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Review
Scaling laws are ubiquitous in nature, and they pervade
neural, behavioral and linguistic activities. A scaling law
suggests the existence of processes or patterns that are
repeated across scales of analysis. Although the vari-
ables that express a scaling law can vary from one type
of activity to the next, the recurrence of scaling laws
across so many different systems has prompted a search
for unifying principles. In biological systems, scaling
laws can reflect adaptive processes of various types
and are often linked to complex systems poised near
critical points. The same is true for perception, memory,
language and other cognitive phenomena. Findings of
scaling laws in cognitive science are indicative of scaling
invariance in cognitive mechanisms and multiplicative
interactions among interdependent components of
cognition.

The scaling law debate
In the past, the ubiquity of the normal curve was observed
throughout nature, but not satisfactorily explained. Then
developments such as the central limit theorem showed
how random, independent effects combine to produce the
normal curve, thereby explaining its ubiquity. Today the
normal curve is sometimes taken for granted, although still
appreciated for the beauty and power with which it brings
order to randomness.

The normal curve fails, however, to describe crucial
facts about living systems and other complex systems –

because such systems are more than collections of random,
independent effects. Their complexity is defined by intri-
cate regularities and dependencies that span multiple
temporal and spatial scales of analysis. For instance,
synchronization errors in a finger-tapping experiment fol-
low the normal distribution, yet the temporal sequence of
errors is highly non-random [1]. In other words, measure-
ments of living systems often obey scaling laws rather than
linear relations or Gaussian statistics. Bringing order to
such regularities, which are inherent in nature’s complex-
ities, including the complexities of cognition, has proven to
be as difficult as bringing order to randomness.

Most generally, scaling laws express one variable as a
nonlinear function of another raised to a power, f(x) / xa,
with a6¼0. Scaling laws are observed throughout the
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sciences, notwithstanding difficulties in determining
whether measurements actually conform to scaling laws.
Other functions (such as exponentials) can also provide
good fits to data, and skeptics sometimes contend that
scaling laws do not always provide the best fit [2,3]. How-
ever, improved statistical tests have provided strong evi-
dence of pervasive scaling laws [4–6] over a substantial
(although limited) range of scales [7–10].

Even among scientists who acknowledge the existence
of scaling laws, some still see them as largely uninforma-
tive because there are many ways to produce scaling laws,
and some of thoseways are idiosyncratic or artifactual [11].
Thus, their unifying order could be more illusory than
enlightening. However, as the extent of unexplained coinci-
dence grows with each reported power law, coincidence
becomes increasingly difficult to accept. We could instead
seriously consider the hypothesis that scaling laws
describe a fundamental order in living and complex sys-
tems. This working perspective motivates principles and
theories to explain scaling laws in terms that can cross or
integrate disciplines.

Although these debates over scaling laws have a long
history in nearly every scientific discipline and domain,
they have emerged only recently in cognitive science.
Indeed, many cognitive scientists are yet unfamiliar with
the debate, or the pervasiveness and meaning of scaling
laws in other sciences. Here, we review evidence of scaling
laws in cognitive science, at neural, behavioral and lin-
guistic levels of description. The evidence indicates that
cognitive phenomena occurring at relatively small
temporal and spatial scales are intimately linked to those
occurring at relatively large scales. This linkage can be
explained by rooting cognitive functions in principles of
statistical physics.

Scaling laws in perception, action and memory
Although the demonstration of the pervasiveness of scaling
laws could be new to cognitive science, a few classic
examples are well known in the field. Studies of psycho-
physics and motor control, in particular, have produced
some of the most lawful phenomena of human behavior,
including some allometric scaling laws (see Glossary).
Stevens’ law is one psychophysical example for which
the physical magnitude of a stimulus (S) is proportional
to its perceived intensity (I) raised to a power a, S / Ia [12].
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Glossary

Allometric scaling laws: traditionally refer to relationships between different

measures of anatomy and/or physiology that hold true across species or

organs of different sizes. A classic example is Kleiber’s law that relates

organism mass to metabolic rate as m�r0.75, and holds true across species

ranging from bacteria to whales [75]. The mass of gray matter versus white

matter in brains also obeys an allometric scaling law across species [76].

