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Abstract

Most empirical work in human categorization has studied learning in either fully supervised or

fully unsupervised scenarios. Most real-world learning scenarios, however, are semi-supervised:

Learners receive a great deal of unlabeled information from the world, coupled with occasional

experiences in which items are directly labeled by a knowledgeable source. A large body of work

in machine learning has investigated how learning can exploit both labeled and unlabeled data

provided to a learner. Using equivalences between models found in human categorization and

machine learning research, we explain how these semi-supervised techniques can be applied to

human learning. A series of experiments are described which show that semi-supervised learning

models prove useful for explaining human behavior when exposed to both labeled and unlabeled

data. We then discuss some machine learning models that do not have familiar human categoriza-

tion counterparts. Finally, we discuss some challenges yet to be addressed in the use of semi-

supervised models for modeling human categorization.
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Cognitive psychology has long had an interest in understanding human categorization:

how we come to conceive of objects in the world as belonging to different categories,

and how we use categories to draw inferences about the unobserved properties of objects.

Toward this end, one of the most commonly used experimental paradigms has been

supervised category learning: On each trial, the participant views a stimulus and must

guess to which of a small number of categories it belongs. Feedback is provided that

indicates either whether the guess was correct or what the correct answer was—the learn-

ing is supervised in this sense. The experimenter then measures how rapidly the partici-

pant learns to generate correct inferences about category membership, and how the

acquired knowledge generalizes to novel stimuli.
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Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706-1685. E-mail: bgibson@cs.wisc.edu



This use of supervised learning as an experimental procedure has proven exceedingly

fertile—hundreds of experiments in this vein have been conducted and a variety of inter-

esting regularities in human behavior have been convincingly documented. Some well-

known examples include the artificial category learning experiments of Hintzman (1986),

Kruschke (1992), Murphy and Smith (1982), Nosofsky (1984, 1986, 1987), Rosch,

Mervis, Gray, Johnson, and Boyes-Braem (1976), and Smith and Medin (1981). The

empirical record arising from such studies has in turn provided a test-bed for the develop-

ment of mathematical models of categorization, with considerable success. Three of the

best-known theoretical models of human categorization—the exemplar theory (Hintzman,

1986; Kruschke, 1992; Nosofsky, 1986; Smith & Medin, 1981), the prototype theory

(Hampton, 1993; Rosch et al., 1976; Smith & Minda, 2002), and the Rational theory

(Anderson, 1991)—all have their counterparts in formal mathematical models, and all

three modeling approaches have been brought to bear on a remarkably wide range of

empirical findings from supervised learning experiments. A great deal of work has

focused on adjudicating which theory or model provides the best overall account of

human behavior in these tasks, with somewhat equivocal conclusions, and all three theo-

ries remain prevalent in the literature.

A smaller range of studies have also investigated fully unsupervised learning, in which

participants study a series of stimuli that appear without category labels. Learning is sub-

sequently assessed either by having participants judge whether test items were identical

to or of the same kind as, the previously studied items (Billman & Knutson, 1996; Love,

2002; Love, Medin, & Gureckis, 2004; Posner & Keele, 1968). Models developed to

explain learning in unsupervised experimental settings are typically some variant of clus-

ter analysis (Fried & Holyoak, 1984; Pothos & Chater, 2002; Stutz & Cheeseman, 1995),

and some studies have directly compared human and model behavior in fully supervised

and fully unsupervised learning scenarios (Fried & Holyoak, 1984; Gureckis & Love,

2003; Love, 2002; Love et al., 2004).

In the real world, however, category learning is neither fully supervised nor fully unsu-

pervised. Instead, everyday experience might best be described as semi-supervised: Much

of the time we simply observe items in the world and draw uncorrected inferences about

the category to which they belong, though of course there are also occasions where we are

directly told about an item’s category membership. That is, everyday experience provides

a mix of labeled data (in which both an item and its category label are directly observed,

such as seeing a dog and hearing the word “dog”) and unlabeled data (in which the item

is observed but no label is provided, as when the learner simply views a dog).

