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Graphical Views of Suppression and Multicollinearity in
Multiple Linear Regression

Lynn FRIEDMAN and Melanie WALL

This article briefly reviews classical suppressor variables, sup-
pression and enhancement, opposing signs of regression co-
efficients and zero-order correlations, and multicollinearity. A
concise and easily understood graphical structure for the study
of suppressor variables and enhancement is provided. Classical
suppressor variables are shown to be more valuable than other
nonsuppressor variables under some conditions. Errors using ra-
tios of correlations in the exposition of suppression are noted.
Multicollinearity is shown not to affect standard errors of re-
gression coefficients in ways previously taught.

KEY WORDS: Collinearity; Enhancement; Multiple regres-
sion; Suppression; Variable selection in linear regression.

1. INTRODUCTION

Several recent articles have explored suppressor variables in
multiple regression and other contexts. Lynn (2003) gave an ex-
ample in logistic regression; Maassen and Bakker (2001) made
applications to structural equation models; Lewis and Escobar
(1986) and Shieh (2001) attempted to measure the frequency
of certain types of suppression; and Sharpe and Roberts (1997)
examined the relationship between regression sums of squares,
correlation coefficients, and suppressors. The topic is readily ac-
cessible and theoretically important, but its implications are not
fully explored in the usual university curriculum (e.g., Darling-
ton 1990; Howell 1997; Neter, Kutner, Nachtsheim, and Wasser-
man 1996).

Inaccuracies have arisen in research and teaching on these
topics. These problems arise because the correlation between
two predictor variables is limited by the correlations of these
predictors with the outcome variable. Because of this, two pairs
of correlations of predictor values with the outcome variable
which have the same ratio, for example, (ry1, ry2) = (.6, .36)
and (ry1, ry2) = (.9, .54), may not have all the same properties
in regression equations.

This article summarizes the concepts involved, reports on
highlights of the research, and gives an analytic and graphical
structure that answers many questions about suppressor vari-
ables, their correlations, and regression coefficients.

Lynn Friedman is Visiting Scholar in Statistics, Ohio State University, 1958
Neil Avenue, Columbus, OH 43210 (E-mail: friedman@stat.ohio-state.edu).
Melanie Wall is Associate Professor, Division of Biostatistics, School of Public
Health, University of Minnesota, Minneapolis, MN 55455 (E-mail: Melanie@
biostat.umn.edu). The authors thank the editor, associate editor, and the review-
ers: their comments substantially improved this article.

2. THE DEVELOPMENT OF THE CONCEPT OF
SUPPRESSION

Imagine the student, equipped with elementary statistics
knowledge, examining a portion of the Boston house-price data
of Harrison and Rubinfeld (1978) for areas within or near town.
(In the data, this portion can be found by limiting the cases to
those in which the variable “Index of Accessibility to Radial
Highways” is smaller than 20.) The values of 14 variables col-
lected to estimate median house price include full-value property
tax rate, proportion of nonretail business acres per town, and pro-
portion of residential land zoned for lots over 25,000 square feet.
The student notes that the correlation of tax rate with proportion
of business acreage is .518, but tax rate and proportion of resi-
dential lots over 25,000 sq. ft. correlate at −.128. The business
correlation seems reasonable but the “big lot” one does not!

Looking further, our student may note that the correlation be-
tween business areas and “big lot” areas is a moderately strong,
but negative, −.470. Businesses do not usually have large res-
idential estates near them. Areas zoned for big residential lots
usually do not have nonretail businesses in them.

Despite the fact that the “big lot” correlation with tax rate is
small, the student runs a regression of tax rate on both business
acreage proportion and big lot proportion. The least squares co-
efficients turn out to be 7.53 and .47, respectively—both positive,
and both highly significant. Moreover, the variance explained by
this regression is slightly higher than the sum of the variances
explained in simple regressions of tax rate on business acreage
proportion and tax rate on big lot proportion. How are these
peculiar results to be explained?

