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Psycholinguists are making increasing use of regression analyses and mixed-effects mod-
eling. In an attempt to deal with concerns about collinearity, a number of researchers
orthogonalize predictor variables by residualizing (i.e., by regressing one predictor onto
another, and using the residuals as a stand-in for the original predictor). In the current
study, the effects of residualizing predictor variables are demonstrated and discussed using
ordinary least-squares regression and mixed-effects models. Some of these effects are
almost certainly not what the researcher intended and are probably highly undesirable.
Most importantly, what residualizing does not do is change the result for the residualized
variable, which many researchers probably will find surprising. Further, some analyses
with residualized variables cannot be meaningfully interpreted. Hence, residualizing is
not a useful remedy for collinearity.

� 2013 Elsevier Inc. All rights reserved.
Introduction

In psycholinguistics there has been a move toward
regression studies, which offer several advantages over tra-
ditional factorial designs. Baayen, Wurm, and Aycock
(2007), for example, used mixed-effects modeling1 to
examine auditory and visual lexical decision and naming
times. They found a number of curvilinear effects that are
difficult to detect with factorial designs. Even more interest-
ing, the authors found sequential dependencies in the re-
sponse times, such that response latency on a given trial
could be predicted by latencies on the previous four trials.
This sequential dependency, which cannot be assessed in a
factorial design, ultimately exhibited more explanatory
power than nearly all of the other predictors that were
examined.

A second advantage of regression designs is pragmatic.
With the increased complexity of many theoretical models,
it becomes impractical to isolate a difference on one pre-
dictor while adequately equating stimulus materials on
the growing number of other variables known to affect
psycholinguistic processing. Baayen et al. (2007) examined
18 predictor variables. The influential megastudy of Balota,
Cortese, Sergent-Marshall, Spieler, and Yap (2004) exam-
ined 19. A factorial design matching on all but one or
two of the variables in situations like these is virtually
inconceivable, and so a large number of potentially inter-
esting studies simply could not be done. The Balota et al.
(2004) study is interesting for the additional reason that
they included as stimuli virtually all single-syllable mono-
morphemic words in English. An exhaustive study such as
this cannot be done in a factorial manner, because the
words in the language are naturally correlated on a num-
ber of variables of theoretical interest.
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Many researchers express concern about the extent to
which these natural correlations between predictors might
lead to collinearity and computational problems. For exam-
ple, Tabachnick and Fidell (2007) assert that, with predictor
intercorrelations of .90 and above, there are statistical diffi-
culties in the precision of estimation of regression coeffi-
cients (citing Fox, 1991). Further, Cohen, Cohen, West,
and Aiken (2003) state that the estimates of the coefficients
will be ‘‘very unreliable’’ and ‘‘of little or no use’’ (p. 390). In
addition, Darlington (1990) emphasizes the loss of statisti-
cal power of tests on the individual regression slopes.

However, Friedman and Wall (2005) assert and demon-
strate that improvements in algorithms and computer accu-
racy have eliminated the computational difficulties. The
current study lends additional support to their claim. Fur-
ther, Friedman and Wall (2005), along with others, also note
that collinearity per se is not necessarily bad. For example, if
a researcher’s goal is simply to maximize explained vari-
ance, collinearity can be ignored (Darlington, 1990; Tabach-
nick & Fidell, 2007). The goal of most psycholinguistic
applications of regression, though, is to evaluate the effects
of several of the individual predictor variables. The potential
interpretational problems caused by collinearity here can be
thorny, even if the computational problems are not.

Because of concerns like this, some researchers have at-
tempted to deal with collinearity by residualizing one of
the correlated predictor variables. To do this, one runs a
preliminary regression analysis using one of the predictor
variables to predict the other (e.g., using X2 to predict
X1). The residuals from this analysis constitute a new pre-
dictor variable, X1resid, that is used in subsequent analyses
in lieu of X1. X1resid is guaranteed to be uncorrelated with
X2, providing an apparent solution to the problem of collin-
earity. Thus, residualizing seems like a useful and appro-
priate technique.

Psycholinguists have offered several justifications for
residualizing. A review of some of those justifications is
instructive, as it illustrates a considerable range of beliefs,
some erroneous, about what residualizing accomplishes2:

‘‘To avoid problems with increased multicollinearity,
we included the residuals. . .in our mixed-effects mod-
el. . .These residuals are thus corrected for the influence
of all variables correlated with the original familiarity
and meaningfulness measures’’ (Lemhöfer et al., 2008,
p. 23)

To dissociate the effect of one predictor from another
and demonstrate that the effect of one predictor does
not explain the effect of the other (Green, Kraemer,
Fugelsang, Gray, & Dunbar, 2012, pp. 267–268)

To help rule out the possibility that the effect of one
predictor masks the effect of another (Kuperman, Ber-
tram, & Baayen, 2010, p. 89)

‘‘. . .to assess the effect of ‘‘ [a predictor] (Jaeger, 2010, p.
33)
2 One reviewer wondered if perhaps researchers were guilty of imprecise
writing, rather than misunderstanding residualization. Evidence is pre-
sented later that there is genuine misunderstanding in at least some of
these cases.
‘‘. . .to ensure a true effect of’’ [a predictor] (Cohen-Gold-
berg, 2012, pp. 191–192)

‘‘. . .to allow for assessment of the respective contribu-
tions of each predictor’’ (Ambridge, Pine, & Rowland,
2012, p. 267)

‘‘. . .to determine the unique contribution of’’ [a predic-
tor] (Cohen-Goldberg, 2012, p. 188)

To provide ‘‘. . .a reliable estimate of the unique variance
explained by each’’ [predictor] (Ambridge et al., 2012, p.
268)

To pit predictors against one another and determine
whether one explains variance that the other cannot
(Ambridge et al., 2012, p. 268)

‘‘. . .to reliably assess effect directions for collinear pre-
dictors’’ and to be able to simultaneously assess ‘‘. . .the
independent effects of multiple hypothesized mecha-
nisms’’ (Jaeger, 2010, p. 30; emphasis in original)

to test the effect of one predictor beyond the properties
of two other predictors (Jaeger, 2010, p. 33)

‘‘Orthogonalisation of such variables is crucial for the
accuracy of predictions of multiple regression models.
Teasing collinear variables apart is also advisable for
analytical clarity, as it affords better assessment of the
independent contributions of predictors to the model’s
estimate of the dependent variable’’ (Kuperman, Ber-
tram, & Baayen, 2008, p. 1098).