At first glance, it might seem as though semi-supervised learning (or SSL) should not

differ much from supervised learning (SL). After all, when faced with the problem of cate-

gorizing a novel unlabeled item, the learner must leverage whatever information she has

gleaned from previous labeled examples. The preceding unlabeled examples give no direct

information about the mapping from example to label. A recent stream of research in

machine learning suggests, however, that there is information to be gleaned from unlabeled

examples that can extend the knowledge gained from labeled examples alone, greatly aid-

ing in category learning (Chapelle, Zien, & Sch€olkopf, 2006; Zhu & Goldberg, 2009).
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To gain an intuitive sense of why this might be so, consider the example provided by

Kalish, Rogers, Lang, and Zhu (2011): A traveler camping in the wilderness of a foreign

land observes an animal in the shadows and discerns that it is about 1.5 feet long. His

companion tells him the animal is a dax. Sometime later he observes a larger animal,

about 2.5 feet long, and his companion informs him it is a zog. From this labeled informa-

tion, the traveler may infer that daxes are typically about 1.5 feet long; zogs are typically

about 2.5 feet long; and the boundary between them is somewhere around 2 feet in length.

However, now suppose the knowledgeable companion leaves to collect firewood, and the

traveler is left alone to observe animals scuffling in the shadows. Over time he observes

animals of different lengths, and he notices that there are two clusters: a group of smaller

animals about a foot in length, and a group of larger animals about 2 feet in length. The

traveler might reasonably infer that the smaller group consists of daxes and the larger

group of zogs, and might adjust his beliefs about these categories accordingly, despite not

receiving any further instruction about true category labels. For instance, he may end up

deciding that daxes tend to be about a foot long (rather than 1.5 feet); that zogs tend to be

about 2 feet long (rather than 2.5 feet); and that the boundary between these is about 1.5

feet in length (rather than 2 feet). Thus, the probability density of the unlabeled distribu-

tion might reasonably be used to adjust conclusions about both the central tendencies and

boundary between categories, compared with the conclusions drawn from labeled data

alone. Such an adjustment will be beneficial to the learner given certain assumptions about

the relationship between the unlabeled distribution and the category structure. Although

unsupervised learning models are specifically designed to make use of this unlabeled dis-

tribution information, they do not describe how to make use of any labeled information

encountered. The ability to handle both labeled and unlabeled information is what charac-

terizes and differentiates SSL models from supervised and unsupervised models.

Interestingly, very little empirical work in cognitive science has investigated how

human beings jointly exploit labeled and unlabeled data. This lacuna is somewhat puz-

zling, perhaps, because most of the best-known computational models for human category

learning can be fairly easily extended to encompass SSL. Indeed, SSL has been exten-

sively studied in the machine learning community, where a wide variety of models have

been developed, each suited to a different set of assumptions about the relationship

between the category label and the distribution information provided by the unlabeled

items. Some of these models have been adapted or lifted from well-understood supervised

models that are formally equivalent to the familiar exemplar, prototype, and Rational

models in cognitive science. Others adopt assumptions that have no direct counterpart in

current psychological theories, and so may provide a fruitful source of new hypotheses

about potential category-learning mechanisms in human cognition.

The current review thus has three goals. The first is to show explicitly how well-known

variants of the exemplar, prototype, and Rational models of categorization can be lifted

to make use of both labeled and unlabeled learning experiences. Toward this end, we will

briefly review the standard variants of these models and, following Griffiths, Sanborn,

Canini, Navarro, and Tenenbaum (2011) and others (Neal, 1998; Griffiths, Canini, San-

born, & Navarro, 2007; Sanborn, Griffiths, & Navarro, 2006), will show how these relate
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to well-studied models in machine learning. We will then illustrate how the machine

learning models are lifted to make use of unlabeled data, and we will specify the underly-

ing assumptions this requires. We will take the resulting models as candidate hypotheses

about human SSL.