In fact, the big lot variable has acted as a suppressor of variance
left by the business acreage variable in the tax rate regression.
The business acreage variable measures business productivity
together with the lack of big residential lots (indicated by the
negative correlation of the two independent variables). Once
the big lot variable is added, the variance in tax rate due to big
residential lots is explained. The coefficient of big lot proportion
in the multiple regression on tax rate has become positive, as it
should be.

Horst (1941) is credited with the first formal discussion of
suppressor variables. He gave the name “suppressor variable”
to an independent variable that (1) has no correlation with the
outcome variable, but (2) is correlated with the other independent
variable, and (3) increases the variance explained, R2. Others
have extended this definition to independent variables that have
little or no correlation with the criterion, or outcome variable.
They have since termed this condition “classical suppression.” In
our example, only big lot proportion would be called a classical
suppressor though, clearly, the influence is mutual.

The term “suppression” is used in a far wider context than
that of classical suppression (see, e.g., Cohen and Cohen 1983;
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Table 1. Diagnostics for Regression Without and With a Suppres-
sor Variable: ry1 = .8, ry2 = 0, r12 = .4, and n = 25.

β1 se(β1) t (β1) β2 se(β2) t (β2) R2

X1 only .8 .13 6.15 NA NA NA .64
X2 only NA NA NA 0 .21 0 0
X1 and X2 .95 .114 8.33 −.38 .114 −3.3 .76

Cohen et al. 2003; Conger 1974; Darlington 1968; Tzelgov and
Stern 1978). Cohen et al. (2003) noted:

In the classic psychometric literature on personnel selection, the term suppres-
sion was used to describe a variable (such as verbal ability) X2 that, although
not correlated with the criterion Y (e.g., job performance), is correlated with the
available measure of the predictor X1 (e.g., a paper and pencil test of job per-
formance) and thus adds irrelevant variance to X1 and reduces its relationship
with Y (p. 78).

Thus we might imagine a written test of fire-fighting skill, X1,
which correlates with actual observed skill, Y , at about .8,
while verbal ability, X2, correlates near 0 with Y . Suppose that
X1 and X2 correlate at .4. Including X2 in the regression equa-
tion will increase the variance explained. We compare the simple
and two-predictor variable equations in Table 1.

Darlington (1968) defined a suppressor variable as one that
produces a negative “beta weight”—a regression coefficient for
a variable in the standardized model—in the regression equation
despite the fact that all correlations between the predictor and
outcome variables are nonnegative. Conger (1974) had a defini-
tion which extended this notion to include sets of correlations
in which some were negative—importantly, to the situation in
which the correlation between the predictor variables was nega-
tive. He wrote that a suppressor variable was “a variable which
increases the predictive validity of another variable (or set of
variables) by its inclusion in a regression equation” (pp. 36–37).
Tzelgov and Stern (1978) took this to mean that beta weights
were increased: that is, |β̂1| > |ry1| and |β̂2| > |ry2|.

Velicer (1978) mentioned the above criterion, but suggested
another: he defined a situation of suppression to be one in which
R2 > r2

y1 + r2
y2. Currie and Korabinski (1984) used the term

“enhancement” to describe the latter condition, as shall we.
We shall use the term “enhancement”, then, to describe the

situation in which both |β̂1| > |ry1| and R2 > r2
y1 + r2

y2. The

term “suppression” will apply to the situation in which |β̂1| >
|ry1| but R2 ≤ r2

y1 + r2
y2. The term “redundancy” will apply

when both |β̂1| ≤ |ry1| and R2 ≤ r2
y1 + r2

y2. At the end of the
next section, we give a schematic that compares our usage of
these terms to that of authors we have mentioned previously.

3. A GRAPHICAL AND ANALYTIC SUMMARY OF
SUPPRESSION AND ITS RELATED CONCEPTS

In our analysis of the concepts in this article, we use Y to
denote the criterion, or dependent variable, and X1 and X2 to
denote the independent variables in the regression model. With-
out loss of generality, we take Y , X1, and X2 to be standardized.
Here ry1 refers to the correlation between Y and X1, ry2 refers
to the correlation between Y and X2, and r12 refers to the cor-
relation between X1 and X2. When ry1 and ry2 are given, the

interval of possibilities for r12 is

ry1 ∗ ry2 −
√(

1 − r2
y1

) (
1 − r2

y2

)
≤ r12 ≤ ry1 ∗ ry2 +

√(
1 − r2

y1

) (
1 − r2

y2

)
. (1)

These limits are produced by the fact that the correlation matrix
from which these come must be nonnegative definite (see, e.g.,
Neill 1973; Sharpe and Roberts 1997). In all calculations we
will assume, when necessary, that n = 25.