Most researchers do not specify precisely what would
trigger the strategy. Cohen-Goldberg (2012) said it was
done when a predictor ‘‘. . .was collinear with one or more
control variables. . .’’ (p. 188). Jaeger and Snider (2013) did
it ‘‘since the two predictor variables were correlated’’ (p.
63). Kahn and Arnold (2012) residualized ‘‘Because of high
correlations’’ between the predictor variables (p. 317). This
last case is interesting for the additional fact that the resid-
ualization was restricted to variables that were included
only for purposes of statistical control. The individual ef-
fects of these variables were not of interest – the goal
was simply to be able to assure readers that the analysis
had controlled for them. Below, we show that residualizing
accomplishes literally nothing in this case. Further, exam-
ination of the cut-off values that are reported reveals a lack
of consensus about when one should residualize: Kuper-
man et al. (2008) residualized whenever a zero-order cor-
relation between predictors exceeded 0.50, whereas Bürki
and Gaskell (2012) used 0.30 as a cut-off.

Use of this strategy in psycholinguistics is a relatively
recent phenomenon. The earliest example we have identi-
fied is Baayen, Feldman, and Schreuder (2006). The scope
of what Baayen et al. (2006) did was restricted, and the
reasons for it were principled and clearly articulated. They
wanted to determine if a subjectively-rated version of
word frequency offered anything beyond various objective
measures. They partialed the objective measures from the
subjective measure, and added the residuals to a model
they had already specified as more or less complete. They
did mention collinearity in this context, but it was not their



Table 1
Results of two linear mixed-effects analyses of reading time. In one, the
predictor variable is the number of words. In the other it is the number of
new arguments (data from Lorch & Myers, 1990). Neither analysis involved
residualization.

b SE b t

Analysis 1: Predictor = WORDS 0.437 0.090 4.857*

Analysis 2: Predictor = NEWARGS 1.512 0.477 3.169*

* p < .05.
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primary motivation. Indeed, in this study, they handled
collinearity among their primary predictors in other ways.

Examples of residualizing can be found in at least a doz-
en papers published in three of the top journals in the field
in 2012 (Cognition; Journal of Experimental Psychology:
Learning, Memory, and Cognition; Journal of Memory and
Language). Judging by the descriptions found in these stud-
ies, some of which were included above, there seems to
have been significant drift in researchers’ implementation
of the strategy. Concerned that enthusiasm for the tech-
nique might be outpacing understanding of what it does,
we decided to examine more closely exactly what is (and
what is not) achieved by residualization of predictor vari-
ables. Our ultimate goal is to clear up some misconceptions
and improve statistical practice in psycholinguistics.
Table 2
Results of linear mixed-effects analysis of reading time as a function of
number of words and new arguments (data from Lorch & Myers, 1990).
Neither predictor was residualized.

Predictor b SE b t

WORDS 0.317 0.110 2.875*

NEWARGS 0.664 0.424 1.566

* p < .05.

Fig. 1. Venn diagram illustrating the effects of WORDS and NEWARGS in
a simultaneous analysis with no residualization. Section a represents the
variance assigned to WORDS and section b represents the variance
assigned to NEWARGS. The variance represented by section c is included
in the R2 calculations but is not assigned to either predictor variable
because it is not uniquely attributable to either one.
Study 1: Reanalysis of data from Lorch and Myers (1990)

Lorch and Myers (1990) presented a data set to illus-
trate a recommended way to analyze repeated-measures
regression data. The DV was time to read a sentence. The
predictor variables of theoretical interest were the number
of words in the sentence (WORDS) and the number of new
arguments in the sentence (NEWARGS). They also included
an index of the serial position of each sentence in the
experimental list. To make certain points clearer, we ex-
clude this variable from analysis. The data set included se-
ven sentences, each of which was read by 10 participants.
Here, we reanalyze those data with and without residual-
ization, showing that different results obtain depending
on which variable is residualized.

Method

We analyzed the data using a linear mixed-effects mod-
el with participant and sentence included as crossed ran-
dom effects (Baayen et al., 2008). The DV in all analyses
was reading time in seconds. Fixed effects included
WORDS (either the original variable or residualized from
NEWARGS) and/or NEWARGS (either the original variable
or residualized from WORDS). We used version 2.11.1 of
R (R Development Core Team, 2010) and version 1.0 of
the languageR library (Baayen, 2010).

Results and discussion

We begin by presenting the results of two linear mixed-
effects analyses, one for each of the predictor variables in
its original form, with no other predictors in the model.
As can be seen in Table 1, each predictor has a significant
effect when it is the sole predictor of reading times.

Both of these effects make sense. Sentences with more
words require longer to read, and sentences with more
new linguistic arguments also require longer to read. Note,
however, that because these analyses include only one pre-
dictor each, the effect in each case reflects nothing more
than that predictor’s zero-order correlation with the DV.

A researcher might reasonably wonder whether the ef-
fect of NEWARGS holds when accounting for the number of
words in the sentence, and whether the effect of WORDS
holds when accounting for the number of new arguments
in the sentence. The typical way to answer this type of
question is to include both predictors in one simultaneous
analysis. Table 2 presents the results of such an analysis.
The statistical tests on the regression coefficients indicates
that the effect of WORDS is statistically different from 0
and the effect of NEWARGS is not.

Fig. 1 illustrates this situation with a Venn diagram.
WORDS is assigned the variance represented by section a
and NEWARGS is assigned the variance represented by sec-
tion b. Neither predictor is given credit for the variance
represented by section c because it is not uniquely attrib-
utable to either one. Contrast this with Fig. 2, which shows
the situation when NEWARGS was the only predictor in the
model. In this analysis, NEWARGS is assigned the variance
represented by both sections b and c.

In Table 2, the standard error for NEWARGS has de-
creased from .477 to .424. Examination of the equation



Fig. 2. Venn diagram illustrating the effect of NEWARGS when it is the
only predictor in the model. Sections b and c represent the variance
assigned to NEWARGS.

Table 3
Results of linear mixed-effects analysis of reading time as a function of
number of words and new arguments (data from Lorch & Myers, 1990).
WORDS was residualized.