Second, we will review empirical studies of human SSL published in the last 5 years,

and we will consider to what extent the documented patterns of behavior are consistent

with predictions of the different SSL models. We will see that there is now considerable

evidence that human beings do combine labeled and unlabeled learning experiences in

ways consistent with some of the models; and that the different model variants can some-

times make differing predictions, only some of which are consistent with observed behav-

ior. This in turn suggests that SSL may provide a means of adjudicating different

cognitive theories of category learning.

Third, we will consider some of the open questions and challenges faced by the SSL

research program. We will briefly describe some machine learning models that have no

current counterpart in cognitive psychology, and how these may be used to develop new

hypotheses about human SSL. We will also highlight some characteristics of human cog-

nition and learning that challenge the extension of the approach to more complex and

realistic learning scenarios.

1. Psychological and machine learning models of categorization

In this section, we will review well-known instantiations of the exemplar, prototype,

and Rational models of categorization, illustrate how they are formally equivalent to mod-

els from machine learning, and explain how the machine learning models are lifted to

make use of both unlabeled and labeled information. As the psychological and machine

learning models are formally identical, the lifted variants of the machine learning models

provide candidate hypotheses about human SSL. Some of the important relationships

between the psychological and machine learning models have been discussed in detail by

other researchers (Ashby & Alfonso-Reese, 1995; Fried & Holyoak, 1984; Griffiths et al.,

2007; Nosofsky, 1991; Sanborn et al., 2006), but we review these relationships here for

readers who are not intimately familiar with the details since a good understanding of the

semi-supervised variants will depend on clear exposition of the standard models.

Before beginning, it will be useful to define the categorization task itself, to indicate

very generally how mathematical models in psychology and machine learning have been

brought to bear on the task, and to introduce some notation. A standard categorization

task asks a learner to label a previously unseen item xi after viewing a set of labeled

examples ðx; yÞ1:i�1. In this notation, xi indicates a multidimensional feature vector that

describes a single stimulus item (with i indexing the order in which items are seen over

time), and yi indicates the category label associated with each item. In both psychology

and machine learning, the probabilistic way of modeling human category decisions for xi
is to calculate Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ, that is, the probability that a person will choose

label yi ¼ k for each of k ∈ K categories given the current item xi and the preceding
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labeled evidence ðx; yÞ1:i�1, that is, the “training examples” viewed prior to the query item

xi.
A common way to compute the probability Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ is via the Bayes

rule. Formally, the Bayes rule states

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
Pðxi j yi ¼ k; ðx; yÞ1:i�1ÞPðyi ¼ k j ðx; yÞ1:i�1ÞP
k0 Pðxi j yi ¼ k0; ðx; yÞ1:i�1ÞPðyi ¼ k0 j ðx; yÞ1:i�1Þ

: ð1Þ

On the right-hand side, the first term in the numerator, Pðxi j yi ¼ k; ðx; yÞ1:i�1Þ, is the

likelihood, which specifies the probability of observing item xi assuming it has the label

yi ¼ k. The second term in the numerator, Pðyi ¼ k j ðx; yÞ1:i�1Þ, is the prior, which

specifies the probability, prior to observing xi, that xi will have label yi ¼ k. The left-

hand side, Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ, is the posterior, which indicates the probability that k
is the correct label after seeing xi. The denominator is a normalization factor so that the

posterior probability sums to 1. Once the posterior probability is computed, one can clas-

sify xi by the most likely label:

ŷi¼ argmax
k2K

Pðyi¼ k jxi;ðx;yÞ1:i�1Þ¼ argmax
k2K

Pðxi jyi¼ k;ðx;yÞ1:i�1ÞPðyi¼ k jðx;yÞ1:i�1Þ: ð2Þ

The above classification rule minimizes expected error. Alternatively, one can sample
the class label in a practice known as Gibbs classification in machine learning:

ŷi�Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ð3Þ

which corresponds to probability matching in psychology (Myers, 1976; Vulkan, 2000).