In our analysis, we make heavy use of formulas such as

β̂1 =
ry1 − ry2 ∗ r12

1 − r2
12

, (2)

in which the least squares estimate of β1, the regression coeffi-
cient of the standardized variable X1, is given in terms of zero
order correlations of all three variables, Y , X1, and X2. We also
take ry1 > ry2 ≥ 0. (The case in which the correlations are
equal is a special one, which we will discuss in Section 4.) It is
always possible to take the opposites of the values of a predictor
that has negative correlation with Y and obtain a positive cor-
relation with the same magnitude. (This will, of course, change
the sign of r12 as well.) For example, taking measurements of
income tax and of number of dependents in a small area of a
town will usually result in a negative correlation. Taking the
negatives of the column of number of dependents and keeping
the column of tax rates the same will result in a correlation that
is positive, but that has the same magnitude.

Before outlining our graphical structure, we first remark on
a somewhat counterintuitive fact: A classical suppressor com-
bined with another variable, say X , sometimes produces a better
explained variance, R2, than does the combination of X with
another explanatory variable which has a fairly strong correla-
tion with the criterion Y . Figure 1 shows two curves. Two fixed
sets of correlations of the independent variables with the de-
pendent one are used: the first is (ry1, ry2) = (.8, 0), and the
second, (ry1, ry2) = (.8, .4). We will let r12 vary over its pos-
sible ranges for both pairs of correlations: for (.8, 0) the range
for r12 is −.6 to .6, and for (.8, .4) it is −.23 to .87.

In the region .25 < r12 ≤ .6, indicated by the intersections of
the dotted vertical lines with the r12 axis, R2 is larger for the pair
(.8, 0) than for the pair (.8, .4). For the pair (ry1, ry2) = (.8, 0),
the variable X2 is a classical suppressor. In this range, the R2

produced by a classical suppressor is larger than that produced
by a second independent variable which correlates .4 with the
dependent variable.

We now turn to the description of a graphical structure ana-
lyzing the interplay of two independent variables of fixed corre-
lation with the dependent variable, allowing all possible values
of the correlation between the independent variables. The exam-
ple that follows, portrayed in Figure 2, illustrates the situation
in which ry1 = .8, a large correlation, and ry2 = .3 is small, but
not zero. The importance of the figure is to display four regions
depending on the value of r12. These are (1) enhancement with
r12 < 0, (2) redundancy (with decreasing R2), (3) suppression
(with increasing R2), and, (4) again, enhancement. The regions
distinguished for this pair of correlations will sometimes, but
not always, have their analogues for other pairs.
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Figure 1. Graph of R2 for two pairs of correlations: (1) ry1 = .8, ry2 = 0, r12 in its possible range from −.6 to .6. and (2) ry1 = .8, ry2 = .4, r12 in
its possible range from −.23 to .87.

Note that r12 ranges from −.33 to .81 for this choice of ry1 and
ry2. Clearly, lack of correlation, r12 = 0, gives us β̂1 = ry1 =
.8, β̂2 = ry2 = .3, and R2 = r2

y1 + r2
y2 = .82 + .32 = .73. β̂1

is always greater than β̂2: this is always true given our condition

that ry1 > ry2 ≥ 0.

Consider Region I in Figure 2, defined by −.33 < r12 < 0.

This is a region called “cooperative suppression” by Cohen and

Cohen (1975). It is also a region of enhancement in the terms of

Currie and Korabinski (1984): R2 is here greater than r2
y1 + r2

y2

as

β̂2 =
(ry2 − ry1 ∗ r12)

1 − r2
12

> ry2. (3)

The β̂’s are both larger than their zero-order correlations.
Moving to Region II, r12 is fairly small but positive. Here

ry2 > r12 · ry1. As ry1 = .8 and ry2 = .3 this will hold for
0 < r12 < 3/8. R2 is declining, β̂1 is smaller than ry1, and
β̂2 is decreasing to 0. The Cohens (1974) called this situation
“redundancy.”