Predictor b SE b t

WORDSresid 0.317 0.110 2.875*

NEWARGS 1.512 0.305 4.964*

* p < .05.
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for the standard error shows why such a reduction is usu-
ally to be expected when moving from a one-predictor to a
two-predictor model. When there is only one predictor, the
standard error for an unstandardized regression coefficient
is calculated as

SEb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

Y :X

ðN � 2Þ

s
SY

SX

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :6676
ð7� 2Þ

s
1:906
1:030

� �
¼ :477 ð1Þ

where S stands for the standard deviation. When there are
two predictors, the equation is

SEb1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

Y:12

ð1� R2
1:2ÞðN � 3Þ

s
SY

S1

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� :8916
ð1� :4838Þð7� 3Þ

s
1:906
1:030

� �
¼ :424 ð2Þ

As is to be expected because linguistic arguments re-
quire words, these two predictor variables are positively
correlated (r = .696). Psycholinguists seem to be increas-
ingly expected to demonstrate that such intercorrelations
do not contaminate their key results and render them
unstable or somehow ‘‘incorrect’’ (e.g., Roland, Mauner,
O’Meara, & Yun, 2012, p. 496). In the current example,
we might decorrelate the predictors by residualizing the
WORDS variable. We would regress WORDS on NEWARGS
and save the unexplained portion of the variance in this
analysis (the residuals) as a new predictor variable,
WORDSresid. Balling and Baayen (2012) say that a residual-
ized variable created in this way ‘‘. . .can be straightfor-
wardly understood as [the residualized predictor] in so
far as this cannot be predicted from [the other predictor]’’
(p. 87).

Though it might seem like a minor quibble, we believe
that this language can invite the interpretation that
WORDSresid is somehow a purer or improved (or ‘‘cor-
rected’’ – see Lemhöfer et al., 2008) measure of the number
of words in a sentence. Lemhöfer et al. (2008) illustrate this
danger when they change from calling a variable ‘‘residual
meaningfulness’’ to ‘‘meaningfulness’’ in the same sen-
tence: ‘‘Both residual familiarity and residual meaningful-
ness had significant facilitatory effects on RTs: familiarity
(b = –.0002), t(38,800) = –1.99, p < .05; meaningfulness
(b = –.0001), t(38,800) = –2.38, p < .02’’ (p. 23). This is per-
haps understandable as shorthand presentation of a statis-
tical result, but the next sentence from the main text says
‘‘Meaningfulness also interacted with participant group,
with a stronger facilitatory effect of. . .’’ (p. 23). What they
are calling meaningfulness is not meaningfulness. Simi-
larly, in the current context, WORDSresid is not an im-
proved, purified, or corrected version of WORDS; it is
simply the errors of prediction with which one is left when
predicting the number of words in a sentence from the
number of new arguments in the sentence.

Table 3 shows the results of the analysis with
WORDSresid and NEWARGS as predictors. Notice that the
result for WORDSresid is identical to the result for the origi-
nal WORDS variable in Table 2. This includes not only the
coefficient, but the standard error as well (and thus the t
value and the significance level).

The fact that residualizing does not affect any aspect of
the outcome for the residualized variable may come as a
surprise to some researchers, as illustrated by much of
the language reviewed in the Introduction. The following
quote from Cohen-Goldberg (2012) provides a very typical
example of the underlying logic while at the same time
illustrating the result we have just shown:

A significant inhibitory effect of similarity was found
(b = .02; s.e. = .005; t = 4.7). Since onset–onset similarity
was strongly correlated with sonority (r = .78), initial
segment voicing (r = .74) and moderately correlated
with letter similarity (r = .41), additional tests were per-
formed to ensure a true effect of similarity. . . a signifi-
cant inhibitory effect remained when similarity was
residualized against sonority, initial segment voicing,
and letter similarity (b = .02; s.e. = .005; t = 4.7) (pp.
191–192).

The statistical result for similarity is identical before and
after it is residualized.

Ambridge et al. (2012) seem similarly unaware of this
consequence of residualizing, and in fact misinterpret the
outcome for one of their key theoretical variables – Pre-
emption. Across three different age groups, the bs for
Pre-emption changed from �.27, �.28, and .00 in single-
predictor models to +.28, +.17, and +.60 in two-predictor
models (their Table 5). Such sign changes are what many
researchers hope to avoid by residualizing (e.g., Jaeger,
2010), but Ambridge et al. conclude that residualizing in
fact caused them:

. . .the residualized pre-emption predictor is working in
the opposite direction to that predicted. . .This most
likely reflects a statistical quirk arising from the residu-



Table 5
Results of linear mixed-effects analysis of reading time as a function of
number of words and new arguments (data from Lorch & Myers, 1990).
NEWARGS was residualized.

Predictor b SE b t

WORDS 0.437 0.079 5.518*

NEWARGSresid 0.664 0.424 1.566

* p < .05.

Table 4
Results of hierarchical linear mixed-effects analysis of reading time as a
function of number of words and new arguments (data from Lorch & Myers,
1990). Neither predictor was residualized, but they were entered in two
discrete steps.

Predictor b SE b t

Step 1
NEWARGS 1.512 0.477 3.169*

Step 2
WORDS 0.317 0.110 2.875*

* p < .05.
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alization process. . . Supporting this interpretation, note
that for the older children and adults, the pre-emption
predictor is in the predicted negative direction in the
Pre-emption-only model, but the residualized version
flips (though is not significant) in the Entrench-
ment + Pre-emption model (p. 271).

Their conclusion that residualizing is an appropriate
strategy in light of these results is, to say the least, puz-
zling; but, in any event, they are incorrect about what
caused the results. As just demonstrated, residualizing
has no effect on the result for the residualized variable.
The positive bs are what would have been observed in
two-variable models even without residualization. What
caused the changes in sign is not residualization, but mov-
ing from one-variable to two-variable statistical models.
Study 2 (below, including the Extensions section) illumi-
nates this issue further.

We turn next to the result for NEWARGS. Note that the
coefficient (1.512) is the same as that observed in the one-
variable model (Table 1). Fig. 3 illustrates why: Residualiz-
ing WORDS assigns section c to NEWARGS. Note also that
the standard error (.305) is smaller than in Table 1. A
reduction was expected based on Eqs. (1) and (2) above,
but what is interesting is that the standard error is also
considerably less than that observed in the two-variable
model of Table 2. Eq. (3) shows why this happens. When
the two predictors are uncorrelated, as they must be with
residualization, Eq. (2) simplifies to

SEb1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

Y :12

ðN � 3Þ

s
SY

S1

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :8916
ð7� 3Þ

s
1:906
1:030

� �

¼ :305 ð3Þ

It is crucial to understand that this result for NEWARGS
does not control for WORDS; it controls for WORDSresid.
That is, it controls for that part of WORDS which is inde-
pendent of NEWARGS, which is to say that it controls for
nothing.

