social deprivation, specially early in life, 

leads to decreased survival rates (Lewis et al, 2000). As a corollary, an organism can be seen as a 

biological entity that embodies the ability to navigate through its own specific environment, from the 

single-celled zygote to the mature form. In this conception, one can meaningfully ask: what are the 

specific structures that an organism embodies that allow it to successfully operate in its environment? 

 In the classical Darwinian view, organisms evolve in response to their environments, such that 

their bodily structures represent adaptations to their environment (e.g., Dawkins, 1986). Today, we know 

that the environment, as described above, plays a significant role in determining the mature form of the 

organism, both evolutionarily speaking and in the lifetime of an individual organism. To be clear, no 

amount of change in the immediate environmental could result in an elephant embryo developing into a 

fruit fly. Nevertheless, the mature phenotype can be conditioned by the environment. For example, in 

certain reptiles, the sex of an individual is determined by the temperature of incubation of the egg, and 

represents an adaptive response to the environment (Warner & Shine, 2008). For Darwin, mental and 

behavioral propensities were also seen as inherited adaptations to the environment (Darwin, 1859). And 

indeed, this was the position of early ethologists from the last century (e.g., Tinbergen, 1951). It was also 

argued that the development of an instinct could not be decoupled from the environment any more than 

could the growth of the body (e.g., Lehrman, 1953). From this perspective then, for any given trait – 

physical, behavioral or mental – the contributions of the biology (the genetic underpinnings) of the 

organism and of the environment in the ontogeny and maturation of the trait is strictly an empirical issue. 

One might then meaningfully refer to those (innate) aspects that are, to paraphrase Hebb (1949, pg 166, 

cited in Marler, 2004), “… predictable from the acknowledgment of the species, without knowing the 

history of the individual animal.” 

 Human language can be seen as a trait that is predictable from the acknowledgment of the 

species. The presence of this faculty is a defining feature of our species, and hence must rely in some part 

on innate predispositions. Language is not a single, monolithic domain, and different parts of language 

(like syntax, morphology, phonology) might have their own phylogenic and ontogenic routes (e.g., 

Jackendoff & Pinker, 2005). However, there is a further distinction to be made: is the faculty for language 

an independent mental domain, or is this faculty cobbled together from various mental competences, 
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some unique and some shared with other species? In a sense, these questions parallel those about the 

contributions of genes and the environment in the development of an organism: the development of the 

language is seen as the interaction of specifically linguistic competences and a cognitive environment, 

composed of other cognitive systems, along with the social input from other members of the species (see 

also Hauser, Chomsky & Fitch, 2002). 

 Why must there be a specifically linguistic competence? In addition to the observation that only 

humans appear to have this capacity, Chomsky puts forward a second argument. Characterizing language 

as an abstract, rule-based system operating over symbolic representations (but see, e.g., Elman et al, 

1996), he points out that in the absence of explicit teaching of the underlying rule system, it is in theory 

virtually impossible to infer it from the finite input that a child receives (e.g., Chomsky, 1965). Indeed, 

this is the familiar problem of induction – generalizing general principles from a limited set of 

observations. However, this argument does not imply that all mental structures that support the language 

faculty have to be specifically linguistic; such abstract structures might be part of the broader cognitive 

environment (e.g., Perfors, Tenenbaum & Regier, 2006). Indeed, some linguists have invoked non-

linguistic processing constraints in order to describe various aspects of language like morphosyntax (e.g., 

Comrie, 1981; Hawkins, 1988; DuBois, 1987; Cutler, Hawkins, & Gilligan, 1985, Fenk-Oczlon and Fenk 

2004, amongst others). Similarly, Endress and colleagues (e.g., Endress & Mehler, submitted, Endress & 

Mehler, in press, Endress, Dehaene-Lambertz & Mehler, 2007) have suggested that language learning and 

processing relies on perceptual primitives, most of which might be shared at least with non-human 

primates.  