Figure 2. Graph of ry1 = .8, ry2 = .3 and r12 in its possible range from −.33 to .81. Brackets on the r12 axis indicate this range. Region I extends
from r12 at its lowest point to r12 = 0. Region II extends from r12 = 0 to r12 = ry2 / ry1. Region III covers the r12 interval [ ry2 /ry1, (2ry1ry2 )/( r 2

y1 + r 2
y2 )].

Region IV extends from Region III to the upper limit for r12 . The points at which r12 = ry2 /ry1 and at which it equals ( 2ry1ry2 )/( r 2
y1 + r 2

y2 ) are darkened.

The American Statistician, May 2005, Vol. 59, No. 2 129

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

oc
he

st
er

] 
at

 1
0:

18
 1

8 
A

ug
us

t 2
01

4 



Figure 3. (a) Graph of ry1 = .8, ry2 = .6 and r12 in its possible range from 0 to .96. (b) Graph of ry1 = .6, ry2 = 0 and r12 in its possible range
from −.80 to .80. (c) Graph of ry1 = .9, ry2 = .1, and r12 in its possible range from −.34 to .52. (d) Graph of ry1 = .7, ry2 = .4, and r12 in its possible
range from −.37 to .93.

On the boundary of Regions II and III, r12 = ry2/ry1. Here
R2 has a minimum, r2

y1 (as noted by Mitra 1988), β̂1 is again

equal to ry1, and β̂2 has decreased to 0.
In Region III itself, r12 > ry2/ry1. β̂2 has become negative,

and β̂1 has become larger than ry1. This satisfies Darlington’s
(1968) and Tselgov and Stern’s (1978) condition for suppres-
sion. The variable X2 has positive correlation with the criterion
and a negative regression coefficient. When ry2 < r12 ·ry1 with
ry2, ry1, and r12 all positive, β̂2 will be negative. The variance
explained is increasing. However, Region III is not a region of
enhancement, as R2 ≤ r2

y1 + r2
y2.

Region IV is a region of enhancement. This region begins at

r12 =
2ry1 ∗ ry2

r2
y1 + r2

y2
,

as we can find generally by setting

r2
y2 ≤ (ry2 − ry1 ∗ r12)

2

(1 − r2
12)2

and solving for r12. Here, for the pair (.8, .3), this happens at
approximately r12 > .66. The β̂’s are large in absolute value,
and R2 > r2

y1 + r2
y2. However, multicollinearity is high: .66 <

r12 < .81. We will address the question of whether or not this
is problematic in Section 5.

Figure 3 shows examples of the regions discussed for pairs
(ry1, ry2) = (.8, .6), (.6, 0), (.9, .1), and (.7, .4).

Notice that no enhancement exists for the pair (.8, .6). As
r2
y1 + r2

y2 = 1, R2 cannot be improved. The limits for r12 are 0
and .96, and .96 is exactly where a region of enhancement might
begin.

For the pair (.6, 0), a situation of classical suppression, en-
hancement is almost everywhere. Only Regions I and IV have
width. For the other two pairs, all four regions exist.

These examples show that discarding variables with small
or zero correlation with the criterion is not necessarily a good
idea when maximum R2 is desired. Many researchers look only
for variables which have a significant (certainly nonzero) cor-
relation with the outcome. However, a “web” of relationships
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Table 2. Comparison of Terminology

r12

r12 = 0 r12 = ry2/ry1 r12 =
2ry1 ∗ ry2

r 2
y1 + r 2

y2

Region I: Region II: Region III: Region IV:
enhancement redundancy suppression enhancement

Classical Suppression:

When ry2 = 0

Horst, 1941

Lynn, 2003

Cooperative Suppression:

Cohen and Cohen, 1975

Lynn, 2003

Enhancement:

Currie and Korabinski, 1984

Friedman and Wall

Enhancement-

Synergism:

Shieh, 2001

Suppression:

Conger, 1974

Sharpe and Roberts, 1997

Velicer, 1978

Synergism:

Hamilton 1988

Redundancy:

Cohen and Cohen, 1975

Currie and Korabinski, 1984

Friedman and Wall

Velicer, 1978

Negative Suppression:

Darlington, 1968

Net Suppression:

Cohen and Cohen, 1975

Currie and Korabinsky, 1984

Suppression:

Conger, 1974

Friedman and Wall

Classical Suppression:

When ry2 = 0:

Horst, 1941

Lynn, 2003

Enhancement:

Currie and Korabinski, 1984

Friedman and Wall

Enhancement-

Synergism:

Shieh, 2001

Negative Suppression:

Darlington, 1968

Net Suppression:

Cohen and Cohen, 1975

Suppression:

Conger, 1974

Cohen and Cohen, 1985

Lynn, 2003

Sharpe and Roberts, 1997

Velicer, 1978

Synergy:

Hamilton, 1988

between predictor variables can often contribute to the explana-
tory power of a model such as a regression equation. Suppressor
variables should not be ignored. Their roles should be made
clear, however, as they are in the example given by Cohen et al.
(2003).

We have displayed the graphics, which underlie the terminol-
ogy that has been used in the past half-century. That terminology
has been anything but uniform. Table 2 gives a partial list of the
vocabulary used to denote the settings we have described above.

4. USING RATIOS OF CORRELATIONS IN THE
ANALYSIS OF ENHANCEMENT

Many researchers have used the ratio of correlations of pre-
dictor variables, usually called γ, referring either to ry1/ry2
(Tselgov and Stern 1978; Tselgov and Henik 1991) or ry2/ry1
(Lynn 2003; Shieh 2001). They then draw conclusions about en-
hancement based solely on that ratio. Noting that enhancement
implies either that r12 < 0 or

r12 >
2ry1 ∗ ry2

r2
y1 + r2

y2
=

2γ

1 + γ2

(no matter which way γ is defined), some graph the function

r12 =
2ry1 ∗ ry2

r2
y1 + r2

y2
=

2γ

1 + γ2

on a γ − r12 plane (e.g., Sharpe and Roberts 1997; Lynn 2003).
These graphs are inaccurate unless they are calculated at a spe-

cific value of ry1 or ry2. Figure 4 is an example of such a mis-
leading graph, where γ is taken to be ry2/ry1.

Reliance on γ and graphs such as Figure 4 obscures some
important issues in the topic of enhancement and its calcula-
tions (see, e.g., Friedman 2002 on Shieh 2001). Shieh (2001)
and Lynn (2003) have argued that the ratio of correlations de-
termines the possibility of enhancement in a regression on two
predictors. However, consider the ratio γ = ry2/ry1 = .6: the
point (γ, r12) = (.6, .9) appears on the graph. According to the
graph, for r12 > .88, enhancement is possible for the ratio .6.
An infinite number of pairs, for example, (ry1, ry2) = (.9, .54)
or (.7, .42) or (.5, .3), share this ratio. Contrary to Figure 4,
note that enhancement is not possible for the pair (ry1, ry2) =
(.9, .54), while it is perfectly possible for the pair (.7, .42), as
it is for (.5, .3), or any pair whose ratio is .6 and for whom
r2
y1 + r2

y2 < 1. Figure 4 implies that the interval over which r12
provides enhancement is the same length for all such pairs, and
this is incorrect. For all these pairs,

2ry1 ∗ ry2

r2
y1 + r2

y2
=

2γ

1 + γ2

is approximately .88. However, the upper bound for r12 varies
according to the size of r2

y1+r2
y2. For the pairs (.9, .54), (.7, .42),

and (.5, .3), the upper limits are approximately .85, .94, and .98.
The ranges of enhancement are thus 0, .06, and .10, respectively.
Figure 5 displays graphs of the three different pairs, indicating
the different ranges of enhancement.
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Figure 4. Graph of r12 = 2γ/( 1 + γ2 ), where γ = ry2 /ry1. Areas expected by many authors to be of nonenhancement are shaded. Those for
which they believe enhancement to be possible are unshaded.