An additional point is worth noting here: The outcome
for WORDSresid is not only exactly the same as the result
from the analysis using the original unresidualized WORDS
variable (Table 2), but it is also exactly the same as would
be obtained for the original unresidualized WORDS vari-
Fig. 3. Venn diagram illustrating the effects of WORDSresid and NEW-
ARGS. Residualizing WORDS assigns section c to NEWARGS.
able in a hierarchical (rather than simultaneous) analysis.
In Table 4, we show the results of such an analysis. NEW-
ARGS was entered at Step 1 and WORDS was entered at
Step 2.

The result for NEWARGS is identical to that shown in
Table 1, as it must be because Step 1 of the hierarchical
analysis is identical to the one-predictor model. The
WORDS result is identical to that seen in Table 2, and to
the result for WORDSresid in Table 3. Thus, a simultaneous
analysis with WORDSresid and NEWARGS produces the
same coefficients as a hierarchical analysis with NEWARGS
entered a step prior to WORDS. The difference is that the
statistical significance of NEWARGS is exaggerated in the
analysis using WORDSresid because of an artificially small
standard error.

For the sake of completeness, Table 5 shows the results
of a (simultaneous) analysis that includes the original ver-
sion of WORDS and a residualized version of NEWARGS.
The results are predictable from the foregoing demonstra-
tions. The result for NEWARGSresid is identical to that
involving the original, unresidualized NEWARGS in Table 2.
The coefficient for WORDS (.437) is the same value ob-
served in Table 1, when WORDS was the only predictor
in the model, but its statistical importance is exaggerated
here.

It is worth noting that the models in Tables 2–5 explain
exactly the same proportion of variance and have identical
values on all five of the model fit indices produced by the
software (version 2.11.1 of R; R Development Core Team,
2010). Thus, the differences between the models concern
only the individual coefficients and their associated statis-
tical tests. We have seen that the results vary depending on
whether (and on which predictor) residualization is done.

We conclude that the potential for misinterpretation of
results involving residualized predictors is extremely high.
Indeed, as our review of researchers’ language in the Intro-
duction suggested, some researchers using this approach
either misunderstand what it does or do an inadequate
job of describing their results. As another example of the
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high potential for misunderstanding, one reviewer pro-
posed residualizing both predictors against each other
and using the two residualized variables in an analysis to-
gether in place of the original variables. Given a particular
specific circumstance this might seem to be a reasonable
course of action. However, the correlation between two
variables residualized against each other will always have
the same magnitude as that between the original variables,
with the opposite sign. For example, in the Lorch and
Myers (1990) data set, the correlation between WORDS
and NEWARGS is .696, and the correlation between
WORDSresid and NEWARGSresid is �.696. Such an analysis
thus does not reduce collinearity, and worse, contains nei-
ther of the original predictors of interest.

What, then, should we consider the ‘‘true’’ effect of
WORDS or of NEWARGS (as Cohen-Goldberg, 2012, put
it)? It depends on what is meant by ‘‘true,’’ but we argue
that the simultaneous analysis with the original predictors
(see Table 2) comes closest to what researchers generally
want. According to Darlington (1990), one would say that
the effect of WORDS, holding NEWARGS constant, is .317.
The effect of NEWARGS, holding WORDS constant, is
.664. In the language of Lorch and Myers (1990), the un-
ique effect of WORDS adjusted for NEWARGS is .317 and
the unique effect of NEWARGS adjusted for WORDS is
.664. Baayen, del Prado, and Martín (2005) would say that
the independent contribution of WORDS, while NEWARGS
is held constant, is .317 and the independent contribution
of NEWARGS, while WORDS is held constant, is .664. Cohen
et al. (2003) would say that, for any given value of NEW-
ARGS, the effect of WORDS is .317 and, for any given value
of WORDS, the effect of NEWARGS is .664. Trying to apply
this language to any table other than Table 2 quickly leads
to tortured text and logic, and dramatically increases the
likelihood that a researcher will produce an inappropriate
or inaccurate description of the results. We are not advo-
cating needlessly technical language, but rather, careful
and clear descriptions. If one’s text and logic are tortured,
it is possible that a different analysis might have been
more appropriate.
Study 2: Simulated data

Friedman and Wall (2005) demonstrated that r12 is
merely one of the three pieces of information that deter-
mine the presence and extent of problems relating to col-
linearity. We now simulate data for additional analyses,
incorporating all three pieces of information, with the goal
of achieving a more systematic revelation and understand-
ing of the underlying issues.

In a typical behavioral study of word recognition, a re-
searcher might have each of 50 participants respond to
each of 100 items. A traditional way of analyzing such data
would be to calculate a mean reaction time (RT) for each of
the items by averaging over participants, and using item-
specific values on some variables to try to predict those
RTs. There are more sophisticated ways to analyze such
data that take their repeated-measures nature into ac-
count, such as the multi-level models used in Study 1.
However, at present there is no agreed-upon method for
calculating R2 for those models, so for Study 2 we opt for
the traditional method of analysis in order to demonstrate
certain points more clearly.

For the simulations, five different values of predictor
intercorrelation were examined: q12 = �.50, 0, .35, .75,
and .95. The case where q12 = 0 illustrates the idealized sit-
uation in which interpretation of the individual coeffi-
cients is least ambiguous. Because we built a medium
and a small effect into the data (details are provided be-
low), each of the other four values of q12 resides in a dis-
tinct region discussed in Friedman and Wall’s (2005) very
useful computational framework.
Method

Data were simulated with the mvrnorm module of the
MASS package (version 7.3-6; Venables & Ripley, 2002)
and version 2.11.1 of R (R Development Core Team,
2010). Each call to mvrnorm produces a sample of a desired
size (100 in this case, to simulate data for 100 imaginary
items) from a specified multivariate normal distribution.
As our starting point, we specified a covariance matrix in
which q12 = 0, qY1 = .32, and qY2 = .22. That is, the predictor
variables were uncorrelated, X1 correlated .32 with Y, and
X2 correlated .22 with Y. On average these values produce
a medium effect for X1 (roughly 10% explained variance)
and a small effect for X2 (roughly 5% explained variance).
After each of 10,000 calls to mvrnorm, the simulated data
were analyzed with a linear model. Y was the DV and X1

and X2 were predictors. All three variables were z-scores,
so the resulting regression coefficients are standardized
(bs) rather than unstandardized (bs). Several statistics
were recorded from each analysis: r12, rY1, rY2, b1, b2, R2,
and the p-values associated with the test on each b. An
additional 40,000 calls were made to mvrnorm, 10,000 at
each of the other values of q12, and the data were analyzed
in the same way.
Results and discussion

Table 6 presents the results. As can be seen from the
first column of Table 6, when predictor variables are uncor-
related, the regression analysis reflects the underlying cor-
relation between the DV and each predictor. To two
decimal places, mean b1 = mean rY1 and mean b2 = mean
rY2. Mean adjusted R2 = .15, which is the sum of the med-
ium effect (.322) and the small effect (.222) that were built
into the data. Power is quite acceptable for the medium ef-
fect and a bit less than the desired .80 for the small effect.

