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Abstract

Hierarchical Bayesian methods provide a flexible and interpretable way
of extending simple models of cognitive processes. To introduce this
special issue, we discuss four of the most important potential hier-
archical Bayesian contributions. The first involves the development of
more complete theories, including accounting for variation coming from
sources like individual differences in cognition. The second involves the
capability to account for observed behavior in terms of the combina-
tion of multiple different cognitive processes. The third involves using
a few key psychological variables to explain behavior on a wide range
of cognitive tasks. The fourth involves the conceptual unification and
integration of disparate cognitive models. For all of these potential
contributions, we outline an appropriate general hierarchical Bayesian
modeling structure. We also highlight current models that already use
the hierarchical Bayesian approach, as well as identifying research areas
that could benefit from its adoption.

Introduction

Bayesian statistics provides a compelling and influential framework for repre-
senting and processing information. Over the last few decades, it has become the
major approach in the field of statistics, and has come to be accepted in many or
most of the physical, biological and human sciences. This paper, and this special
issue, are about what one particular niche within Bayesian statistics, in the form of
hierarchical models, can contribute to cognitive modeling.

The Nature of Bayesian Statistics

It would be wrong to claim that there is complete agreement on exactly how
Bayesian analyses should be conducted and interpreted. Like any powerful and fun-
damental idea, it can be conceived and formulated in a variety of ways. At the ba-
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sic theoretical level, the ‘objective Bayesian’ approach expounded by Jaynes (2003)
encourages a different style of thinking about Bayesian analysis than the ‘subjective
Bayesian’ approach of de Finetti (1974). At the practical level of conducting Bayesian
analyses, there is also a spectrum, ranging from work that closely follows the objective
viewpoint (e.g. Gregory, 2005; Sivia, 1996), to work that is more agnostic or adopts a
naturally subjective position (e.g., Congdon, 2006; Gelman, Carlin, Stern, & Rubin,
2004; Gelman & Hill, 2007). There are many additional subtleties and perspectives
in the excellent accounts provided by Bernado and Smith (2000), Lindley (1972),
MacKay (2003) and others.

But Bayesian statistics is in agreement on the very basic issues. Knowledge
and uncertainty about variables is represented by probability distributions, and this
knowledge can be processed, updated, summarized, and otherwise manipulated using
the laws of probability theory. These commitments distinguish Bayesian statistics
from other competing frameworks, especially those based on frequentist views of
probability, and sampling distribution approaches to handling uncertainty. What
Bayesian statistics offers is a remarkably complete, coherent and intuitive method
for understanding what is known, based on the assumptions being made, and the
information that is available.

Three Uses for Bayesian Statistics in the Cognitive Sciences

Because Bayesian statistics provides a formal framework for making inferences,
there are different ways it can be applied in cognitive modeling. One way is to use
Bayesian methods as a statistician would, as a method for conducting standard anal-
yses of data. Traditionally, the framework for statistical inference based on sampling
distributions and null hypothesis significance testing has been used. Calls for change,
noting the clear superiority of Bayesian methods, date back at least to the seminal
paper of Edwards, Lindman, and Savage (1963), and have grown more frequent and
assertive in the past few years (e.g., Gallistel, 2009; Kruschke, 2010a; Lee & Wagen-
makers, 2005; Wagenmakers, 2007). It seems certain Bayesian statistics will play a
progressively more central role in the way cognitive science analyses its data.

A second possibility is to apply Bayesian methods to cognitive modeling as
a theoretician would, as a working assumption about how the mind makes infer-
ences. This has been an influential theoretical position for the last decade or so in
the cognitive sciences (e.g., Chater, Tenenbaum, & Yuille, 2006; Griffiths, Kemp, &
Tenenbaum, 2008). Most existing work has focused on providing ‘rational’ accounts
of psychological phenomena, pitched at the computational level within the three-level
hierarchy described by Marr (1982). These models generally use Bayesian inference as
an account of why people behave as they do, without trying to account for the mech-
anisms, processes or algorithms that produce the behavior, nor how those processes
are implemented in neural hardware. More recently, however, there have also been
attempts to apply computational sampling approaches from Bayesian statistics as a
theoretical metaphors at the algorithmic and implementation levels. In this work,
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models are developed in which people mentally sample information (e.g., Sanborn,
Griffiths, & Shiffrin, 2010). These uses of Bayesian statistics as theoretical analogies
have led to impressive new models, and raised and addressed a range of important
theoretical questions. As with all theoretical metaphors—including previous ones
like information processing and connectionist metaphors—“Bayes in the head” con-
stitutes a powerful theoretical perspective, but leaves room for other complementary
approaches.