In machine learning, there exist a variety of models for computing the posterior via

Bayes rule. In all of these models, the prior is typically a multinomial distribution over

the values yi may take (i.e., the different category labels). Thus, the primary difference

between probabilistic machine learning models is in how the likelihood term is calcu-

lated. Interestingly, three common machine learning models of this computation bear a

striking resemblance to the exemplar, prototype, and Rational models of human categori-

zation. Indeed, certain parametrization of the psychological models are formally identical

to the machine learning models. This identity is, perhaps, surprising since the primary

goal of the psychological work has been to fit observed human behavior in artificial cate-

gory learning experiments. Many early theorists, with the notable exceptions of Anderson

(1991) and Shepard (1991), did not explicitly consider whether the probabilities computed

by a given model were correct in any formal sense (see e.g., Hintzman, 1986; Medin &

Schaffer, 1978; Rosch et al., 1976). The fact that the psychological and probabilistic

models are formally equivalent thus suggests to some researchers that human categoriza-

tion decisions are optimal in some respects—that is, the decisions people make are

shaped by estimates of the true posterior probability distribution and so represent the best

decisions that can be made given prior beliefs and learning episodes (Anderson, 1991;

Griffiths et al., 2011; Sanborn et al., 2006; Tenenbaum, Griffiths, & Kemp, 2006).
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The equivalence of psychological and probabilistic models is also useful for another

reason: It allows us to leverage insights from machine learning to develop explicit

hypotheses about human SSL. A considerable amount of work in machine learning has

focused on how best to exploit both labeled data, consisting of (x,y) pairs, and unlabeled
data, consisting of only the x observations without y labels. The modification of a super-

vised model to make use of unlabeled data is sometimes called lifting the model. In

machine learning, the primary motivation for lifting supervised models has been that

labeled data are often expensive—that is, data labeling can be time-consuming and often

requires an expert in the field. In contrast, unlabeled data are usually plentiful and

inexpensive to acquire in large quantities. A key discovery has been that, under certain

well-specified assumptions, semi-supervised models can use the potentially inexpensive

unlabeled data to greatly improve classifier performance compared with supervised

models alone (Balcan & Blum, 2010).

By definition, unlabeled data do not come with labels and so cannot be used directly

for supervised learning. Instead, these data provide information about the marginal P(x),
that is, the distribution of items in the feature space. To use this information for category

learning, assumptions must be made about the nature of the unlabeled item distribution

and the relationship between P(x) and P(y | x). These assumptions then “steer” how cate-

gory learning proceeds. SSL is the learning paradigm that adopts such assumptions to

make use of both labeled and unlabeled data when learning to categorize.

There are many types of SSL assumptions (Chapelle et al., 2006; Zhu & Goldberg,

2009) that can be used to support different kinds of learning models. The assumption

most germane to existing psychological models of categorization is likely the mixture
model assumption, which states that all items are drawn independently from a probability

distribution composed of a mixture of underlying components. The observed distribution

of unlabeled examples can thus be used to infer the underlying mixture components,

while the comparatively infrequent labeled examples can be used to label each compo-

nent. We will use the mixture model assumption to create lifted variants of the prototype

and Rational models of human SSL. The exemplar model is a non-parametric model that

requires a slightly different assumption.

Finally, one further point should be noted in relating probabilistic machine learning

models to psychological models. In classic machine learning, models are typically trained

in batch mode: The model is fit exactly once to the full history of prior training exam-

ples, and the trained model is then used to classify new items without further training. In

the case of human SSL, this strategy seems inappropriate. Unlabeled “test” items provide

information about the marginal distribution P(x), and so can be used for further learning.