The second column shows the results when q12 = �.50.
Each predictor has a positive relationship with the DV, but
the predictors have a negative relationship with each
other. This is in a region Friedman and Wall (2005) call Re-
gion I, Enhancement. Both b1 and b2 are greater than in the
uncorrelated case, and R2 > r2

Y1 þ r2
Y2. This is one example

of the kind of situation Hamilton (1987) had in mind (see
also Region IV below) when cautioning against the conclu-
sion that correlated variables are necessarily redundant.
For both effects, the likelihood of statistical significance is
nearly 1.



Table 6
Results of simulations (N = 10,000 for each value of q12). Neither X1 nor X2

was residualized.

q12

0 �.50 .35 .75 .95

Mean r12 �0.001 �0.498 0.347 0.747 0.950
Mean rY1 0.317 0.319 0.319 0.316 0.319
Mean rY2 0.220 0.220 0.218 0.217 0.219
Mean b1 0.318 0.572 0.277 0.351 1.135
Mean b2 0.220 0.506 0.122 �0.046 �0.860
Mean R2 0.165 0.306 0.132 0.118 0.189
Mean adjusted R2 0.148 0.291 0.114 0.100 0.173

Power for effect of
X1 0.913 >0.999 0.777 0.673 0.964
X2 0.646 0.998 0.222 0.060 0.818
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The third column shows the results when q12 = .35. This
is in a region Friedman and Wall (2005) call Region II,
Redundancy. Both b1 and b2 are smaller than in the uncor-
related case, and R2 < r2

Y1 þ r2
Y2. The likelihood of either ef-

fect reaching statistical significance is lower, substantially
so in the case of the smaller effect. The Lorch and Myers
(1990) data analyzed in Study 1 provide an example of
Redundancy, and this would seem to be the region in
which researchers most often find themselves. We would
generally expect the correlation between predictors with
the same kind of effect on the DV to be positive. The inter-
pretation here is familiar and sensible: We would say that
the effect of X2 no longer holds when one takes X1 into ac-
count, as we concluded in connection with Table 2 above.

The fourth column shows the results when q12 = .75.
This is in a region Friedman and Wall (2005) call Region
III, Suppression. The main characteristics of this region
are that the b for the smaller effect has changed sign, and
the b for the larger effect is greater than in the ideal uncor-
related case. R2 in this region is increasing from a mini-
mum value but remains less than r2

Y1 þ r2
Y2.3 The

likelihood of either effect reaching statistical significance is
low (extremely so for the smaller effect). The likely conclu-
sion here is the same as in Region II: The effect of X2 no long-
er holds when one takes X1 into account.

The last column shows the results when q12 = .95.
Friedman and Wall (2005) call this Region IV, Enhance-
ment, as R2 > r2

Y1 þ r2
Y2. It is distinguished from Region I,

also called Enhancement, by the changed sign of b2. Both
bs are becoming more extreme, and the power values indi-
cate a strong likelihood that both effects, including the one
with the changed sign, will be statistically significant.

The general boundaries of the regions are shown in Ta-
ble 7. The lower bound of Region I and the upper bound of
Region IV are the theoretical minimum and maximum val-
ues of r12, respectively. Fig. 4 illustrates the behavior of the
3 Discussion of the different definitions of suppression is beyond the
scope of this paper. Here we use the capitalized word Suppression in
referring specifically to Region III as defined by Friedman and Wall (2005).
We use suppression (lower case) in the generic sense of a predictor’s
regression coefficient having a different sign than that predictor’s zero-
order correlation with the DV, as it is such sign changes that seem to call for
either an explanation or countermeasures in psycholinguistic analyses (e.g.,
Ambridge et al., 2012; Jaeger, 2010).
bs over the range of possible values of r12 in the specific
context of the effect sizes used here (�.854 < r12 < .995).
The behavior of the bs in the figure is the straightforward
result of the regression equation arriving at the optimal
least-squares solution to the analytical problem.

A major part of Jaeger’s (2010) motivation in residualiz-
ing appeared to relate to effects changing sign (i.e., Regions
III and IV). One might wonder how common this is. For a
data set like the Lorch and Myers (1990) example used in
Study 1, r12 needs to be above .903 for entry into Region
III and above .995 for entry into Region IV. For a data set
with perhaps more realistic effect sizes, like the one simu-
lated here, r12 needs to be above .688 for entry into Region
III and above .934 for entry into Region IV. We doubt that
researchers will find themselves in this territory all that of-
ten, unless they are using regression to adjudicate between
two highly-correlated predictor variables. We assert that
regression is not well-suited to this task. We return to this
point below, under ‘‘Recommendations and conclusion.’’

However, there is a more important point. The regres-
sion model is not influenced by whether the sign of a coef-
ficient makes sense given the researcher’s theoretical
model. A changed sign may be an indication that the vari-
able under consideration is of lesser theoretical impor-
tance. The variable that changes sign will always have
the smaller of the two correlations with the DV. It does
not relate to the DV in the way theorized, but operates
‘‘as a measure of the sources of error’’ in the other predictor
(Darlington, 1990, p. 155), whose effect is stronger. Put an-
other way, the predictor whose sign has changed accounts
for (or suppresses) a portion of the variance in the other
predictor that is unrelated to the DV (Pandey & Elliott,
2010).

What happens when X1 is residualized?
The simulated data were reanalyzed, using the original

version of predictor X2 but a residualized version of X1. The
results of these analyses are shown in Table 8.

A row-wise comparison of Tables 6 and 8 shows that
residualization has affected some aspects of the results
while leaving others unchanged. r1resid2 is of course now
0 for all values of q12, as it must be. Thus, we can now con-
ceptualize the analytic situation as being at the X = 0 loca-
tion on figures like Fig. 4, but we must remember that
Fig. 4 is no longer the correct representation because resid-
ualizing has changed the multivariate correlational struc-
ture of the data. Not surprisingly, residualization of X1

had no effect on rY2, but the zero-order correlation be-
tween the other predictor and the DV has changed. That
is, rY1resid does not equal rY1, because X1resid is not X1 unless
r12 = 0. Therefore, although we may find it comforting that
this analysis will produce ‘‘true’’ bs because the predictor
intercorrelation has been set to 0, it must be remembered
that those bs will be for variables that are not the original
variables.