A third way to use Bayesian statistics in cognitive science is to use them to
relate models of psychological processes to data (e.g., Lee, 2008; Rouder, Lu, Speck-
man, Sun, & Jiang, 2005; Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers,
2010). This is different from the data analysis approach, because the focus is not
generic statistical models like the generalized linear model. Instead the goal is relate
a detailed model of some aspect of cognition to behavioral or other observed data.
One way to think of the distinction is that data analysis typically does inference on
the measured dependent variables from an experimental design—measures of recall,
learning, response times, and so on—whereas modeling applications typically do infer-
ence on latent psychological parameters—memory capacities, learning rates, decision
criteria, and so on—that control the behavioral predictions of the model. It is also
different from the use of Bayesian inference as a metaphor for the mind (Kruschke,
2010b). There is no requirement that the cognitive models being related to data make
Bayesian assumptions. Instead, they are free to make any sort of processing claims
about how cognition works. The goal is simply to use Bayesian statistical methods
to evaluate the proposed model against available data.

This third approach is the focus of the current special issue. We think it is
an especially interesting, important, and promising approach, precisely because it
deals with fully developed models of cognition, without constraints on the theoretical
assumptions used to develop the models. The idea is to begin with existing theo-
retically grounded and empirically successful models of cognition, and embed them
within a hierarchical Bayesian framework. This embedding opens a vista of potential
extensions and improvements to current modeling, because it provides a capability
to model the rich structure of cognition in complicated settings.

In the remainder of this paper, we identify four major new capabilities offered by
the hierarchical Bayesian extensions of cognitive models. We discuss each capability,
focusing on how it can help theory and model development, and identifying places
where they have already been applied, or could and should be applied soon.

Benefits of Using Hierarchical Bayes in Cognitive
Modeling

Before discussing the potential contribution hierarchical Bayesian methods can
make to cognitive modeling, we need to say what we mean by ‘hierarchical Bayes’.
We do that in the next section—by characterizing its complement, in the form of
the currently dominant non-hierarchical modeling approach—and then discuss the
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Figure 1. A general structure for non-hierarchical models of cognition.

advantages of the hierarchical approach.

Non-hierarchical Modeling

While there is consistent conceptual overlap, there does not seem to be a single
formal agreed-upon definition of what makes a model “hierarchical.” Some authors
give a fairly formal definition in terms of the fundamental concept of exchangeability
(e.g. Bernado & Smith, 2000; Schervish, 1995), while others emphasize particularly
common and useful hierarchical structures like random-effects and latent mixture
models, giving a sort of definition-by-example (e.g., Congdon, 2006; Koop, Poirer,
& Tobias, 2007). But, there are at least some literatures that seem to regard some
random-effects models as non-hierarchical (e.g., Rashbash & Browne, 2008), contra-
dicting what other literatures advocate. More generally, it is probably possible to
get caught up in an unhelpful semantic argument about whether some models are
hierarchical, depending on how they are parameterized and interpreted.

To cut through these difficulties, we construe hierarchical models broadly, and
with reference to their meaning as models of cognition. In particular, we treat as
hierarchical any model that is more complicated than the simplest possible type of
model shown1 in Figure 1. In this model, a set of parameters θ generate a set of data
d through a likelihood function f (·). While this simple non-hierarchical structure
seems very limiting, it could be argued to encompass the vast majority of successful
and widely-used models in the current study of cognition.

As one concrete example, Figure 1 naturally accommodates Signal Detection
Theory (SDT: Green & Swets, 1966; Macmillan & Creelman, 1991), which is widely
used in the modeling of memory, decision-making and reasoning (e.g., Snodgrass &

1Throughout, we use a graphical model formalism to characterize different hierarchical model-
ing structures. This is a popular formalism in machine learning and, increasingly, in the cognitive
sciences (e.g., Jordan, 2004; Koller, Friedman, Getoor, & Taskar, 2007; Shiffrin, Lee, Kim, & Wagen-
makers, 2008). It uses a directed graph to show the relationships between unobserved (unshaded)
parameters and observed (shaded) data.
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Corwin, 1988; Heit & Rotello, 2005). The SDT model provides a mapping from two
parameters, measuring discriminability and a response criterion or bias, to observed
data in the form of hit and false-alarm counts. Formally, for model parameters giving
a measure of discriminability d and a measure of bias c, Figure 1 has θ = (d, c). For
observed data counts of h hits and f false alarms out of s and n noise trials, Figure 1
has d = (h, f, s, n). Then for the likelihood function that formalizes SDT, we can
write d ∼ f (θ).