Several authors have appealed to the notion of domain general computations in order to 

understand language acquisition and processing (e.g., Landauer & Dumais, 1997, Reali & Christiansen, 

2005, Foraker et al, 2007). In the next section, we look at what domain general might mean.  

 

2 Domain general computations 

 

 In a certain sense, the term ‘domain general’ is not much different from the term ‘domain 

specific’. Consider what it might mean for a computation to be domain general. Let us take a concrete 

case: Bayesian inference (e.g., in Perfors, Tenenbaum & Regier, 2006 and Foraker at al 2007). Although 

these authors study the specific instance of learning a linguistic rule for which the data is insufficient, in 

general terms their domain general computation takes as input a very specific kind of data (linguistic data 

in their case) and uses this data to infer the most likely of a given set of structures (grammars in this case). 

For this computation to be truly domain general, it would have to treat data from any domain in a similar 

way, and use the same inference method to make inferences over the same set of structures. That is, in 

every case, the treatment of the data, the set of priors
1
 and the computation to compute the posteriors 

would have to be the same. This implies that any data, visual, auditory, tactile etc., would be evaluated in 

the same way, and two sets of data that share the same statistics should result in the same output. Over the 

last decade or so, evidence has been accumulating that one particular kind of computation might indeed 

be domain general in this sense.  

 Saffran, Aslin & Newport (1996, henceforth SA&N) considered the problem of segmenting 

speech into a series of words. Although most theories of syntax acquisition treat words (or morphemes) as 

the basic input, words are not immediately apparent in fluent speech as might be intuitively obvious upon 

listening to speech in a foreign language. Words are not reliably marked, acoustically or otherwise, and 

thus the first task of the infant learner would be to identify the words of the language (but see Nespor et 

al, 2007, and Shukla & Nespor, in press, for an alternative). SA&N asked if infants might, in part, rely on 

a general computational strategy for segmenting fluent speech. They relied on the observation that, in 

general, the syllables that make up a word are expected to be more (statistically) coherent than syllables 

across a word boundary. To get an intuitive idea, consider a word like ‘pretty’. The first syllable is shared 

by other words (like ‘prickle’ or ‘primitive’), so hearing just the first syllable, we might have some idea of 

                                                
1
 In Bayesian inference, priors refer roughly to the set of prior hypotheses (e.g. the set of all possible structures) 

along with their relative probabilities in the absence of any observations. The posterior is the re-evaluated 

likelihoods after having observed the data. The data is used to evaluate which of the prior hypotheses is most likely 

given both the probability of the hypothesis itself and the probability of observing the data given that hypothesis. 
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the possible words. However, upon hearing the second (final) syllable, what can we expect as the next 

syllable? Clearly, it could be the first syllable of any word that can follow the word ‘pretty’. That is, while 

there is some predictability from the first syllable of ‘pretty’ to the second, the predictability from the 

second to the next is much poorer. SA&N formalized this intuition as the forward transition probability 

(TP for short): 

(1) 

! 

TP(x" y) =
frequency(x.y)

frequency(x)
  

The TP can be thought of as the probability of the next syllable being y, given that the current syllable is 

x. In other words, it is the predictability of the upcoming syllable given the current one – the higher the 

TP between x and y, the more likely is y to follow x. Conversely, if the TP from x to y is low, it would 

indicate low predictability, and hence a possible word boundary. 

 Saffran and colleagues demonstrated that both infants and adults could use TPs to segment 

controlled, artificial speech stimuli, in which TPs were the primary or the only cue to ‘word’ boundaries 

(e.g., Saffran, Aslin & Newport, 1996, Saffran, Newport & Aslin, 1996, Aslin, Saffran & Newport, 1998, 

Saffran, 2001, Peña et al, 2002,  Thiessen & Saffran, 2003). Subsequently, it was demonstrated that one 

could replace the syllabic unit with units in other perceptual domains and observe similar segmentation 

results. Thus, these experiments were extended to various auditory ‘units’ including tones (Saffran et al, 

1999, Creel, Newport & Aslin, 2004), complex sound patterns (Gebhart, Newport & Aslin, 2009), timbre 

(Tillman & McAdams, 2004), patterned visual elements (Fiser & Aslin, 2002, Kirkham, Slemmer & 

Johnson, 2002) and even patterns of motor movement (Hunt & Aslin, 2002). These findings might be 

taken to indicate that there is a domain-general mechanism for computing TPs (see, e.g., Kirkham, 

Slemmer & Johnson, 2002). We will examine just the segmentation of speech in Section 4, but first let us 

consider the nature of a domain general computation from a neurobiological perspective. 