Sharpe and Roberts (1997) gave a necessary and sufficient
condition for enhancement (which they call suppression): in the
case that all three correlation coefficients are positive, this con-
dition is

r12 >
2γ

1 + γ2 .

This is the same boundary we have calculated for enhancement.

This condition is indeed necessary and sufficient, but it should
be noted that r12, because of the positive definite constraint on
the correlation matrix, cannot always take on a value greater
than

2γ

1 + γ2 .

Sharpe and Roberts (1997) also showed, by setting the bound-
ary constraints of enhancement and positive definiteness equal,

Figure 5. Graphs similar to Figures 2 and 3 for the fixed correlations of independent variables with the dependent variable. The pairs of correlations
are (a) (.9, .54), (b) (.7, .42), and (c) (.5, .3). The lines, brackets, emphasized points and regions have exactly the same meaning as they did in
Figures 2 and 3.
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Figure 6. Figure 3(d) reproduced, with the point (.73, 0) marked to show the lower limit for r12 , 2 |ry2 |
√

1 − r 2
y2 , indicated by Sharpe and Roberts

(1997).

that when ry2 < ry1 enhancement implies that ry2 < 1/
√

2, and

then r12 > 2|ry2|
√

1 − r2
y2. We note that these are necessary but

not sufficient conditions, as the example of (ry1, ry2) = (.7, .4)

shows. The lower limit for r12, 2|ry2|
√

1 − r2
y2, is .73, but en-

hancement actually begins only at .86. Figure 6 reproduces Fig-

ure 3(d) with the value for r12 = 2|ry2|
√

1 − r2
y2 marked as

well as the values for r12 = ry2/ry1 and

r12 =
2ry1 ∗ ry2

r2
y1 + r2

y2
.

Our analysis produced an equivalent set of necessary and suf-
ficient conditions for enhancement without reference to γ or
r12. We proceeded in the same way: that is, we knew that for
enhancement to take place

2ry1 ∗ ry2

r2
y1 + r2

y2
< ry1ry2 +

√(
1 − r2

y1

) (
1 − r2

y2

)
. (4)

We solved the boundary equation for (4) and found six solutions:

|ry1| = |ry2| and ry1 = ±
√

(1 − r2
y2) (these can be taken

as solutions either for ry1 or ry2). These are exactly the same
solutions Sharpe and Roberts (1997) produced to give the result

that r12 > 2|ry2|
√

1 − r2
y2 though, in relying on γ and r12, they

lost sufficiency.
Our necessary and sufficient conditions are the following:

when all correlations are positive, (1) ry1 > ry2, that is, the
inequality must be strict; and (2) r2

y1 + r2
y2 < 1. If these in-

equalities hold, then there is a region of positive r12 that will
provide enhancement, and vice versa. For example, if ry1 = .8,
ry2 must be less than .6. Moreover, if there is an interval of pos-

itive r12 that provides enhancement, then conditions (1) and (2)
must hold. Of course, when both ry1 and ry2 are positive, any
negative value of r12 will provide enhancement—if r12 < 0 is
possible.

Note that ry1 = ry2 is equivalent to both

r12 =
2ry1 ∗ ry2

r2
y1 + r2

y2
= 1

and

ry1 ∗ ry2 +
√(

1 − r2
y1

) (
1 − r2

y2

)
= 1.

In such cases, no enhancement is possible.

5. MULTICOLLINEARITY, STANDARD ERRORS,
AND INSTABILITY

Many texts warn the student against multicollinearity (e.g.,
Cohen et al. 2003; Fox 1997, 2003; Leahy 2000; Neter et al.
1996). They argued that standard errors become large, causing
“instability” in the estimates of the coefficients. They cite the
variance of the estimate of the coefficient to back their con-
tention:

var
(
β̂i

)
= σ2 1

1 − ρ2
12

, (5)

where σ2 is the (common) variance of the errors, and ρ12 is
population correlation of variables X1 and X2. If ρ12 is large,
they reason, the variance of the coefficient will be large.