As another example, a similarly simple mapping from parameters to data char-
acterizes the Generalized Context Model (e.g., Nosofsky, 1986) of category learning,
which uses psychological parameters like strength of generalization, focus of attention
and response bias to model the choices made in a category learning task. As a third
example, multidimensional scaling models (e.g. Borg & Lingoes, 1987) provide a
mapping between latent coordinate locations representing stimuli and their observed
judged pairwise similarities. As a final example, the Ratcliff diffusion model (e.g.
Ratcliff & McKoon, 2008) provides a mapping from a range of parameters controlling
bias, caution, evidence and a baroque menagerie of other psychological variables to
the joint distribution of accuracy and response times for simple decisions. This list of
cognitive models consistent with non-hierarchical mappings from parameters to data
could be made quite large, and would capture many of the important contemporary
models of cognition.

All of these models provide worthwhile starting points for hierarchical Bayesian
development. By introducing additional structure to the simple parameter-to-data
relationship shown in Figure 1, it is possible to extend existing successful models of
memory, learning, decision-making and other basic cognitive phenomena. We now
discuss a range of generic possible extensions, trying to highlight how they might
contribute to an improved account of cognition.

Developing Deeper Theories

The most obvious hierarchical structure—and the one that intuitively warrants
the label ‘hierarchical’—is shown in Figure 2. In models with this form, the basic
model parameters θ are themselves generated by some other process g (·), parameter-
ized byψ, which are sometimes called hyper-parameters. The impact of this extension
is that it is no longer satisfactory or complete to describe how data are generated in
terms of the basic parameters. In the hierarchical version, it is also theoretically
important to say how these basic parameters are generated. That is, instead of just
needing a theory of task performance, given by the mapping d ∼ f (θ), a theory is also
needed about the parameters that control task performance, given by the mapping
θ ∼ g (ψ). In this way, the hierarchical extension of basic non-hierarchical cognitive
models has the potential to drive theorizing about the parameters—representing key
psychological variables—to deeper and more fundamental levels of abstraction.

Perhaps the best example of the need for this sort of structure is the need
to accommodate individual differences. These are ubiquitous throughout cognition,
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Figure 2. A general structure for the hierarchical dependence of basic data-generating
process f parameterized by θ upon a more abstract process g parameterized by ψ.

but poorly handled by the non-hierarchical approach shown in Figure 1. The non-
hierarchical approach has to rely on first doing separate inference for parameters and
data for each person, and then trying to say something about individual differences
through post-hoc analyses. In the hierarchical approach in Figure 2, the structure in
individual differences is directly captured by the process g and its parameters ψ.

Shiffrin et al. (2008) provide a worked tutorial example for the case of memory
retention. Here the data d are counts of how often memory items are recalled at dif-
ferent time periods, the function f is a memory retention function like the exponential
or power function (e.g., Rubin & Wenzel, 1996), and the parameters θ are the starting
points, decay rates, and other standard properties of those retention functions. In the
hierarchical extension, g might be a Normal distribution, parameterized by a mean
and variance in ψ that then describes the distribution over starting points and decay
rates across individuals. This sort of model constitutes a deeper level of psychological
theorizing, because it not only allows for individual differences, but imposes a model
structure on those differences, and allows inference about parameters—like the group
mean and variance—that characterize the individual differences.

Almost all of the articles in this special issue use this approach, and its generality
is clear just from these applications to models of memory (Averell & Heathcote,
this volume; Morey, this volume; Pooley, Lee, & Shankle, this volume; Pratte &
Rouder, this volume), decision-making (Nilsson, Rieskamp, & Wagenmakers, this
volume; Ravenzwaaij, Dutilh, & Wagenmakers, this volume), confidence (Merkle,



HIERARCHICAL BAYESIAN MODELS 7

θ

d1 d2 dn. . .

f1 f2 f3

Figure 3. A hierarchical modeling approach allowing the same underlying psychological
variables to generate behavior in multiple related behavioral tasks.

Smithson, & Verkuilen, this volume), and emotional states (Lodewyckx, Tuerlinckx,
Kuppens, Allen, & Sheeber, this volume). Some these papers use models that go
beyond simple independent characterizations of differences in individual parameters,
and begin to model the co-varying structured relationships between parameters, or
their relationship to other relevant psychological variables.

While individual differences provide an intuitive example, there are many other
applications of the simple hierarchical structure in Figure 2. Kemp, Perfors, and
Tenenbaum (2007) use this approach in modeling of basic inductive processes in
cognitive development that require learning what they term ‘overhypotheses’. Essen-
tially, their overhypotheses are the mappings g that constrain the variety seen in the
basic model parameters θ. Rather than the deeper level of abstraction accommodat-
ing individual differences, it now formalizes the constrained relationship between the
different problems encountered by people. As Kemp et al. (2007) argue, the ability
to acquire this mapping constraint is extremely powerful developmentally, because it
means what is learned in one specific situation can help improve and hasten learning
in related situations. Statisticians sometimes call this basic property of hierarchical
models “sharing statistical strength,” and it is one of the most powerful motivations
for moving beyond simple mappings of parameters to data (e.g., Gelman et al., 2004).