 

3  A neocortical perspective on domain generality 

 

 As any basic textbook on mammalian neuroanatomy will show, inputs from the different sensory 

modalities take different paths and arrive at fairly well defined cortical fields, known as the primary 

sensory cortices. These primary sensory cortices vary between species and to some extent reflect 

differences in their ecological adaptations (Kaas, 1989, Krubitzer, 2007), although they share common 

organizational themes (Krubitzer, 1995). However, the fact that different sensory modalities project to 

different cortical areas raises the question: how can there be a (domain general) central processor that acts 

equally on any kind of input? 

 One possibility is that primary cortices might act as way stations, relaying appropriately coded 

information to the central processes located elsewhere, as in association cortices, which are known to be 

multimodal. Nevertheless, even association cortices do not necessarily always receive input from all the 

sensory modalities. Indeed, the role of association cortices appears to be more of multimodal integration, 

rather than as common processing stations for input from any modality (e.g., Kaas & Collins, 2004). 

More importantly, different contexts might call for a certain computation to be carried out over 

different “units” in the input. For example, speech can be considered as a sequence of syllables, but it can 

also be considered as a sequence of phonemes or of phrases, and it is not clear how the appropriate unit 

might be selected (see Section 4 for a further discussion on this point). 

 A second way in which domain general computations might be implemented in the brain is if the 

cortex itself is homogenous, such that all the cortical areas are structured in the same way. We know that 

the adult cortex is structurally heterogenous; for example, this heterogeneity is the basis for subdividing 

the cortex into the various Brodmann areas. However, it is not clear whether these differences are innate 

or are driven by differences in the patterned activity received from different sensory sources. Krubitzer & 

Kahn (2003) examine the developmental molecular neurobiological aspect of this question, and find that 

different aspects and different areas rely differently on genetic and experiential factors. More recently, 

Sur and colleagues have demonstrated in a series of elegant experiments that functionally, one patch of 

cortex can carry out some of the functions of another (e.g., Angelucci, Clasca & Sur, 1998, Sharma, 

Angelucci & Sur, 2000). In their ferret re-wiring experiments, by careful surgical procedures in newborn 

ferrets, these authors were able to redirect visual input from the eyes to the primary auditory cortex (the 
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visual cortex received no input). These authors observed that the rewired auditory cortex showed many 

neuronal organizational characteristics of the normal primary visual cortex, and some like the normal 

primary auditory cortex. Importantly, behaviorally these animals were able to see, although their vision 

was poorer than normal animals (von Melchner, Pallas & Sur, 2000)
2
.  

 These studies suggest that, in some respects, the cortical tissue might indeed be functionally 

similar in different areas of the brain. Therefore, it is possible that there are some computations that are 

similar across different modalities and different stimuli. Nevertheless, it is also clear that there are 

differences across cortical areas, and thus some computations (or some aspects of some computations) 

might be domain specific, and hence different across modalities. 

In this view, the mind/brain is seen as being an organ pre-wired to solve certain tasks in a variety 

of domains, like depth perception, cheater detection or language acquisition. The task thus determines the 

kind of information most relevant to it, and statistical computations are one way of gathering such 

information. That is, similar statistical computations of any sort are not seen as arising from shared 

resources at a common, central processor, but are seen as the tools used by different cortical areas in 

solving different tasks specific to those areas. They could be similar across domains either through 

similarities in cortical structure and function, as described above, or might have arisen independently to 

solve separate tasks that required that common computation. 