Moreover, under some theoretical approaches it seems unreasonable to suppose that

people are able use the entire history of prior learning experiences when updating their

current model to accommodate a new observation. Instead, with each new unlabeled item

encountered, the learner presumably uses the current model acquired from previous

labeled and unlabeled items to generate a guess about the correct label. The new item

can then be used to update the current model, using whatever information happens to be

stored under a given theoretical approach. This kind of learning, in which the model is
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continually updated with each new labeled or unlabeled example, is referred to as online
learning. Although online learning clearly provides a better analog to human behavior, it

sometimes complicates the derivation of the model. The SSL models derived in this sec-

tion are all suited to online rather than batch learning, and we will note where this differs

from analogous batch-learning models.

With these points as background, we are now ready to review the development of each

of the three SSL models.

1.1. A semi-supervised exemplar model

One common model of human categorization is the exemplar model, which stores all

previously viewed examples and uses these to estimate the most likely category label for

novel query items. The Generalized Context Model (GCM) proposed by Nosofsky (1986,

2011) is probably the best known of this class in cognitive science. To facilitate compari-

son with machine learning models, we consider a specific parametrization of the full

GCM model, in which two free parameters, memory strength and dimensional scaling

weights (see Nosofsky, 2011), are fixed to one.

With this simplification, the GCM model can be described as

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
bðkÞ

P
j:yj¼k sðxi; xjÞ

� �
P

k0:k02K bðk0Þ P
j0:yj¼k0 sðxi; xj0 Þ

� � ð4Þ

where bðkÞ is the bias on category k and sðxi; xjÞ is a scaled similarity measure between item

xi and xj. The bias term b serves the same role as the prior in the Bayes rule: It indicates

the probability of encountering a label with value k prior to observing the query item. Intui-

tively, it is easy to see that the probability of the query item xi sharing the same label as a

stored item xj grows with the similarity s between the queried and stored items. Conse-

quently, the probability that the query item receives label k depends on its similarity to all

items in category k and its similarity to all other items in the contrasting categories.

This formulation does not specify how the similarity between the queried and stored

examples is to be computed. In machine learning, a common choice for s is the Gaussian

function, which, in 1D is defined by

sðxi; xjÞ ¼ exp � 1

2r2
ðxi � xjÞ2

� �
ð5Þ

where r2 is the variance. In psychological models, it is more common to employ an expo-

nential similarity gradient, following Shepard (1986). Shepard’s (1986) arguments, how-

ever, were premised on the assumption that the item distribution x was uniform over

discrete dimensions (see Anderson, 1991); in the studies we consider below, the items are

sampled from a mixture of Gaussian distributions in a fully continuous space. Empirically,

at least one study has found that Gaussian similarity functions can provide a better fit to
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human behavior for such stimuli (Nosofsky, 1985). Moreover, an interesting property of

this class of model is that, in the limit, the estimate of Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ is not

affected by the shape of the similarity gradient (often referred to as a kernel in machine

learning). For these reasons, we have followed the more common convention in machine

learning and employed a Gaussian similarity function in what follows.

1.1.1. Kernel density estimation
A clear analog to exemplar models in machine learning is Kernel Density Estimation

(KDE), which is a method for estimating the likelihood term P(x | y = k) in the Bayes

rule. Like exemplar models, each labeled example (x, y) is retained in KDE and is used

to compare against the current query item.1 One model that makes use of the likelihood

estimate provided by KDE is the Nadaraya–Watson kernel estimator (Nadaraya, 1964;

Shi, Feldman, & Griffiths, 2008; Wasserman, 2006), a regression function that returns a

real value. When this estimator is adapted to categorization, the real value provides a

direct estimate of the conditional probability Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ. Given training data

ðx; yÞ1:i�1, the categorization function is

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
Pi�1

j¼1 Kðxi�xj
h Þdðyj; kÞPi�1

j0¼1 Kðxi�xj0
h Þ ð6Þ

where the kernel function K determines the weight between the query item xi and each

of the 1,…, i-1 exemplars xj, and where d(y,k) = 1 when y = k and 0 otherwise.