Linking Psychological Variables to Multiple Phenomena

A different sort of hierarchical model is shown in Figure 3. In this model, there is
only one level of abstraction, but the parameters θ are responsible for generating many
sorts of data d1, . . .dn through a range of different models with likelihood functions
f1, . . . , fn. In effect, this hierarchical structure allows the same psychological variables
to influence behavior on multiple tasks, through multiple cognitive processes. This
sort of unification should be a basic goal for the cognitive sciences, as it is for other
empirical sciences. Being able to explain a range of observed phenomena in terms of
a few key variables is the hallmark of good theorizing and modeling.
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It is surprisingly hard, however, to find compelling examples of this approach
in modeling cognition. In the study of human memory, it has long been a goal to
develop a single model of multiple tasks—recognition, free recall, serial recall, and so
on—by assuming different processes operate on the same basic memory system (e.g.,
Gillund & Shiffrin, 1984; Norman, Detre, & Polyn, 2008). In terms of Figure 3, these
unifying models would have common memory parameters represented by θ, and have
f1 formalizing the recognition process, f2 the free recall process, and so on, with d1

being recognition data, d2 free recall data, and so on. In this special issue, Pooley
et al. (this volume) make some steps towards using hierarchical methods to model
recall and recognition data simultaneously.

Other areas in cognitive modeling striving for similar unification of related tasks
through common psychological variables are harder to identify. Indeed, sometimes
the accepted practice runs counter to the aim of unification. A good example is pro-
vided by the similarity-scaling and category learning literatures (e.g., Kruschke, 1992;
Lee & Navarro, 2002; Nosofsky, 1992). In this work, similarity-scaling methods like
multidimensional scaling are used to derive representations of stimuli from similarity
data. Once these representations are inferred, they become part of category learning
models that then attempt to account for the choices people make classifying the stim-
uli into categories. Conceptually, then, the causal process of the scientific inference
is from similarity data, to representational parameters, and then to category learning
data.

This is not at all what is depicted in Figure 3, which shows the same parameters
generating multiple data. The hierarchical structure in Figure 3 would argue that the
same underlying mental representation of the stimuli contributes to the generation
of both the observed similarity data and the observed category learning behavior.
Theoretically, this causal account seems more intuitively satisfying, and the nature
of the modeling it suggests is more complete, coherent, and parsimonious. Instead
of two separate inference stages—for similarity-scaling parameters and then category
learning parameters—a hierarchical model would do the following: It would have
the similarity data as d1, the category learning data as d2, all of the representation
and category learning parameters (e.g., the coordinate location parameters from mul-
tidimensional scaling and the attention, generalization, bias and other parameters
from the Generalized Context Model) in θ. Then the model f1 would implement
multidimensional scaling (i.e., not depend on category learning parameters), and f2

would implement the GCM, using all of the parameters. Both f1 and f2 were given
Bayesian implementations by Lee (2008), but were never combined in this hierarchi-
cal way. Recently, however, Zeigenfuse and Lee (2010a) have developed hierarchical
Bayesian models of feature representations and similarity data that adopt the ap-
proach in Figure 3, and showed that is very effective.
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Figure 4. A hierarchical modeling approach allowing a set of different psychological pro-
cesses to combine to produce observed data.

Linking Psychological Phenomena to Multiple Processes

Figure 4 shows a hierarchical model that allows for multiple cognitive processes
to contribute to a single set of observed data. The different processes are represented
by f1, . . . , fn and have different associated parameters θ1, . . . ,θn. How these pro-
cesses combine to produce the observed data d is determined by a mixing process h
parameterized by z. One possibility for combination is that h chooses exactly one of
the processes f , according to probabilities given by z. Another possibility is that h
mixes together all of the processes f according to proportions given by z. Of course,
there are many other possibilities.

The key point, in terms of modeling cognition, is that Figure 4 does not demand
a monolithic account of all of the variation seen in observed behavior in terms of a
single cognitive process, or a single set of controlling psychological variables. Instead,
observations are seen naturally as a mixture of potentially different processes. This
sort of assumption is needed in many domains, and is perhaps best developed in
the study of accuracy and response time distributions for simple decision-making.
Ratcliff and Tuerlinckx (2002) pioneered a mixture approach in which a monolithic
account of responding, based on the Ratcliff Diffusion model, was supplemented with
the possibility of contaminant trials. These contaminant trials assumed very different
distributions for accuracy and response times, to help explain the variation seen in
real data.