 As described above, it is not clear how a general statistical computation might pick the right 

‘units’ over which to generate answers. However, this is the least of the problems with a domain general 

approach. In the next section, we will look at the specific instance of using TPs to segment fluent speech 

in greater detail. We will see that this task is constrained and biased in several ways. That is, the task of 

finding the appropriate units is so complex and multi-faceted that even if there were a central processor, it 

will be clear that the bulk of the work must be done by specific modules that can gather just the right 

kinds of input as data (see also Yang, 2004). 

 

4 Speech segmentation 

 

 As described in Section 2, words are not clearly marked in fluent speech. Nevertheless, there are 

statistical regularities that could be exploited to find word boundaries (see Charniak, 1993). For example, 

the sequence ‘k-n’ is rare inside words in English, but not uncommon across word boundaries. Therefore, 

positing a word boundary between a ‘k’ and an ‘n’ will on average be a fairly successful segmentation 

strategy in English (e.g., Church, 1987). There have thus been several proposals for generic strategies that 

rely on statistical computations over sub-lexical units (e.g., phonemes, syllables etc) to discover word 

boundaries (e.g., Harris, 1995, Brent & Cartwright, 1996, Gow, Melvold & Manuel, 1996, Dahan & 

Brent, 1999, Batchelder, 2002). However, such strategies by themselves might not be enough to solve the 

problem of word segmentation (see also Yang, 2004). In this section, we will look at various constraints 

and biases that have been shown to influence segmentation of words even in simple, artificially controlled 

stimuli. 

 To begin, at a very fundamental level, it is clear that words represent a certain, specific coding 

strategy. To see that words are coded in a specific way, let us compare it to another coding scheme that 

does things a little differently; let us consider an analogy between words as portions of speech utterances 

that encode a specific meaning and genes as portions of a DNA strand that encode a specific protein 

(Lewin, 2008)
3
. Now, while it is true that some genes are continuous portions of DNA just as words are 

continuous portions of the speech stream, there are also significant differences. For example, genes need 

not be continuous on the DNA, but can be interrupted by other coding or non-coding regions of DNA. 

This would be equivalent to having a sequence ‘gui.he.tar.ro’
4
 stand for ‘guitar hero’. Second, genes can 

overlap, such that some bases are shared between two adjacent genes. This would be equivalent to having 

                                                
2
 Similar structure alone is not sufficient to warrant the claim of similar function. For example, while it is widely 

believed that the organization of monocular eye cells into interdigitating stripes have a functional significance, new 

findings are challenging this proposal (see Horton & Adams, 2005, for an overview). 
3
 DNA, like speech, has a directionality, so the situation is indeed quite analogous to the case of speech. 

4
 Periods mark syllable boundaries. 
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a sequence ‘fif.teen.agers’ stand for ‘fifteen teenagers’. Clearly, words don’t have either of these 

properties; they cannot be discontinuous, nor overlapping. 

In general, one could come up with a host of different possible coding schemes. The relevant 

point is that words are not simply any kind of coding scheme, but a very specific one. A truly domain 

general solution would need to be able to determine any such coding scheme. Indeed, recent work by 

Tenenbaum and colleagues (e.g. Kemp & Tenenbaum, 2008) propose such a mechanism. In their view, 

therefore, the innate component might be just an algorithm of that sort, with even the coding scheme 

being inferred from the input. However, even if it is in theory possible to determine the appropriate 

coding scheme from the input, we will still need to explain the various constraints and biases, some of 

which are discussed below. 

Before discussing the constraints and biases, let us look at the kind of experimental paradigms 

that researchers have used to address the speech segmentation problem. In the simplest design, the 

experimenter creates a set of nonce words (typically around 6), like pu.ra.ki or be.fo.du. The nonce words 

are then concatenated into a continuous stream, where all the nonce words are repeated several times in 

random order. There are no pauses or any other prosodic cues to the word boundaries, and the onsets and 

offsets of such speech ‘streams’ are ramped up and down in amplitude so the listener cannot perceive a 

beginning or an end. Participants are exposed to such speech streams, and subsequently tested for their 

recall or preference for a nonce word over a part-word – a sequence of syllables made up from parts of 

one word and parts of another. For example, the nonce word pu.ra.ki might be pitted against a part-word 

ra.ki.be. Adult participants find nonce words significantly more familiar than the part-words, or rate them 

as more likely to have been heard, or to belong to the language they were familiarized with. Infants show 

a discrimination of the two kinds of sequences by looking longer when one kind of sequence is played, 

compared to the other; typically displaying a novelty preference, wherein they look significantly longer 

for the part-words. 