Criticality: refers to the state of dynamical systems poised near phase

transitions, and it is characterized by scale invariance, for example power-

law temporal fluctuations (1/f scaling) and power-law distributions with critical

exponents. The Ising model of ferromagnetism is a classic example of a system

with a critical point between ordered and disordered phases [77]. Self-

organized criticality refers to models such as the ‘‘sandpile’’ model for which

the critical point is an attractor [78].

Heavy-tailed distributions: have tails that decay more slowly than exponen-

tially. All power-law distributions are heavy-tailed, but not all heavy-tailed

distributions are power laws (e.g. the lognormal distribution is heavy-tailed but

is not a power-law distribution).

Lévy flights: are random walks (i.e. flights) for which each step is drawn

from a power-law distribution (the direction of each step is typically

random but can instead be determined by some rule or algorithm). Points

visited by steps in Lévy flights tend to be clustered in space, where clusters

are separated by very large steps occasionally drawn from the heavy tail of

the distribution.

Lognormal distributions: are heavy-tailed and have probability density

functions that are normally distributed under a logarithmic transformation:

PðxÞ ¼ 1
xs
ffiffiffiffi
2p
p e

�ðln x�mÞ2
2s2 for x > 0:

For certain parameter values, lognormal distributions can be difficult to

distinguish from power law distributions [79].

Metastability: is a delicate type of stability that is a property of systems poised

near their critical points. It stems from the fact that small (microscopic)

perturbations to near-critical systems can result in system-wide (macroscopic)

changes in their states. Thus, states are only tenuously stable, resulting in

many (nearly) equally potential states near critical points.

Pareto distributions: are one type of power-law distribution used to model

phenomena from a diversity of fields, including economics, physics, anthro-

pology, computer science, geology and biology. Its probability density function

is

PðxÞ ¼ a
xmin

a

xaþ1

� �
for x > xmin;

where xmin is used to express lower bounds that often exist on physical

quantities (e.g. volumes and masses of particles must be >0).

Power-law distributions: have heavy-tailed probability functions of the form

P(x)�x�a, where typically 0<a<3. These distributions have properties of self-

similarity and scale invariance.

‘‘Rich get richer’’: refers to a growth process (i.e. Yule process) whereby the

probability of incrementing some quantity associated with a given unit (e.g.

population of a city, frequency of a word) is proportional to its current value.

Such quantities grow to be power-law distributed, for example networks that

grow by preferential attachment have power-law distributed links (i.e. scale-

free [80]).

Scale-free networks: are those with power-law distributions of links per node

(i.e. node degree). The heavy tail means that some nodes act as hubs because

they are linked to a substantial proportion of all nodes in the network.

1/f Scaling: (also known as 1/f noise, pink noise or flicker noise) occurs in

time series with Long-range temporal correlations. A time series can be

correlated with itself (i.e. autocorrelated) at varying temporal lags k, and

autocorrelations, C(k), are typically long-range if they decay slowly as an

inverse power of lag, C(k)�k�a. Expressing this power law in the frequency

domain yields S( f)�f�a, where f is frequency, S( f) is spectral power and

a�1 for 1/f scaling.

Self-similarity and scale invariance: both refer to objects or mathematical

functions that exhibit similar shapes or relations among variables at different

scales. A self-similar object is such that each portion can be considered a

reduced-scale image of the whole. Mathematical fractals such as the Koch

snowflake are examples of ideal self-similarity objects because their contours

are recursively and identically repeated across all scales. A power-law

distribution is scale invariant because multiplying x by a constant c only

scales the function: P(cx)=caP(x), where P(x)=xa. Scale invariance in nature

tends to be approximate and statistical, as illustrated by the coastline of Britain:

it is not that a particular contour is repeated exactly across scales of the

coastline. Instead, the statistical relation between measured length of the

coastline and size of the measuring stick is invariant across different zoom

levels [81].