More recently, this approach has been extended by Vandekerckhove, Tuerlinckx,
and Lee (2008), using hierarchical Bayesian methods, to model a decision-making ex-
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periment as a mixture of standard trials, delayed start trials, and fast guesses. The
first of these types remains modeled by the Ratcliff Diffusion model, but the re-
maining two have detailed process accounts of their own, characterizing the accuracy
and response time properties expected for various aberrant ways participants might
approach some trials. As these alternative models become progressively more sophis-
ticated, they no longer deserve the label ‘contaminant’, but become part of a collection
of cognitive processes, potentially controlled by different psychological variables, all
of which are needed to explain the observed data. In these sorts of applications, the
process f1 formalizes the Ratcliff Diffusion model, f2 the delayed start model, and f3

the fast guess model, with the parameters θ1 belonging to the diffusion model, θ2 the
delayed start model, and θ3 the fast guess model. The mixing process h identifies the
accuracy and response time data in d as belonging to only one of these processes at
the level of a trial, as given by the index in z for each trial.

As a modeling strategy, the use of mixtures, and the assumption of qualitatively
different components, makes a lot of sense. There are some trials in any psychological
experiment that just do not adhere to the interesting cognitive process that motivated
the study. It should not be necessary for a cognitive model to be able account for
data from these trials in order to be regarded as successful. Nor, in most cases, is it
even a good idea to try and extend the model to do so. Retaining a non-hierarchical
modeling approach, but complicating the basic model (through a more elaborate
likelihood function f , or additional parameters in θ, or both) does not seem like the
best theoretical reaction to data that do not have much to say about core aspects
of intelligent human cognition. Instead, the additional complexity can come from
the sort of hierarchical extension shown in Figure 4, preserving the basic model, but
explaining the additional observed data through other processes. Zeigenfuse and Lee
(2010b) provide a number of example of this general approach, demonstrating, among
other things, how estimates of key parameters in the substantive cognitive model of
interest can be affected by the assumptions made about contaminant task behavior.

Besides modeling simple decision-making, there are some other important ex-
ample of multiple processes being assumed to underly data. The Topics model (e.g.,
Griffiths, Steyvers, & Tenenbaum, 2007) explains the generation of text documents as
coming from simple word selection processes based on a mixture of different semantic
topics. The mixture assumption is crucial to explain basic aspects of language like
homonymy, where the same observed word can have two or more different meanings,
depending upon the latent topic from which it was generated. Another recent exam-
ple of mixture modeling is provided by Lee and Sarnecka (2010), in a developmental
context. These authors showed that children’s performance on a simple task assess-
ing knowledge of number concepts could be described as a mixture of systematically
different sorts of behavior that was dependent on underlying developmental stages.
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Figure 5. A hierarchical approach for treating data as being generated by a set of different
models, but unifying the variation in the models themselves in terms of a common generation
process.

Unifying Different Models

Figure 5 shows an ambitious hierarchical modeling structure that combines some
of the approaches already discussed. Multiple different models, with data generating
processes f1, . . . , fn contribute to the data d, according to some combination rule h
governed by z. This follows our discussion of Figure 3. But, in addition, the hierarchi-
cal approach in Figure 5 combines the various models, assuming they are generated
by some processes g controlled by psychological variables ψ. This combination is
much like Figure 4, except that the unification is at the level of models rather than
tasks. This means that the hierarchical approach in Figure 5 not only allows multiple
models to account for observed behavior, but also provides a formal account of how
those models are generated.

An excellent example of this approach in cognitive modeling is provided by
Kemp and Tenenbaum (2008). These authors considered data involving inductive
inferences about how binary features belong to a set of stimuli. There are many can-
didate structured models for explaining these sort of exemplar-by-feature inferences,
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including clustering models, tree models, spatial models, and a variety of others (e.g.,
Shepard, 1980). Each of these models potentially involves different sorts of param-
eters, θ1, . . . ,θn, involving psychological constructs like cluster weights, tree edge
lengths, spatial coordinate locations, and so on. In addition, each model requires
different processes to translate its representational formalism into observed inductive
behavior, necessitating the f1, . . . , fn for each model.

The key contribution of the modeling presented by Kemp and Tenenbaum (2008)
is to show how the different representation models can be unified by appealing to a
data generating process based on graph grammars. Using some basic building blocks
for assembling a graph, formalized by the process g, different choices of values for a
controlling set of parameters ψ can produce cluster structures, trees, spatial grids, or
a range of other rich representational possibilities. The observed inductive inferences
made by people can then be given a very complete and satisfying psychological ex-
planation, which acknowledges that different domains of knowledge are represented
differently, but is able to say how people could learn those domain-specific represen-
tations from basic mental building blocks.