From this description, the equivalence between Eqs. 6 and 4 may not be immediately

obvious. Under certain parameter settings, however, the equivalence becomes clear. We

repeat the exemplar formulation here for convenience:

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
bðkÞ

P
j:yj¼k sðxi; xjÞ

� �
P

k0:k02K bðk0Þ
P

j0:yj¼k0 sðxi; x0jÞ
� � : ð7Þ

The kernel function K acts like the similarity function sðxi; xjÞ, returning a value that

gives a sense of the “similarity” between the query xi and an exemplar xj. The hyperpa-

rameter h is known as the bandwidth parameter and controls how the effect of each

exemplar diminishes with distance. Using a Gaussian function for s (in the exemplar

model) and a Gaussian kernel for K (in the machine learning model), and setting the

bandwidth h to one standard deviation of this Gaussian, the functions become identical:

sðxi; xjÞ ¼ exp
1

2h2
ðxi � xjÞ2

� �
¼ exp

1

2

xi � xj
h

� �2
� �

¼ K xi � xj
h

� �
: ð8Þ

Setting bðkÞ ¼ 1 for all k completes the equivalence. This parametrization of the Nada-

raya–Watson KDE is therefore formally identical to the parametrization of the GCM
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described in (4) with the additional constraint that all categories are assumed to be

equally likely a priori.

1.1.2. Lifting the exemplar model
To derive the semi-supervised exemplar model, we describe a lifted version of KDE and

make use of the equivalence between the Nadaraya–Watson KDE and the GCM model. The

standard model is lifted as follows: When an item xi is queried for a label, the supervised

model returns Pðyi ¼ k j xiÞ for all k = 1,…, K categories. Normally, in supervised learn-

ing, the true label yi will then be received and the labeled ðxi; yiÞ pair added to the training

set in preparation for the next query item xiþ1. In the semi-supervised setting, xi may remain

unlabeled, so that no ground truth yi label is received. Instead of tossing out this unlabeled

xi, as would happen in the supervised case, the real value Pðyi ¼ k j xiÞ is calculated for all

k = 1,…, K and these values are considered soft labels on xi. The labels are “soft” because

they are uncertain—each category k has probability Pðyi ¼ k j xiÞ of being the correct label,

rather than a “hard” or certain probability of 0 or 1. The xi, together with the soft labels, is

then added to the training set as a pseudo labeled exemplar. Equivalently, one can think of

K copies of xi, each with a distinct label and fractional weight Pðyi ¼ k j xiÞ. For such unla-

beled training items, it is necessary to retain Pðyi ¼ k j xiÞ for all k = 1,…, K. Thus, we
now maintain ðxi; yiÞ pairs where yi is a vector with yik ¼ Pðyi ¼ k j xiÞ; k ¼ 1; . . .; K.
If xi is labeled with yi ¼ k�, the corresponding yik� ¼ 1 while yik ¼ 0 for all other values

of k. Algorithm 1 describes the model in detail.

The effect of the lifting is that unlabeled items are now “split” among the different cat-

egories. When an item is very likely to be in class k (i.e., P(y = k | x) �1), it will be

treated similarly to a labeled item, contributing almost all of its “weight” to category k.
When the label is more uncertain, the unlabeled item will distribute its “weight” among

the different categories. We note that this model is similar to an idea proposed by

Algorithm 1

Semi-supervised exemplar model

Given: Kernel bandwidth h
for i = 1,2,… do
Receive xi and predict its label using

arg max
k2K

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
Pi�1

j¼1
Kðxi�xj

h ÞyjkPi�1

j0¼1
Kðxi�xj0

h Þ
: ð9Þ

if xi is labeled with yi ¼ k� then

Set yik ¼ 1; if k ¼ k�

0; and o.w:

�
, for k=1,…, K

else
Set yik ¼ Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ for k ¼ 1; . . .;K.

end if
Add ðxi; yiÞ as an exemplar.

end for
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Nosofksy and Palmeri (1997) to explain test-item effects in standard supervised

category-learning experiments as well as the model proposed in Zaki and Nosofsky

(2007) to explain results seen in experiments designed to discriminate exemplar and pro-

totype learning.