It is worth noting that residualizing X1 had no effect
whatsoever on the b or on the likelihood of detecting an ef-
fect of what was originally X1. This was to be expected gi-
ven Study 1 but, given some of the language reviewed in
the introduction, this outcome might surprise some
authors. Residualizing X1 also had no effect on any of the



Table 7
r12 boundaries of the four regions discussed in Friedman and Wall (2005), assuming rY1 > rY2 > 0.

Region Lower bound Upper bound

I, Enhancement rY1rY2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2

Y1Þð1� r2
Y2Þ

q
0

II, Redundancy 0 rY2

rY1

III, Suppression rY2

rY1

2rY1rY2

r2
Y1 þ r2

Y2

IV, Enhancement 2rY1rY2

r2
Y1 þ r2

Y2

rY1rY2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2

Y1Þð1� r2
Y2Þ

q

Fig. 4. b values for X1 and X2 as a function of the correlation between the
predictors (r12), following Friedman and Wall (2005). rY1 is the effect built
into the data for X1. rY2 is the effect built into the data for X2. Region
I = Enhancement, as both b1 and b2 are greater than in the uncorrelated
case, and R2 > r2

Y1 þ r2
Y2. Region II = Redundancy, as both b1 and b2 are

smaller than in the uncorrelated case, and R2 < r2
Y1 þ r2

Y2. Region III = Sup-
pression, as the b for the smaller effect has changed sign, and the b for the
larger effect is greater than in the ideal uncorrelated case. R2 remains less
than r2

Y1 þ r2
Y2. Region IV = Enhancement, as R2 > r2

Y1 þ r2
Y2. It is distin-

guished from Region I, also called Enhancement, by the changed sign of
b2. It begins at a value of r12 = .934, and is too small to label.

Table 8
Reanalysis of data from Table 6 with X1 residualized.

q12

0 �.50 .35 .75 .95

Mean r1resid2 0.000 0.000 0.000 0.000 0.000
Mean rY1resid 0.316 0.493 0.258 0.232 0.353
Mean rY2 0.220 0.220 0.218 0.217 0.219
Mean b1resid 0.318 0.572 0.277 0.351 1.135
Mean b2 0.220 0.220 0.218 0.217 0.219
Mean R2 0.165 0.306 0.132 0.118 0.189
Mean adjusted R2 0.148 0.291 0.114 0.100 0.173

Power for effect of
X1resid 0.913 >0.999 0.777 0.673 0.964
X2 0.638 0.701 0.625 0.616 0.651
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R2 values. What differs, then, is how the total pool of ex-
plained variance is being assigned. As argued in Study 1,
this is a function of what we have artificially done by giv-
ing X2 first access to the variance. This point can also be
seen by examination of the b2 values. In all cases, they have
the same value as rY2.

To our knowledge, no researcher has ever discussed
the effect of residualizing X1 on the likelihood of finding
an effect of X2, even though it can be fairly dramatic. In
Regions I and IV (i.e., q12 = �.50 and .95), residualizing
X1 has decreased the probability of finding an effect of
X2 by .297 and .167, respectively. In Regions II and III
residualizing X1 has increased the probability of finding
an effect of X2 by .403 and .556, respectively. This is an
unappealing state of affairs given the logic usually in-
voked for residualizing: A researcher wanting to know
the ‘‘true’’ or ‘‘incremental’’ effect of X1, over and above
the effect of X2, residualizes X1. The result for X1resid is
identical to what it would have been for X1, but the pro-
cedure has had a dramatic effect on the likelihood of
finding an effect of the other predictor, X2.
What happens when X2 is residualized?
The data from Table 6 were reanalyzed using the origi-

nal version of predictor X1 but a residualized version of X2.
The results of these analyses are shown in Table 9. In gen-
eral, they are quite predictable from the foregoing analy-
ses. Compared to the original analysis in Table 6, we can
see that residualizing X2 has had no effect on any of the
R2 values, or on rY1, or on the b, or on the likelihood of find-
ing an effect of what was originally X2. Where it did have
an effect is in the zero-order correlation between the DV
and what was originally X2, and on b1, and on the likeli-
hood of finding an effect of X1 (which now exceeds .90 in
all cases).

The reappearance of the �.046 in the fourth column of
the table is interesting. This is of course exactly the same
value that was observed in Table 6 but, in the current anal-
yses, it is not suppression. Residualization in fact changed
rY2resid to negative, so this b does not represent a change in
sign. We believe most researchers will consider this an
unexpected and unwelcome outcome given that the effect
built into these data was positive.

This last point underscores how much it matters which
variable is residualized. If it is the one with the larger ef-
fect, the result will be two coefficients with no apparent
suppression. If it is the one with the smaller effect, the re-
sult can be apparent suppression that is not really suppres-
sion. We believe that this situation captures what was
happening in the data of Ambridge et al. (2012), which
they dismissed as a ‘‘quirk arising from the residualization
process’’ (p. 271).



Table 9
Reanalysis of data from Table 6 with X2 residualized.

q12

0 �.50 .35 .75 .95

Mean r12resid 0.000 0.000 0.000 0.000 0.000
Mean rY1 0.317 0.319 0.319 0.316 0.319
Mean rY2resid 0.219 0.436 0.114 �0.031 �0.267
Mean b1 0.317 0.319 0.319 0.316 0.319
Mean b2resid 0.220 0.506 0.122 �0.046 �0.860
Mean R2 0.165 0.306 0.132 0.118 0.189
Mean adjusted R2 0.148 0.291 0.114 0.100 0.173

Power for effect of
X1 0.914 0.941 0.910 0.905 0.918
X2resid 0.646 0.998 0.222 0.060 0.818
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Power for the non-residualized variable has been af-
fected, as in the analyses in which X1 was residualized. In
Regions I and IV (i.e., q12 = �.50 and .95), residualizing X2

has decreased the probability of finding an effect of X1 by
.058 and .046, respectively. In Regions II and III, residualiz-
ing X2 has increased the probability of finding an effect of X1

by .133 and .232, respectively. These are smaller than the
corresponding numbers from the previous section because
X2 is the smaller of the two effects built into the data.
Extensions

One might wonder whether our results scale up to
more realistic data sets. We present three different
pieces of evidence showing that they do. First, we men-
tioned above an analysis in which Cohen-Goldberg
(2012) found an exactly identical result for a predictor
before and after residualizing it. That analysis included
more than 10,000 responses and had 19 predictor vari-
ables. The predictor in question had been residualized
against three other predictors.