Two other examples of cognitive models following basically the same hierarchical
structure as Figure 5 are provided by Lee (2006) and Lee and Vanpaemel (2008). Lee
(2006) considered human performance on a type of sequential decision-making task,
where different models corresponded to various decision bounds that guided observed
behavior. These different decision-bound models were then unified by proposing a
simple generating process for establishing a sequential set of thresholds. This over-
arching generative process was based on a finite state automaton, and controlled
by parameters that described the probabilities of the thresholds shifting or staying
fixed over the sequence. Lee and Vanpaemel (2008) developed an account of category
learning behavior, relying on different models of category representation spanning the
range from prototype to exemplar models. They again unified these disparate models
with a simple generative mechanism based on psychological variables controlling the
level of mental abstraction, and the reliance on stimulus similarity, in forming category
representations. It is probably reasonable to argue that these two models—unlike the
Kemp and Tenenbaum (2008) modeling—had a common data generating process
linking different representational models to the observed data, and so need only a
single f in Figure 5. But they do capture the key idea of needing very different
models combining to account for the richness of human behavior, while also needing
a theoretical unification of those models to provide a complete and coherent account
of cognitive complexity.

One current debate in cognitive modeling that can naturally understood in terms
of the need for explaining how models are generated comes from the decision-making
literature. Here, there is a lively debate surrounding the ‘fast and frugal’ heuristic
approach advocated by Gigerenzer and others (e.g., Gigerenzer & Todd, 1999). This
is a theoretically interesting and empirically successful approach to understanding
human decision-making in terms of simple heuristic processes that are tuned to en-
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vironmental regularities. But, authors like Dougherty, Franco-Watkins, and Thomas
(2008) and Newell (2005) have argued that relying on a repository of different simple
heuristics to explain decision-making begs the question as to how those heuristics are
generated in the first place. This challenge is essentially one of unifying the heuristics,
by appealing to more abstract cognitive abilities that are capable of tuning mental ca-
pabilities to environments. A successful theoretical resolution would likely fit within
the sort of hierarchical Bayesian modeling framework presented in Figure 5.

Perhaps most fundamentally, Vanpaemel (this volume) argues in this special is-
sue that linking models hierarchically is one way to address the basic Bayesian need to
specify theoretically meaningful priors. The key idea is that the prior predictive dis-
tribution of the hierarchical part of the model, which indexes different basic models,
naturally constitutes a psychologically interpretable prior over those models. This is
a powerful idea, running counter to a current prejudice for making priors as uninfor-
mative as possible, and deserves to be an active area of research in using hierarchical
Bayesian methods to model cognition.

Conclusion

Non-hierarchical approaches to understanding cognitive processes dominate the
current landscape. The basic approach can probably fairly be caricatured as one
of identifying a psychological phenomenon (e.g., generalization, memory, decision-
making), finding an interesting task relating to some aspect of the phenomenon (e.g.,
similarity judgments, recall, two-alternative forced-choice decisions) and building a
model that can fit empirical data from the task using a few psychologically meaningful
parameters. This is a very reasonable way to begin building a systematic understand-
ing of human cognition, but has serious limitations if attempts are to made to account
for its full richness and complexity.

Hierarchical Bayesian methods offer one way—although certainly not the only
way (cf. Cassimatis, Bello, & Langley, 2008)—to broaden the scope of current cogni-
tive models. This introduction has tried to identify at least four possible broadening
uses of hierarchical Bayesian methods. Firstly, they allow model development to take
place at multiple levels of theoretical abstraction. Secondly, they allow the same psy-
chological variables to account for behavior over sets of related tasks. Thirdly, they
permit the possibility that data from a single task are best understood as coming
from a mixture of qualitatively and quantitatively different sources. And, fourthly
they promise to unify disparate models, and as a consequence allow the theoretically-
grounded specification of priors.

The papers in this special issue try to demonstrate concretely how hierarchical
Bayesian structures can naturally extend current modeling. These extensions can be
as theoretically straightforward as allowing for individual differences, or stimulus dif-
ferences, or the interaction between different sorts of people and stimuli in modeling
task behavior (e.g. Rouder et al., 2007; Vandekerckhove, Verheyen, & Tuerlinckx,
2010). They can allow for the more complete theoretical explanation of data from a
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single task, lettering different people use different cognitive processes, or letting the
same people use different processes at different times. They can force the development
of better theories, by demanding that key psychological parameters and processes be
identified to explain behavior on a wide range of tasks. They can force the develop-
ment of new theories, answering new questions about not only what processes and
parameters are involved in cognition, but also how those parameters and processes
can themselves be modeled.