 Using such a paradigm, researchers have found that the units over which TPs are computed play 

an important role. While the syllable has been long considered a fundamental unit of speech (e.g., Mehler 

1981, Bertoncini & Mehler, 1981), it has been shown by Bonatti and colleagues (Bonatti et al, 2005, 

Mehler et al, 2006) that, if syllable TPs are held constant and nonce words are defined over the 

consonants alone, then segmentation is still possible. However, when the nonce words are defined over 

the vowels alone, they are not segmented (but see below, and Toro et al, 2008). Thus, the first constraint 

is about the choice of the units: consonants (and syllables) are preferred over vowels. 

 In addition to probing the units of segmentation, researchers have also asked: what is that nature 

of the computation involved? Several investigators have considered forward TPs, backward TPs, mutual 

information, clustering, co-occurrence frequency and Bayesian inference (e.g., Brent & Cartwright, 1996, 

Christiansen, Allen & Seindeberg, 1998, Perruchet & Vintner, 1998, Swingley, 2005, Orban et al, 2008). 

In Shukla (2007) it was found that increasing the complexity of the task by inserting a large number of 

random syllables that lacked any statistical structure did not seem to interfere with the extraction of 

embedded nonce words that had high TPs between their constituent syllables (see also Frank, Gibson & 

Tenenbaum, 2009). However, if a nonce word sometimes occurred in close proximity to itself, it was 

better segmented than another nonce word that never occurred in close proximity to itself, suggesting a 

memory constraint on such computations. 

Thus, constraints are also placed by more cognitively general resource like memory. This raises 

serious concerns about, for example, a Bayesian model, in which such proximity (memory) effects are not 

expected in a straightforward way. Further, even attention, another common cognitive resource, can 

modulate TP computations both in the auditory (speech, Toro, Sinnett and Soto-Faraco, 2005) and the 

visual domain (Baker, Olson & Behrmann, 2004 and Turk-Browne, Jungé & Scholl, 2005).  

Further, Endress and colleagues have shown (Endress & Mehler, in press) that TP computations 

have a problem with transitivity – if the TP from syllable A to syllable B is high, and the TP from syllable 

B to syllable C is high, then the sequence ABC should be a good ‘word’ candidate even if it has never 

occurred. And indeed, this is what adult participants (mis)perceive. Endress et al therefore conclude that 

TPs cannot be a solution to the word learning problem, but at best provide biases that must be confirmed 

by other means before a high-TP sequence can be considered a real word. 

 Next, several researchers have shown that such TP computations are greatly affected by (or rely 

upon) perceptual phenomena. For example, Creel, Newport & Aslin (2004) found that perceptual 
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similarity constrained how the TP computations were made in the auditory domain. In particular, TPs 

over non-adjacent tones were computed only when they were perceptually similar, leading to a 

‘streaming’ effect. Similarly, Fiser, Scholl & Aslin (2007) showed that perceptual grouping in the visual 

domain influences visual statistical learning. 

 Perceptual salience also plays a role in TP computations by highlighting certain units over others. 

For example, Shukla (2006) found that sharp changes in pitch (pitch ‘breaks’) that serve to carve fluent 

speech into a series of ‘phrases’ also serve to highlight syllables at the edges of such breaks; nonce words 

formed from these syllables are better extracted than statistically identical nonce words at non-salient 

locations. Immediate repetitions are known to be perceptually salient. Indeed, in most of these 

segmentation experiments, immediate repetitions are disallowed since they are immediately extracted 

from the artificial speech streams (M. Peña & J. Mehler, pers. comm.). In fact, if repetitions are allowed 

over the vocalic tier, then, contra Bonatti et al (2005), TPs can be computed even over the vocalic tier 

(Newport & Aslin, 2004, Mehler et al, 2006), suggesting that the units of computation (consonants or 

vowels) might themselves be conditioned by other perceptual factors. 