Second, we took an actual data set consisting of lexical
decision times for 106 items, each of which was responded
to by 88 subjects. Response errors were deleted, making
the data array ragged (i.e., not all subjects are represented
an equal number of times, and not all items are repre-
sented an equal number of times). We chose 10 numeric
predictor variables, all measured on different scales. Their
distributions deviated by varying degrees from normal;
in some cases this deviation was substantial. Predictor
intercorrelations ranged from �.66 to +.67. We added three
more predictors consistent with a real-world analysis:
Trial number, and two two-level factors (subject gender
and voicing of the onset phoneme).

We used mixed-effects analyses with subjects and
items as crossed random factors, the same type of analysis
used in Study 1. Adopting a strategy cited in the Introduc-
tion, we residualized whenever a predictor correlation ex-
ceeded .50 in absolute magnitude (i.e., regardless of sign).
There were five such correlations, involving seven of the
10 numeric predictors. X1 was residualized against X6. X9

was residualized against X5. X3 was residualized against
X5, X7, and X12. We believe that the difficulties in interpre-
tation noted above only get worse with each additional
residualizing variable, but this is sometimes done (e.g.,
Kahn & Arnold, 2012). We make no defense of such a sta-
tistical model, but present it as an example of realistic
complexity with real data.

We first ran the analysis with all of the original vari-
ables. Then, we substituted the three residualized versions
for their original counterparts and re-ran the analysis. The
results for the three residualized variables matched the re-
sults of the first analysis, in line with the findings pre-
sented above. The results for the residualizing variables
(X5, X6, X7, and X12) changed, again in line with the findings
above. Finally, the results for the remaining variables,
uninvolved in any residualizations, remained unchanged.

Our third kind of evidence is conceptual. Consider the
result for X3 vs. X3resid, for example. In the original analysis,
X3 was assigned the variance it could explain that no other
predictor could. This exact same variance was assigned to
X3resid in the second analysis: Variance that used to be
explainable by X3 and/or X5 and/or X7 and/or X12 was ex-
pressly taken away from X3, but X3 was never given credit
for that variance anyway. Thus, our findings do scale up as
expected.

General discussion

The current study has shown several of the effects of
residualizing a predictor variable (assume X1 here) in
regression analyses. First and foremost, it produces an
intercorrelation between predictors of 0, which was of
course its desired effect. It is important to note that it
does this by substituting a new predictor for one of the
originals (e.g., X1resid for X1). This has the concomitant ef-
fect of substituting rY1resid for rY1. The difference between
these two correlations depends on r12 and can be
dramatic.

Residualizing also gives the non-residualized predictor
first access to the shared variance, which (conceptually)
could be desirable and appropriate. Refusing to give a
new predictor the same access to variance as more estab-
lished predictors would seem to be a conservative ap-
proach. However, this creates an analysis that is neither
simultaneous nor hierarchical in terms of the original
variables, but which blends aspects of both. Specifically,
residualizing exaggerates the statistical importance of
the non-residualized predictor in a region of Redundancy
or Suppression, and underestimates it in a region of
Enhancement (as defined by Friedman & Wall, 2005). Fi-
nally, residualizing replaces the problem of collinearity
(to the extent that it is a problem) with one that is less
obvious and less well-understood. For these reasons,
residualizing sometimes creates conceptual difficulty
and leaves the researcher unable to draw any firm
conclusions.

The current study has also demonstrated several things
that residualizing does not do. Probably the most impor-
tant is that it does not change the result for the predictor
that was residualized. Further, residualizing (a) does not
create an improved, purified, or corrected version of the
original predictor, (b) does not change the overall explan-
atory power of the model, and (c) does not change any of
the indices of model fit (AIC, BIC, log likelihood, etc.).
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Additional interpretational issues

Psycholinguists using regression have been concerned
about statistical undercontrol (i.e., failing to take some
important variable into account), but aside from collinear-
ity concerns, they seem to have placed far less emphasis on
the issue of statistical overcontrol (i.e., including too many
predictor variables in a model). Meehl (1970) framed the
conceptual consequences of this in terms of investigators
interpreting counterfactual situations (e.g., a world in
which written word frequency is uncorrelated with spoken
word frequency) after having created a ‘‘virtual or idealized
sample’’ (p. 401) that is given fictional values. He asserts
that ‘‘When a social scientist of methodological bent tries
to get clear about the meaning, proof, and truth of those
counterfactuals that interpret statistical formalisms pur-
porting to ‘control the influence’ of nuisance variables, he
is disappointed to discover that the logicians are still in
disagreement about just how to analyze counterfactuals’’
(p. 385; see also Campbell, Converse, & Rodgers, 1976).
Anderson (1963) was succinct in making a similar point:
‘‘. . .one may well wonder exactly what it means to ask
what the data would be like if they weren’t what they
are’’ (p. 170).

Breaugh (2006) presents an illustrative example built
around the hypothesis that taller basketball players get
more rebounds. Regression analyses using data down-
loaded from the website of the National Basketball Associ-
ation suggest that the hypothesis is true only if players’
weights are not controlled for. However, Breaugh ques-
tions whether a height variable from which weight has
been residualized is even interpretable as anything. In
the real world, these quantities are strongly correlated, so
how are we to conceptualize this new variable? Breaugh
(2006) says that ‘‘. . .making subjunctive statements based
upon a residual variable is inappropriate. Simply stated,
there is no basis to assume that, if in reality height and
weight were uncorrelated, height would not be related to
rebounds. Given they are correlated, and highly so, we sim-
ply have no way of knowing’’ (p. 439).
Recommendations and conclusion

Some researchers consider mean-centering to be a via-
ble alternative to the residualizing of predictors because
they contend that it reduces collinearity (Kromrey & Fos-
ter-Johnson, 1998). However, the strategy is misguided be-
cause it ignores the crucial distinction between essential
and non-essential collinearity (e.g., Dalal & Zicker, 2012).
Mean-centering reduces non-essential collinearity, which
is due to the way in which variables are scaled, but not
essential collinearity, which is due to the underlying rela-
tionships between variables. As Pedhazur (1997) notes:
‘‘. . .centering X in the case of essential collinearity does
not reduce it, though it may mask it by affecting some of
the indices used to diagnose it’’ (p. 306; see also Belsley,
1984). Mean-centering can sometimes facilitate interpre-
tation of regression coefficients (but cf. Cohen, 1978;
Kromrey & Foster-Johnson, 1998); but it does not reduce
essential collinearity.
It might be worthwhile to investigate the effectiveness
and appropriateness of techniques that have not been
widely used in psycholinguistics but that have been devel-
oped to solve similar analytic issues. One such technique,
random forests (Strobl, Malley, & Tutz, 2009) uses permu-
tations of predictor variables to rank the importance of
predictors. Many models are computed, with variables in
their original and permuted forms. If the permuted ver-
sions of a variable lead to substantially worse models, that
variable is assigned a relatively higher conditional impor-
tance. One disadvantage is that even with modern comput-
ers and algorithms, computation of the models can take
many hours (Tagliamonte & Baayen, 2012).