In short, hierarchical Bayesian approaches demand our accounts of cognition
become deeper and better integrated. The aim of this special issue is to provide
some concrete examples of the potential of hierarchical Bayes in practice, for models
ranging from memory, to category learning, to decision-making. We hope that they
are useful early exemplars of what should become an important and widespread way
of building and analyzing models of cognition.

References

Averell, L., & Heathcote, A. (this volume). The form of forgetting and the fate of memories.
Journal of Mathematical Psychology.

Bernado, J. M., & Smith, A. F. M. (2000). Bayesian Theory. Chichester, UK: Wiley.

Borg, I., & Lingoes, J. (1987). Multidimensional Similarity Structure Analysis. New York,
NY: Springer Verlag.

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Ability, parsimony and breadth in models
of higher-order cognition. Cognitive Science, 33, 1304–1322.

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition:
Conceptual foundations. Trends in Cognitive Sciences, 10 (7), 287–291.

Congdon, P. (2006). Bayesian Statistical Modeling. Chichester, UK: Wiley.

de Finetti, B. (1974). Theory of Probability, Vol. 1 and 2. New York: John Wiley & Sons.

Dougherty, M. R., Franco-Watkins, A., & Thomas, R. P. (2008). The psychological plausi-
bility of fast and frugal heuristics. Psychological Review, 115, 199–211.

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for
psychological research. Psychological Review, 70, 193–242.

Gallistel, C. R. (2009). The importance of proving the null. Psychological Review, 116 (2),
439–453.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian Data Analysis
(Second ed.). Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge: Cambridge University Press.



HIERARCHICAL BAYESIAN MODELS 15

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. New York:
Oxford University Press.

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall.
Psychological Review, 91 (1), 1-67.

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics. New
York: Wiley.

Gregory, P. C. (2005). Bayesian Logical Data Analysis for the Physical Sciences. Cambridge,
UK: Cambridge University Press.

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In
R. Sun (Ed.), Cambridge Handbook of Computational Cognitive Modeling (pp. 59–100).
Cambridge, MA: Cambridge University Press.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation.
Psychological Review, 114 (2), 211–244.

Heit, E., & Rotello, C. (2005). Are there two kinds of reasoning? In B. G. Bara, L. W.
Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the
Cognitive ScienceSociety (pp. 923–928). Mahwah, NJ: Erlbaum.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge, UK: Cambridge
University Press.

Jordan, M. I. (2004). Graphical models. Statistical Science, 19, 140–155.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierar-
chical Bayesian models. Developmental Science, 10, 307–321.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of
the National Academy of Sciences, 105 (31), 10687–10692.

Koller, D., Friedman, N., Getoor, L., & Taskar, B. (2007). Graphical models in a nutshell. In
L. Getoor & B. Taskar (Eds.), Introduction to statistical relational learning. Cambridge,
MA: MIT Press.

Koop, G., Poirer, D. J., & Tobias, J. L. (2007). Bayesian Econometric Methods. New York:
Cambridge University Press.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category
learning. Psychological Review, 99 (1), 22–44.

Kruschke, J. K. (2010a). Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive
Science, 1 (5), 658–676.

Kruschke, J. K. (2010b). What to believe: Bayesian methods for data analysis. Trends in
Cognitive Sciences, 14 (7), 293–300.



HIERARCHICAL BAYESIAN MODELS 16

Lee, M. D. (2006). A hierarchical Bayesian model of human decision-making on an optimal
stopping problem. Cognitive Science, 30, 555–580.

Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psy-
chonomic Bulletin & Review, 15 (1), 1–15.

Lee, M. D., & Navarro, D. J. (2002). Extending the ALCOVE model of category learning
to featural stimulus domains. Psychonomic Bulletin & Review, 9 (1), 43–58.

Lee, M. D., & Sarnecka, B. W. (2010). A model of knower-level behavior in number concept
development. Cognitive Science, 34, 51–67.

Lee, M. D., & Vanpaemel, W. (2008). Exemplars, prototypes, similarities and rules in cate-
gory representation: An example of hierarchical Bayesian analysis. Cognitive Science,
32 (8), 1403–1424.

Lee, M. D., & Wagenmakers, E.-J. (2005). Bayesian statistical inference in psychology:
Comment on Trafimow (2003). Psychological Review, 112, 662–668.

Lindley, D. V. (1972). Bayesian Statistics, A Review. Philadelphia (PA): SIAM.

Lodewyckx, T., Tuerlinckx, F., Kuppens, P., Allen, N. B., & Sheeber, L. (this volume).
A hierarchical state space approach to affective dynamics. Journal of Mathematical
Psychology.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cam-
bridge: Cambridge University Press.