 Finally, TP computations can be affected by prosody. Fluent speech is organized into prosodic 

domains ranging from syllables to phrases and entire utterances. These domains are marked (with some 

variation between languages) by acoustic cues like changes in pitch and the duration of various segments. 

These cues serve to mark prosodic domains, and, since words are aligned with larger prosodic phrases, 

such cues can be useful in identifying word boundaries. In most of the experiments described above, the 

speech streams are created such that they lack any prosodic features, so investigators can determine if 

solely statistical cues can be utilized to segment speech. In Shukla, Nespor & Mehler (2007) we examined 

the effect of prosody on such statistical computations (see also Shukla, 2006). To summarize the results, 

we found that prosody did not appear to restrict the domain over which statistical computations were 

carried out. That is, when probed for their memory of high-TP syllable sequences, participants showed 

evidence of remembering all such sequences, whether they were prosodically appropriate or not. 

However, only the prosodically appropriate sequences were treated as possible words in the artificial 

language. That is, we found a dissociation between merely remembering syllabic sequences and treating 

them as possible words. Indeed, under certain circumstances, participants preferred to treat sequences 

they had never heard before as possible words, over high-TP but prosodically inappropriate sequences. 

 More recently, we also found evidence for a case in which prosody does appear to actually 

restrict the domain of computation (Shukla & Nespor, 2008). In many languages of the world, the vowels 

inside a (prosodic) word tend to become more similar to each other (harmonize). We thus asked if 

sequences of syllables with identical vowels would be preferred as words. We tested adult Italian 

participants who, in the absence of any familiarization, have no preference for syllable sequences with or 

without identical vowels. We then familiarized a different group of Italian participants with artificial 

speech that consisted of trisyllabic words defined by high TPs over the consonants. However, the stream 

was so constructed that the part-words, although they had lower TPs over the consonants, always had the 

same vowel. Following familiarization with such stimuli, participants now showed a significant 

preference for the statistically less coherent part-words. Further, we found little evidence to suggest that 

they even considered or extracted the high-TP sequences. 

 Finally, we are yet to explore the role of social constraints even for tasks like word segmentation. 

For example, we know that there is significant speaker variation. Does this mean that the infant must 

track the statistics between syllables for all the speakers they encounter? What aspects of speaker 

variations are retained and what (if any) are thrown away? As Saussure (1983) suggested more than a 

hundred years ago, a linguistic contrast is only meaningful if the individual chooses to make a distinction. 

That is, variability within a speaker must somehow be disentangled from variability across speakers. 

 

5 Conclusions 

  

The assumption of a domain general learning mechanisms is, to cite Gallistel (1999), 

“…equivalent to assuming that there is a general purpose sensory organ, which solves the problem of 

sensing.” Indeed, it is hard to see what a domain general perspective can offer for a task like segmenting 

words from fluent speech. In this article, it is suggested that the brain does not merely compute statistics 

from the input it receives using a monolithic, central statistical processor, but instead uses various sources 
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of information in order to solve pre-defined tasks. This information can come from highly specialized 

structures that mediate its rapid acquisition, and might also rely on general constraints placed by the 

various aspects of the environment as described in Section 1. Ultimately, this is an empirical question. 

So how can we account for the so-called domain general computations? In one sense, the domain 

generality of a computation (for acquisition or otherwise) might arise from shared neural function (with or 

without shared architecture, Section 3) between cortical areas that process different kinds of input. 

However, there is a second sense implicit in the discussion about perceptual processes or constraints from 

other cognitive domains like memory (Section 4): since the different sensory modalities all live in the 

same brain, they might be subject to similar constraints from the cognitive environment (see also Sperber, 

2004).  
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