However, these arguments do not attend to the other factor in
the variance of the β̂’s, σ2. One formula used to estimate var(β̂i)
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Table 3. Some Standard Errors and t Statistics When r12 is High

ry1,ry2 r12 β̂1 β̂2 R2 seβ̂’s t (β̂1) t (β̂2)

(.9, .1) .30 .95 −.18 .84 .09 10.70 −2.05
(.9, .1) .40 1.02 −.31 .89 .08 13.28 −4.01
(.9, .1) .50 1.14 −.47 .98 .04 29.96 −12.43
(.8, .6)∗ .95 2.38 −1.66 .91 .21 11.28 −7.87
(.8, .3) .67 1.09 −.44 .74 .15 7.50 −2.99
(.8, .3) .72 1.21 −.57 .80 .14 8.74 −4.11
(.8, .3) .8 1.55 −.94 .96 .07 21.07 −12.74
(.7, .4) .81 1.11 −.50 .57 .24 4.63 −2.09
(.7, .4) .87 1.41 −.82 .66 .25 5.66 −3.28
(.7, .4) .92 2.09 −1.52 .86 .20 10.39 −7.54
(.6, 0) .50 .80 −.39 .48 .18 4.48 −2.22
(.6, 0) .70 1.18 −.84 .72 .16 7.41 −5.21
(.6, 0) .78 1.56 −1.22 .93 .09 17.68 −13.86

NOTE: * There is no area of enhancement for this pair, but it is included here to show that multicollinearity does not cause large standard errors for the beta’s.

(see Cohen et al. 2003, p. 86) is
(

1 − R2

n − 3

) (
1

1 − r2
12

)
, (6)

where n is the number of observations, r12 is the estimate of ρ12,
and R2 depends on X1 and X2. All factors are model dependent.
As r12 becomes large, R2 becomes large, as we can see from
another equation from Cohen and Cohen (2003, p. 70),

R2 =
r2
y1 + r2

y2 − 2ry1ry2r12

1 − r2
12

. (7)

It is easy to check that as r12 takes on its limiting values,

ry1∗ry2±
√(

1 − r2
y1

) (
1 − r2

y2

)
, R2 is 1. At the limiting values,

1 − r2
12 cannot be 0 unless ry1 = ry2. Thus, we have a numer-

ator that goes to 0 and a denominator that may be small, but is
bounded away from 0 and can become substantial with large n.

Symbolically, where q = ry1 ∗ ry2 +
√(

1 − r2
y1

) (
1 − r2

y2

)

lim
r12→q

(
1 − R2

n − 3

)
∗

(
1

1 − r2
12

)
=

0
n − 3

∗ 1
1 − q2 = 0. (8)

Table 3 gives examples of outcomes for fixed pairs of correla-
tions (ry1, ry2) = (.9, .1), (.8, .6), (.8, .3), (.7, .4), and (.6, 0)
for some selected values of r12 and a sample size of 25. The val-
ues for r12 are positive, in the area of enhancement, and going
towards their limiting values. As r12 goes to its limiting value,
R2 gets large, the standard error of the β̂’s gets small, and their
t-statistics become highly significant.

Figure 7 shows the graph of the pair (.8, .3) with a 95% con-
fidence interval drawn around each of the β̂’s, given a sample n
of 25.

Hamilton (1987) cautioned against leaving “students with the
impression that correlated explanatory variables are always re-
dundant” (p. 132). It is true that if ry2/ry1 is close to 1 and

Figure 7. Graph of ry1 = .8, ry2 = .3, and r12 in its possible range from −.33 to .81, with R2 , β̂1, β̂2 , and 95% confidence intervals about the β̂’s.
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Figure 8. Graph of ry1 = .8, ry2 = .7, and r12 in its possible range from .13 to .99, with R2 , β̂1, β̂2 , and 95% confidence intervals about the β̂’s.
The points at which r12 = ry2 /ry1 and at which it equals ( 2ry1ry2 )/( r 2

y1 + r 2
y2 ) are darkened.

r2
y1 + r2

y2 ≥ 1, then there will be a large interval of r12 over
which redundancy holds; a small interval in which suppression
holds, and no area in which enhancement exists. For example,
consider (ry1, ry2) = (.8, .7). Figure 8 shows the graphical anal-
ysis for this pair.