Zipf’s law: refers to a power-law distribution traditionally expressed in terms of

frequencies of occurrence of a certain variable (e.g. word rank or population

size of cities). When word frequencies are said to follow Zipf’s law, their rank r

(the most frequent word has rank 1, the second most frequent word has rank 2,

and so on) is related to frequency as f(r)�r�a.
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With regard to motor control, Lacquaniti et al. [13] dis-
covered a two-thirds power law in which angular velocity
(A) is proportional to the curvature (C) of drawing move-
ments, A / C�.66.

Traditionally, such laws have been investigated inde-
pendently of each other, especially when they are found in
different research domains (e.g. perception versus action
for the examples above). It is commonly assumed in cog-
nitive science that different domains entail different mech-
anisms. However, common principles can underlie
seemingly disparate mechanisms, and similar scaling laws
are suggestive of such principles. Most broadly, the prop-
erty of scale invariance inherent to the Stevens’ and two-
thirds laws (and all scaling laws) implies a property or
principle that is adaptive at all scales (i.e. scaling laws can
exist because natural selection or other mechanisms of
adaptation select and repeat a pattern or process across
scales). Consistent with this implication, Copelli et al. [14–

16] hypothesized that Stevens’ law reflects maximization
of sensitivity and dynamic range in sensory systems, and
Harris and Wolpert [17] hypothesized that the two-thirds
law reflects minimization of movement errors caused by
noise in motor systems.

A compelling fact about the Stevens’ and two-thirds
laws (which is also true of many other scaling law obser-
vations) is that data closely follow their power-law func-
tions over more than three orders of magnitude. For
instance, different muscles and muscle groupings are
employed and coordinated for movements of very small
versus very large curvature, yet all obey the two-thirds
law. Scaling over multiple orders of magnitude is compel-
ling because it ties together ostensibly different mechan-
isms at disparate scales. Given evidence for several other
scaling laws in perception and action [18,19], one is led to
principles that generally tie together perceptual andmotor
mechanisms across scales.

The purview of scaling laws broadens as we further
consider their occurrence in other domains of cognitive
function. Memory is a natural domain to consider after
perception and action, and indeed scale invariance has
been found in memory retrieval (Figure 1). Maylor et al.
[20] instructed participants to recall what they did (or will
do) in the previous (or next) day, week or year. Rate of item
recall was generally invariant across target recall period:
on average, participants recalled an invariant five items/
min regardless of the span over which recall was bounded.

This dynamic scaling of memory retrieval is consistent
with a scale-invariant temporal ratio model of memory
[21,22], in which discriminability of memories depends on
ratios of temporal intervals between encoding and retrie-
val events. For example, two different memory traces
encoded 8 versus 10 min in the past (temporal ratio=8/
10) will be as confusable with each other as two traces
encoded 8 versus 10 h in the past. This model explicitly ties
scales together because the same memory and retrieval
processes are hypothesized to operate across all timescales
and no qualitative distinction exists between short-term
and long-term memory processes. Such an approach
appears necessary to explain themany scale-similar effects
in human memory and learning (for analogous effects in
animal learning, see Ref. [23]).



Figure 1. Scaling in retrospective and prospective memory. Recall data are plotted showing scaling in the retrieval of retrospective (a) and prospective (b) memories from

periods varying from a day to a year [20]. Participants were given 4 min to recall ‘‘. . .jobs, appointments, and things you have done yesterday/in the last week/in the last

year’’ (retrospective) or ‘‘. . .jobs, appointments, and things you intend to do tomorrow/in the next week/in the next year’’ (prospective) as one-word summaries. The figure

shows that the cumulative number of items recalled (on the y-axis) by the end of each of eight 30-s recall periods (on the x-axis). These did not vary as a function of the time