Macmillan, N. A., & Creelman, C. D. (1991). Detection Theory: A User’s Guide. New
York: Cambridge University Press.

Marr, D. C. (1982). Vision : A Computational Investigation into the Human Representation
and Processing of Visual Information. San Francisco, CA: W. H. Freeman.

Merkle, E., Smithson, M., & Verkuilen, J. (this volume). Using beta-distributed hierarchi-
cal models to examine simple mechanisms underlying confidence in decision making.
Journal of Mathematical Psychology.

Morey, R. (this volume). A Bayesian hierarchical model for the measurement of working
memory capacity. Journal of Mathematical Psychology.

Newell, B. R. (2005). Re-visions of rationality. Trends in Cognitive Sciences, 9 (1), 11–15.

Nilsson, H., Rieskamp, J., & Wagenmakers, E. (this volume). Hierarchical Bayesian param-
eter estimation for cumulative prospect theory. Journal of Mathematical Psychology.

Norman, K. A., Detre, G. J., & Polyn, S. M. (2008). Computational models of episodic
memory. In R. Sun (Ed.), The Cambridge handbook of computational psychology (pp.
189–224). New York: Cambridge University Press.



HIERARCHICAL BAYESIAN MODELS 17

Nosofsky, R. M. (1986). Attention, similarity and the idenitification-categorization rela-
tionship. Journal of Experimental psychology: General, 115, 39-57.

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual Review of
Psychology, 43, 25–53.

Pooley, J. P., Lee, M. D., & Shankle, W. R. (this volume). Understanding Alzheimer’s
using memory models and hierarchical bayesian analysis. Journal of Mathematical
Psychology.

Pratte, M., & Rouder, J. (this volume). Hierarchical single- and dual-process models of
recognition memory. Journal of Mathematical Psychology.

Rashbash, J., & Browne, W. J. (2008). Non-hierarchical multilevel models. In J. de Leeuw
(Ed.), Handbook of Multilevel Analysis (pp. 301–334). New York: Springer.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for
two–choice decision tasks. Neural Computation, 20, 873–922.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Ap-
proaches to dealing withcontaminant reaction times and parameter variability. Psy-
chonomic Bulletin & Review, 9, 438–481.

Ravenzwaaij, D. van, Dutilh, G., & Wagenmakers, E. (this volume). Cognitive model
decomposition of the BART: Assessment and application. Journal of Mathematical
Psychology.

Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005). A hierarchical
model for estimating response time distributions. Psychonomic Bulletin and Review,
12, 195–223.

Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., Morey, R. D., & Naveh-Benjamin, M.
(2007). Signal detection models with random participant and item effects. Psychome-
trika, 72, 621–642.

Rubin, D. C., & Wenzel, A. E. (1996). One hundred years of forgetting: A quantitative
description of retention. Psychological Review, 103 (4), 734–760.

Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. M. (2010). Uncovering mental representations
with Markov chain Monte Carlo. Cognitive Psychology, 60, 63–106.

Schervish, M. J. (1995). Theory of statistics. New York: Springer.

Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science,
214 (24), 390-398.

Shiffrin, R. M., Lee, M. D., Kim, W.-J., & Wagenmakers, E.-J. (2008). A survey of model
evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive
Science, 32 (8), 1248–1284.



HIERARCHICAL BAYESIAN MODELS 18

Sivia, D. S. (1996). Data analysis: A Bayesian tutorial. Oxford: Clarendon Press.

Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory:
Applications to dementia and amnesia. Journal of Experimental Psychology: General,
117 (1), 34-50.

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2008). A Bayesian approach to diffusion
process models of decision-making. In V. Sloutsky, B. Love, & K. McRae (Eds.),
Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1429–
1434). Austin, TX: Cognitive Science Society.

Vandekerckhove, J., Verheyen, S., & Tuerlinckx, F. (2010). A cross random effects diffusion
model for speeded semantic categorization decisions. Acta Psychologica, 133, 269–282.

Vanpaemel, W. (this volume). Constructing informative model priors using hierarchical
methods. Journal of Mathematical Psychology.

Wagenmakers, E. (2007). A practical solution to the pervasive problems of p values.
Psychonomic Bulletin & Review, 14, 779–804.

Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E. (2010). Bayesian
parameter estimation in the Expectancy Valence model of the Iowa gambling task.
Journal of Mathematical Psychology, 54, 14–27.

Zeigenfuse, M. D., & Lee, M. D. (2010a). Finding the features that represent stimuli. Acta
Psychologica, 133, 283–295.

Zeigenfuse, M. D., & Lee, M. D. (2010b). A general latent assignment approach for modeling
psychological contaminants. Journal of Mathematical Psychology, 54 (4), 352–362.