Another alternative is ridge regression (Hoerl, 1962). In
the context of high collinearity, ridge regression produces
parameter estimates with less error variance than that
seen with ordinary least-squares regression. The price a re-
searcher pays is that the parameter estimate has a slight
conservative bias. A far more important shortcoming for
most psycholinguistic applications is that there is no way
to use this in a repeated-measures design. One would need
to collapse across items or participants.

A method of model comparison exists that formally
tests whether a more complex model is statistically justi-
fied (i.e., whether the additional explained variance is
worth increasing the complexity of a model). Cohen-Gold-
berg (2012) employs this method, as does Jaeger (2010),
who notes that it is ‘‘robust against collinearity’’ (p. 37)
and thus does not suffer from the reduced power associ-
ated with the t-test on a regression coefficient. Jaeger
(2010) also points out the shortcoming of the method:
The direction of the effect cannot be assessed.

Whatever statistical technique is chosen, researchers
must be clear about what they wish to test. Language
about ‘‘true’’ or ‘‘accurate’’ or ‘‘reliable’’ effects is probably
meaningless without further elaboration. A review of the
literature (see examples in the ‘‘Introduction’’) suggests
that researchers’ hypotheses in these situations are usually
about the unique explanatory power of a predictor, beyond
that of other predictors. When this is true, simultaneous
multiple regression with the original predictors is the
way to proceed (Breaugh, 2006; Lorch & Myers, 1990;
Pedhazur, 1997) because this provides the basis for the
appropriate interpretation of the resulting coefficients. As
we have seen, these resulting coefficients need not reflect
the zero-order correlation between any given independent
variable and the dependent variable, because that is a dif-
ferent statistical question which is not addressed by multi-
ple regression.

A hierarchical analysis might sometimes be preferable,
insofar as it makes explicit the researcher’s desire to know
if a single additional predictor explains variance beyond
that of an already-established model. We repeat, though,
that the result of this analysis as regards the last added pre-
dictor is identical to the result of the simultaneous analysis
(e.g., the result for WORDS in Tables 2 and 4).

Tabachnick and Fidell (2007) list several options for
researchers concerned about collinearity: Ignore it (if the
goal is simply to maximize R2); eliminate one or more of
the variables; make a composite variable (for example,
by making ratios of different frequency measures, as was
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done in Baayen et al., 2006 and Wurm, 2007); or subject
the variables to a principle components analysis (as was
done, for example, in Baayen et al., 2006). However, none
of these is satisfactory if the researcher’s goal is to evaluate
the effects of one or more of the individual predictors.
Models that differ by just one predictor can suggest dra-
matically different effects. For example, omitting a sup-
pressor variable produces underestimates of the effect of
X on Y (Cohen et al., 2003), and we have shown above that
residualizing such a variable has differing effects depend-
ing on whether the variable resides in Region III or IV of
Friedman and Wall’s (2005) framework. Making a compos-
ite variable destroys any possibility of choosing between
two similar variables for theory-building purposes, as does
a principle component analysis.

Worries about suppression might be overblown,
though. Darlington (1990) says ‘‘Suppression rarely occurs
in real data’’ (p. 155), and Cohen et al. (2003) say that it is
more likely to be seen in fields like economics where vari-
ables or actions often have simultaneous equilibrium-pro-
moting effects. The computational framework of Friedman
and Wall (2005) provides an easy way to see whether an
analysis will produce a sign change (or any of the other
possibilities discussed above): Assuming rY1 > rY2 > 0, the
sign of the coefficient for X2 will change if r12 exceeds
rY2/rY1. Above, we showed that these cut-off values were
.903 for the Lorch and Myers (1990) data set, and .688
for the parameters used in Study 2. As reviewed in the
Introduction, some researchers residualize at values of r12

considerably smaller than this.4 The larger point, and one
of our main conclusions, is that to the extent that collinear-
ity is a problem, residualizing does not solve it.

Researchers should understand that suppression does
not indicate computational problems or model instability.
Thus, one of the reasons given for residualizing, namely
instability of computational estimates in the context of
high collinearity, appears not to be valid. Friedman and
Wall (2005) write (and demonstrate) that, because of ad-
vances in computational algorithms and accuracy, ‘‘multi-
collinearity does not affect standard errors of regression
coefficients in ways previously taught’’ (p. 127).

Researchers might mean something different by ‘‘insta-
bility,’’ though. It is true that in the presence of high collin-
earity relatively minor changes in the structure of a data
set, even small differences due to random error in a repli-
cation study, can potentially reverse the order of impor-
tance of X1 and X2. The current study has shown that
under some circumstances this could lead to opposite con-
clusions about whether a predictor’s effect is facilitative or
inhibitory. Pedhazur (1997) discusses these issues, but cru-
cially, concludes that ‘‘none of the proposed methods of
dealing with collinearity constitutes a cure. High collinear-
ity is symptomatic of insufficient, or deficient, information,
4 One reviewer noted that there are no such simple rules of thumb when
one gets beyond two predictors. Deriving such cross-over points with
several predictors is indeed complex, but it can be done if one wants them
(e.g., Peters & Van Voorhis, 1935; Peters & Wykes, 1931a, 1931b). If it is
simply the presence of a sign change that is of interest, it would be far
easier to simply check whether the zero-order correlation between a
predictor and the DV has a different sign than that predictor’s regression
coefficient.
which no amount of data manipulation can rectify’’ (p.
318).

When psycholinguists encounter high collinearity, they
should examine closely the reason(s) why. In such situa-
tions they may have to come to terms with the possibility
that multiple regression is simply ill-suited to some of the
purposes for which they would like to use it. Darlington
(1990), amplifying earlier remarks (Darlington, 1968),
wrote that it is a ‘‘misconception about collinearity. . .that
more advanced statistical methods might someday elimi-
nate the problem. But the problem is essentially that when
two variables are highly correlated, it is harder to disentan-
gle their effects than when the variables are independent.
This is simply an unalterable fact of life’’ (p. 131; see also
Breaugh, 2006; Meehl, 1970; Pedhazur, 1997). We are
not as comfortable as Darlington in predicting what might
be possible with future statistical techniques, but we have
shown in the current study that residualization of predic-
tor variables is not the hoped-for panacea.
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