interval from which recall was permitted (day/week/year) – recall rate was timescale invariant.
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Another type of scaling law in memory comes from a
classic free recall paradigm, yet was only recently discov-
ered by drawing an analogy to studies of animal foraging
behaviors [24]. Birds, monkeys, fish and numerous other
species have been reported to search for food in Lévy flight
patterns [25], which have been hypothesized as effective
search strategies because they cover more territory than,
for example, a random walk with normally distributed
steps [26]. Searching for items or events in memory is like
foraging, particularly in tasks such as free recall of mem-
bers of a given semantic category (e.g. animals) in a given
time period [27]. Rhodes and Turvey [24] analyzed inter-
response time intervals (IRIs) from this classic memory
task, which are analogous to steps from one recalled item to
the next. The authors found IRIs to be power-law distrib-
uted with exponents very similar to those found in animal
foraging (Figure 2). These comparable results suggest that
Lévy flights are generally adaptive across a variety of
search ecologies. These results also illustrate how scaling
laws can lurk unnoticed in data for decades, in the absence
of theories and analytic techniques necessary to recognize
them.

Scaling laws in reaction times and word frequencies
Another ‘‘lurking’’ scaling law was recently discovered in
the distributions of word-naming latencies of individual
readers [28]. Cognitive psychologists have known for dec-
ades that reaction time (RT) distributions tend to be
positively skewed, but usually this skew has been treated
as mere deviation from normality; indeed, very long RTs
are typically considered outliers and hence are removed or
truncated. Extreme values are expected, however, if RTs
are drawn from heavy-tailed distributions, rather than
Gaussian distributions. Lognormal and power-law distri-
butions are heavy-tailed, and naming latencies (as well as
other response times) appear to be best modeled as mix-
tures of lognormal and power-law distributions (Figure 3).
These heavy-tailed distributions remain contentious
nevertheless because they are difficult to reconcile with
traditional theories of RTs based on additive interactions
among component processes.

This debate has only just begun for RTs, but for a
different power-law distribution of linguistic behavior, it
has been ongoing for over 50 years. In his pioneering work,
G. K. Zipf [29] studied the inverse power law of word usage
that bears his name (Figure 3). Zipf’s law as originally
formulated states that the frequency of a word ( f) in a
given corpus is proportional to the inverse of its frequency
rank (r), f / 1

r. Zipf’s law is apparently a universal prop-
erty of human language, yet its origins remain controver-
sial. Power laws such as Zipf’s law are found not just in
word usage but in many aspects of language, such as
syntactic dependency networks [30], and letter sequences
in lexicons [31].

Zipf originally explained his law in terms of a principle
of least effort, which states that language structure and
language use minimize both speakers’ and listeners’
efforts. Speakers prefer high-frequency words for ease of
memory recall, and listeners prefer low-frequency words
with unambiguous meanings. Zipf hypothesized that his
law reflects a compromise between these competing con-
straints on communication. The same basic principle can
also be applied at other linguistic scales, which would
explain Zipf’s law as an adaptive property of communi-
cation.

Some researchers, however, claim that Zipf’s law is
inevitable (and therefore uninteresting) because randomly
generated letter sequences can also exhibit scaling [32].
Numerous and recent analyses have refuted this claim by
showing that random letter sequences do not mimic closely
225



Figure 2. Lévy flights in animal and memory foraging. An artificially generated Lévy flight path is shown in two dimensions in (a) (note the clusters and clusters within

clusters). In (b), estimated Lévy flight power-law exponents [9,83] are graphed as straight lines in log–log coordinates for four different species: (i) spider monkey; (ii) bigeye

tuna; (iii) leatherback turtle; and (iv) Magellanic penguin. Analogous histograms are shown in (c) for four representative participants in a category member free recall task

[24]. The histograms are of inter-response intervals (IRIs) between successive category member recalls.
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enough the actual shape of Zipf’s law in real languages;
Zipf’s law is universally and nontrivially descriptive of
language use [33–36]. Although this important law
remains unaddressed in most linguistic theories, it has
been hypothesized to underlie two fundamental properties
of human language: syntax and symbolic reference [37].
Once a communication system organizes the patterning of
word frequency according to Zipf’s law, a rudimentary form
of language emerges for free as a side effect of competing
constraints of communication [38].