For the range 0 ≤ r12 ≤ ry2/ry1, with our conditions on ry2

and ry1, only redundancy can exist. Standard errors increase
with increasing multicollinearity in this region. They continue
to increase in the area of suppression, but begin to decrease in the
rightmost portion of that region. Standard errors then decrease
until r12 reaches its maximum.

If ry2 and ry1 are equal, and both bigger than
√

.5 = .7071,
then only redundancy can take place, and standard errors will in-
crease. However, Table 3 and Figures 7 and 8 illustrate the fact
that areas of high multicollinearity can exist coincident with
small standard errors under the condition of enhancement, and
that this is sometimes true even under the condition of suppres-
sion.

The term “instability” has more than one meaning in the con-
text of multiple regression. Cohen and Cohen (1983) warned that
computational inaccuracy in calculating the inverses of matri-
ces of highly multicollinear variables may be a problem (p. 116).
However, enormous strides in computational accuracy have been
made in the last 20 years. Thus, though instability due to poor
computational accuracy remains a problem for the older regres-
sion algorithms, it is no longer a serious problem in recent ver-
sions.

It seems to be true that estimates of coefficients vary some-
what more with small increases in r12 when r12 is large. How-
ever, it is not multicollinearity, but the combination of the three
correlations that cause a change in the sign of β̂2. As we have

seen in Section 2, for regression on two predictors this happens
when r12 is large enough to make ry2 ≤ r12 · ry1. For the pairs
(ry1, ry2) = (.8, .3), (.9, .1), and (.7, .4), this happens when r12
is .375, .11, and .57, respectively. The first two values would not,
in general, signal high collinearity to the researcher.

6. SUMMARY

We have seen that a predictor variable, say X2, that is pos-
itively correlated with the outcome variable, Y , may have a β̂
that is negative when ry2 < ry1r12.

We also note that it is worthwhile to consider predictor vari-
ables with small or zero correlation with Y if they explain some
of the variance left by the other predictor variables. A regres-
sion equation is often used to support a hypothesis of causality.
This occurs despite the fact that we have all been taught that
correlation does not imply causality (and, as Bollen (1989) re-
minded us, “Lack of correlation does not disprove causality,” p.
52). Many researchers instinctively use only the causality crite-
rion to select variables. The authors hope that the results of this
article will encourage focus on the wider web of explanation.

Finally, there are no limits on multicollinearity in regression
on two predictors other than those given by the necessity to have
a nonnegative definite matrix. In fact, our findings indicate that
multicollinearity may produce very desirable results.

Moreover, it is reasonable to consider highly correlated inde-
pendent variables. One might choose a measure of arm strength
in testing mountain-climbing skills. A measure of leg strength is
an obvious further predictor. Arm strength and leg strength are
probably highly correlated: however, it is hard to believe that
either one alone would predict mountain climbing skills. The
researcher needs to consider the substantive interplay of all vari-
ables with each other. Correlations of independent variables with
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the criterion are important: correlations of independent variables
with each other may flesh out the predictive network of the re-
gression model.

We suggest that the Regions I-IV, delineated in this article,
provide a clear structure by which the correlations involved in a
regression on two predictors can be analyzed. S-Plus programs
which can be used to find and graph the regions are available on
the second author’s Web site.

Tzelnik and Henik (1991) have provided a framework in
which the discussion of suppression in this article may be gener-
alized to linear combinations of predictor variables in multiple
regression. In their terms, the multiple correlation coefficients
between the linear combinations and the criterion take the place
of zero-order correlations ry1 and ry2. The correlation between
the linear combinations takes the natural place of r12. This struc-
ture can be extended to enhancement.

Future research in applying the concepts of suppression and
enhancement to recent developments in predictor subset selec-
tion, such as least angle regression and the lasso, is likely to
prove rewarding.

[Received October 2003. Revised December 2004.]
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