It has been argued that statistical laws of language
might be interconnected [39], and these interconnections
appear to include scaling laws. For instance, the power law
of word connectivity in syntactic dependency networks
could be a natural consequence of Zipf’s law for word
frequencies [30,37]. Traditional research on typology of
linguistic universals has focused on sentence level
226
phenomena such as word order [40]. In contrast, scaling
laws offer a new source of linguistic universals at the level
of the large scale organization of language and also offer
the possibility to integrate linguistics and cognitive
science.

Scaling laws and criticality
Widely reported evidence of scaling laws calls for cognitive
and linguistic theories that explain their ubiquity [41,42].
As a starting point for providing an explanation of the
ubiquitous presence of scaling laws, a key alternative to
additive summations of components ismultiplicative inter-
actions which produce heavy-tailed distributions [28,43].
Multiplicative interactions in cognition can be expressed
when the operation of one component depends on the
state of another, which is often expressed empirically as
interaction effects. The preponderance of such effects in



Figure 3. Power-law distributions of word naming latencies and word frequencies. Distributions of speeded word naming latencies (milliseconds, ms) for three

representative readers are shown in the left column, in log–log coordinates (reproduced, with permission from [28]). Heavy blue lines are observed distributions and yellow

lines are mixtures of ideal lognormal and inverse power-law distributions falling with 90% confidence intervals of observed distributions. Some readers exhibited heavy

tails and hence greater power-law proportions (a), others were more balanced (b), and still others were predominantly lognormal (c). Plots on the right show inverse power

law distributions of word ranks (reproduced from Ref. [33]). Words were counted and ranked by frequency count in four different texts (black lines): Alice’s Adventures in

Wonderland (d); Hamlet (e); David Crockett (f); and The Origin of Species (g). Rank distributions (blue lines) are compared with those generated by a random text model in

which letters and spaces were sequentially sampled according to their probabilities in real texts (red dashed lines). The random text model does not match observations of

Zipf’s law because (i) observations fall outside �3 standard deviations of the random text model; (ii) random texts have relative humps in the higher frequencies and wider

plateaus in the lower frequencies; and (iii) the rank histogram of random texts extends well beyond that of real texts.
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cognitive phenomena suggests a system in which multi-
plicative interaction is the rule [41], and the exception is
linear combinations of component effects amenable to
linear decomposition (e.g. additive and subtractive logic).
Systems dominated by multiplicative interactions are
known to produce heavy-tailed distributions (Box 1).

As a rule, multiplicative interactions also create inter-
dependencies among component activities over time. These
interdependencies can lead to long-range correlations
when component effects travel through feedback loops
across scales of component interactions, thereby changing
the dynamics of interactions [44]. Interdependence has
been shown in model systems to generate self-similar
structures and fluctuations [45] and thereby generate
spatial and temporal long-range correlations, as well as
power-law distributions. Box 2 uses the Ising model as an
illustrative example, one that stands as a pillar of stat-
istical physics, and a good starting point for cognitive
scientists interested in investigating scaling laws as emer-
gent from multiplicative, interdependent components of
cognition.

In statistical physics, scaling laws have been studied for
decades in the context of phase transitions [46,47]. When
systems are poised near order–disorder phase transitions
(i.e. critical points), microscopic changes can propagate
through spatial correlations across many scales to become
macroscopic effects that evolve on many time scales. Thus,
criticality yields multiple-scale dynamics expressed as
227



Box 1. Additive versus multiplicative effects

When measurements are independent and measured values are

essentially sums of independent effects, the central limit theorem

leads one to expect a normal distribution of values (i.e. a Gaussian

probability function; Figure I blue). Illustrative examples are distribu-

tions of organism size in a population, such as height or weight, and

distributions of scores on various tests of cognitive ability, such as the

IQ test. Each observation of size or IQ is independent of other

observations, and although factors affecting these measures are

myriad and poorly understood, they are assumed to make largely

independent and additive contributions to each individual’s size or IQ.

Normal distributions are not expected when measured values

reflect multiplicative combinations of effects. An illustrative example

is distributions of city population sizes. Cities appear to grow

multiplicatively (i.e. bigger cities are more likely to have larger

growth rates than smaller cities [82]). The consequence is that city

populations appear to be power-law distributed over a wide range of

sizes [10,80]. Multiplicative effects can also lead to lognormal

distributions (Figure I red), and simple multiplicative models have

been shown to generate either lognormal or power-law distributions

depending on small parametric changes [79]. Lognormal and power-

law distributions are both heavy-tailed, and hence heavy-tailed

distributions are often interpreted as evidence for multiplicative

processes. An important difference between heavy-tailed and normal

distributions is that moments of the former (e.g. mean and variance)

poorly characterize the distribution (in fact, they are undefined for

certain power-law distributions).

Figure I. Idealized normal (blue), lognormal (red), and power law (green) probability functions are plotted in raw (left), semi-log (middle) and log–log (right) coordinates.

Review Trends in Cognitive Sciences Vol.14 No.5
spatial and temporal long-range correlations [48]. Evi-
dence for criticality has been investigated in a wide variety
of physical, biological, computational and social systems
[49].

The possible role of criticality in cognitive science can
be illustrated through neural networks [50–53]. A funda-
mental requirement of any neural network is to transmit
and process information via activities of its neuronal
components. On timescales of milliseconds to seconds
and even minutes, information is transmitted in neural
networks via action potentials (i.e. spikes). Regardless of
how information is coded in spikes, neurons must be able
to affect each others’ spiking dynamics to transmit and
process information. Thus, if neurons are too indepen-
dent of each other, information cannot be transmitted.
But if neurons are too interdependent, their spiking
dynamics will be slaved to each other, and hence
too uniform and unchangeable to code information.
Criticality strikes a balance between independence
versus interdependence among component activities,
and when applied to neural spiking dynamics, it could
support information transmission and processing. More
generally, evolution can favor critical states because
their associated metastability (i.e. the delicate stability
that characterizes systems poised near their critical
points) strikes an optimal compromise between change
(flexibility and adaptation) and stability (memory and
continuity) necessary for information transmission and
computation [47,53–58].
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A connection between criticality, metastability and com-
putation was first proposed for cellular automata [59,60]
and has since been demonstrated in the dynamics of neural
networks [61]. Beggs and Plenz [62] found that cortical
slice preparations exhibit critical branching dynamics (i.e.
‘‘neural avalanches’’), and probabilistic spiking models
were shown to optimize information transmission near
their critical points. Neurons can also be modeled by
thresholding sums of incoming weights to be above or
below zero (+1, –1), and networks of threshold neurons
have similarly been shown to optimize memory and repres-
entational capacity near their critical points [56], and
psychophysical models have linked Stevens’ law with cri-
ticality in neural network dynamics [14–16]. At a different
scale, Zipf’s law was recently derived from a critical point
between speaker and listener efforts quantified in infor-
mation theoretic terms [63–65]. Taken together, these
models realize testable connections between criticality
and cognition as expressed in neural and behavioral
activity.

Evidence for criticality in cognitive science has also
come in the form of temporal long-range correlations (i.e.
1/f scaling), which can be seen in fluctuation time series as
undulations at many timescales. 1/f scaling has been
observed in many aspects of neural and behavioral activity
[6]. For instance, 1/f scaling has been observed in acoustic
energy fluctuations across word repetitions and in fluctu-
ations of the amplitude envelope of ongoing neuronal
oscillations in healthy subjects (Figure 4). The amplitude



Box 2. Short-range versus long-range correlations

In physical systems, events occurring nearby in time or space are

often similar to each other, and such similarities typically fall off as

distance increases. Physicists use the correlation function to express

the effect of distance on similarity, and the observed shape of this

function constitutes evidence about the type of system being

observed.

To illustrate we use a characterization of the Ising model [77].

Imagine a 2D grid of lights of varying brightness (from off to

maximum), where brightness is a function of two variables. One is a

random noise factor (individual to each light) and the other is a

neighbor conformity factor whereby each light tends towards the

brightness of its four nearest neighbors on the grid. These two

variables are weighted together to determine the brightness of each

light. In this illustration, the correlation function measures the degree

to which lights have equal brightness levels as a function of their

distance apart on the grid. If noise is heavily weighted, then

brightness levels are independent across lights and the correlation

function will be near zero for all distances >0. If instead neighbor

conformity is heavily weighted, then brightness levels will be

interdependent and approach uniformity, with a correlation function

near one across a wide range of distances.

Neither extreme is typical of physical systems. Instead, component

interactions are somewhere between independent and interdepen-

dent. Weak interactions can result in short-range correlations (Figure I

green) that decay exponentially with distance. Stronger interactions

can result in long-range correlations that decay more slowly (Figure I

pink) (i.e. as an inverse power of distance). The correlation function

can also be defined for distances in time, with an analogous

comparison between weak (short-range) versus strong (long-range)

interactions. No interactions can result in uncorrelated noise (Figure I

grey), and integrating over uncorrelated noise results in a random

walk (Figure I brown).

Figure I. Four example time series are plotted in the left-hand panel: random samples from a normal distribution with zero mean and unit variance (i.e. white

noise, in grey), a running sum of white noise (i.e. brown noise, also known as a random walk, in brown), 1/f noise (i.e. pink noise, in pink) and an autoregressive

moving average (ARMA, in green), where each sampled value is a weighted sum of a noise sample, plus the previous noise value, plus the previous sampled

value. Idealized autocorrelation functions are shown in the middle panel for each of the time series, where k is distance in time. Note that white noise (i.e. pure

independence) has no correlations, ARMA has short-range correlations that decay exponentially with k, 1/f noise has long-range correlations that decay as an

inverse power of k and brown noise has correlations that decrease linearly with k. Idealized spectral density functions (where f is frequency and S( f) is spectral

power) are shown in the right-hand panel in log–log coordinates. White, pink and brown noises correspond to straight lines with slopes of 0, �1 and �2, whereas

ARMA plateaus in the lower frequencies.
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envelope can be illustrated by tracing a line from peak to
peak along a given waveform (i.e. the convex hull). Inter-
estingly, the temporal scaling of amplitude fluctuations in
ongoing oscillations has recently been associated with
cognitive impairments such as depression [66] and demen-
tia [67]. Also, criticality has been supported bymultifractal
patterns in the same data previously supporting 1/f scaling
[44]. Multifractal patterns occur when scaling relations
(i.e. their exponents) vary over time or space, thereby
adding a further dimension of complexity to data.

1/f scaling characterizes the central tendency of multi-
fractal human performance, and thus the intrinsic fluctu-
ations in neural and behavioral activity, be they from ion
channels or brain images or text sequences [55]. 1/f scaling
suggests that criticality underlies cognitive function at
multiple scales and levels of analysis. Although obser-
vations of 1/f scaling in isolation do not constitute conclus-
ive evidence for criticality (for other explanations, see Refs
[3,68–70]), multifractal 1/f scaling greatly strengthens the
case [44]. Additionally, criticality predicts power-law
distributions and pervasive temporal and spatial long-
range correlations in collective measures of component
activities. These predictions are supported by the evidence
reviewed here for neural avalanches [62], power-law distri-
butions in word frequencies [33] and reaction times [28],
and analyses showing pervasive 1/f scaling in neural [54]
and behavioral activity [5] fluctuations. Adding multifrac-
tality to the mounting evidence means that metastability
near critical points is the only candidate hypothesis that
could explain the existing data.

Concluding remarks
In this brief review, a variety of scaling laws in cognitive
science were discussed that plausibly express adaptive
properties of perception, action, memory, language and
computation. The working hypothesis of criticality can
provide a general framework for understanding scaling
laws and has motivated the application of new analytical
tools to understand variability in cognitive systems. Much
work lies ahead, however, to further test these new
hypotheses and also to bring more scientists into the
debate (Box 3).
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Figure 4. 1/f scaling in neural and behavioral activity. A band-pass filtered signal (6.7–13.3 Hz, thin blue lines) from a single channel (0.1–100 Hz) of

magnetoencephalography (MEG) recording is shown in (a) at two time scales, filtered through a Morlet wavelet with a passband from �6.7 to 13.3 Hz (reproduced,

with permission from [84]). The log–log power spectrum of the resulting amplitude envelope of the oscillations (a, thick red lines) is shown in (b). Evidence for 1/f scaling is

seen in the negatively sloped line for MEG data (open red circles), and evidence against an artifactual explanation is seen in the contrasting flat line for reference channel

control data (filled black circles). 1/f scaling indicates that ongoing neural oscillations carry a long-range memory of their own dynamics across hundreds or even thousands

of cycles. The same type of memory is also found in acoustic power intensity fluctuations in spoken word repetitions, shown in (c) for one speaker’s 1024 repetitions of the

word ‘‘bucket’’ (reproduced with permission from [5]). Intensity fluctuations are shown separately for each acoustic syllable, at three different passbands (center

frequencies of �150 Hz, 6 kHz and 13 kHz). In total, 90 fluctuation series were observed for each of 10 speakers, and the 1/fa exponent was estimated for each series. The

resulting distribution (d) was centered around a�1.
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Some of this work will need to address difficulties in
distinguishing alternative accounts of data (e.g. long-
range versus short-range correlations and exponential
versus lognormal versus power-law distributions).
Recent advances in model identification methods have
strengthened conclusions, but evidence is still more
compelling when scaling laws are observed to span many
orders of magnitude. Such observations require large
Box 3. Outstanding questions

� How can scaling laws be robustly and reliably detected in

cognitive science data?

� How can models of cognitive processes explain observations of

scaling laws?

� How many scaling laws in cognitive science can be explained by

fundamental principles such as those found in statistical physics?

� How can variability in scaling law exponents be explained as it is

found across different individuals, different measures of cognitive

performance and different measurement conditions?

� How are scaling law exponents empirically and theoretically

related across different measures and types of scaling laws in

cognitive science?
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amounts of data to be collected, which can be prohibitive,
but technological advances are making large datasets
more viable (e.g. in brain imaging and electronic
corpora).

Other work will need to advance models of cognitive
processes, because most of them are currently not
designed to account for scaling laws, yet scaling laws
appear widespread in cognitive science. Research is
needed to determine whether current models could
explain scaling laws within their purview, perhaps with
small modifications or extensions, or whether newmodels
and theories are needed to explain them. It is likely that
common principles will be needed to fully explain some
observations of scaling laws. Preferential attachment and
self-organized criticality are two examples proposed
to explain a wide range of scaling law observations
throughout nature, including cognitive science [5,71].
Although it is unlikely that all observations of scaling
laws in cognitive science have a common explanation,
they can deepen our understanding of scaling laws and
their meaning for cognitive function (e.g. if some are
logical or mathematical consequences of other more
fundamental laws of nature).
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Any fundamental approach to scaling laws in cognitive
science will need to explain variability observed in scaling
law parameters estimated from data. Scaling laws are
parameterized by exponents, and exponents are observed
tovaryacross individuals [28,72], across tasks [6] andacross
time [44]. It should not be surprising that cognitive science
data are themost complex in this regard throughout nature,
because exponents of scaling laws in other empirical
domains are often observed to be relatively constant. It is
an open question how variability in scaling laws reflects the
flexibility and contextuality of cognition [73,74].
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