1.2. A semi-supervised prototype model

Unlike the exemplar model, where learning is accomplished by storing all individual

training items, learning in the prototype model consists of summarizing each category and

discarding the training items themselves. The summary is achieved by assuming that each

category can be represented with a parametric distribution P(x | y = k), so that only the

distribution parameters for each category need be retained. The parameters associated with

a given category constitute the category prototype. Prototypes do not necessarily corre-

spond to any particular labeled item but are abstract representations of all labeled items in

the category they represent. For example, if we assume that each category P(x | y = k) has
a Gaussian distribution, then the corresponding prototype can be represented by the param-

eters lðkÞ (mean or “component center”) and r2ðkÞ (variance or “spread”). Typically, the

number of categories K in the model is fixed in advance, before any labeled examples are

seen, so that the number of stored prototypes does not grow with the number of examples.

A new item is labeled by comparing it to each stored prototype.

A variety of different prototype models have been proposed in the literature. To illus-

trate the link to machine learning, we will consider the model proposed by Minda and

Smith (2011), in which the prototype is simply the sample mean of labeled training exam-

ples in a given category. Query items are labeled using the same method as in the exem-

plar model, by comparison to a set of stored representations. The difference is that the

stored representations are category prototypes, and not the labeled training items them-

selves. Thus, it is not surprising that the formal description of the model is very similar:

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
bðkÞsðxi; �xðkÞÞP

k:k02K bðk0Þsðxi; �xðk0ÞÞ ð10Þ

where �xðkÞ is the prototype for category k and sðxi; �xðkÞÞ is a similarity function as in Eq. 4,

except that now xi is compared with a single summary representation �xðkÞ of each category k.
Just as in the exemplar model, the bias term bðkÞ encodes the prior belief on label k.

Different specifications of the similarity function s lead to different formal models. For

instance, if the prototype is construed as a multivariate Gaussian describing the distribu-

tion of features among labeled members of a category, then the similarity function in the

equation above can be defined with a function estimating, for each category, the probabil-

ity that the novel item was generated from its distribution.

1.2.1. Gaussian mixture models
A machine learning analog to prototype models is the mixture model, in which items

are assumed to be generated from some mixture of underlying components. Each
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component is represented by a set of parameters that are learned from the data, with the

number of components fixed before learning. A common variation is the Gaussian Mixture

Model (GMM), where each category is represented by a single component corresponding

to a Gaussian distribution. The GMM has the parameters h = {a,l,Σ}, where a is the set

of non-negative mixing parameters fað1Þ; . . .; aðKÞg (normalized so that
P

k¼ 1:K aðkÞ ¼ 1)

defining how often each category is sampled from, l is a vector of the corresponding K
means (lð1Þ; . . .; lðKÞ), and Σ is a set of covariance matrices (Rð1Þ; . . .;RðKÞ). When x is

one-dimensional, the covariance matrices are replaced by variances r2ð1Þ; . . .; r2ðKÞ. The
model is defined by the joint probability Pðxi; yi j hÞ ¼ Pðyi j hÞPðxi j yi; hÞ where

Pðyi ¼ k j hÞ ¼ aðkÞ; ð11Þ

Pðxi j yi ¼ k; hÞ ¼ N ðxi; lðkÞ;RðkÞÞ: ð12Þ

Note that the i � 1 training examples seen prior to the query xi are not used directly

to label new items but instead are used to estimate the parameters h, typically via the

maximum likelihood estimate. We denote the parameter estimates after seeing the i � 1

examples as ĥi. The probability distribution over category labels for the query item xi is

then computed as the posterior

Pðyi ¼ k j xi; ĥiÞ ¼ Pðxi; yi ¼ k j ĥiÞP
k02K Pðxi; yi ¼ k0 j ĥiÞ

¼ Pðxi j yi ¼ k; ĥiÞPðyi ¼ k j ĥiÞP
k02K Pðxi j yi ¼ k0; ĥiÞPðyi ¼ k0 j ĥiÞ

ð13Þ

with the most likely label found by taking arg maxkPðyi ¼ k j xi; ĥiÞ.
As was the case when comparing KDE and exemplar models, GMMs are identical to

prototype models under a certain parametrization. Again, we repeat the equation for the

prototype model for convenience:

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ ¼
bðkÞsðxi; �xðkÞÞP

k0:k02K bðk0Þsðxi; �xðk0ÞÞ : ð14Þ

As in the exemplar model, we define the function s to be a Gaussian (5). Unlike the

exemplar model, where we compare the query xi to each labeled example, here we only

compare it to the set of K prototypes f�xðkÞ : k 2 Kg corresponding to the K categories.

For each category, the point �xðkÞ is equal to the sample mean l̂ðkÞ for that category in the

GMM formulation, while the covariance r̂2ðkÞ enters s implicitly via the definition of the

multivariate Gaussian probability density function. The set of â corresponds to the set of

bðkÞ. Thus, under these settings the prototype model is equivalent to the GMM used in

machine learning.

1.2.2. Lifting the prototype model
Recall that, in the prototype and GMM frameworks, the number of prototypes is fixed,

usually equal to the number of categories, and each prototype is encoded by parameters

142 B. R. Gibson, T. T. Rogers, X. Zhu / Topics in Cognitive Science 5 (2013)



learned from the training set. In the supervised setting, these parameters can be computed

in closed form by the maximum likelihood estimate. In the semi-supervised setting, the

closed-form computation is no longer possible because it is not clear to which category

each unlabeled item belongs, and consequently, it is not clear to which parameter esti-

mates the item should contribute. To make use of unlabeled data, the maximum like-

lihood estimate is instead computed using an approximation method, typically the

expectation maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). This is an

iterative procedure that first fixes the parameters of each component and uses these to

calculate the label probabilities for each unlabeled item (the E step), then fixes these

labelings to re-estimate the parameters (the M step). These two steps are iterated until the

labelings and parameter estimates stop changing significantly.

In the E step, it is useful to think of each unlabeled item as splitting its label across all

categories, contributing to each category by an amount equal to the posterior probability

that the label is correct, just as in the exemplar/KDE model. These “soft” labels can be

stored in a vector yi ¼ ðyi1; . . .; yiKÞ for each unlabeled item xi. For labeled items, the

provided labels are stored in a similar vector in which yik� ¼ 1 if yi ¼ k� and 0 other-

wise. The key difference from the exemplar/KDE approach is that these label probabili-

ties are subsequently used to adjust the parameter estimates (prototypes) associated with

each category. The contribution of each unlabeled item to the parameter estimates for

category k is weighted by the posterior probability, estimated in the E step, that the item

belongs to category k. Thus, while an item unlikely to belong to the category contributes

little to its parameter estimates, an item very likely to belong to the category will be trea-

ted like a “hard” label. An item whose category status is uncertain will contribute slightly

to the estimate of many category prototypes.

Once the category parameter estimates are adjusted, however, this then alters the

posterior probability distributions over labels for the unlabeled items—so these must be

re-computed. The new labeling probabilities then change the parameter estimates for each

category, and so on. When both the parameter estimates and the probability distributions

over labels have stabilized, the joint probability over labeled data and the marginal proba-

bility over unlabeled data are maximized, but only locally. The particular local maximum

found depends on the initialization of the algorithm. A common way of initializing the

process is to use labeled data to find the initial estimate of the parameters. The reader is

referred to Zhu et al. (2010) for a full description of the lifted algorithm for the online

SSL prototype model.

1.3. A semi-supervised Rational model

The exemplar and prototype models lie at the two extremes of a continuum. The exem-

plar model assumes that every new learning example is stored in memory so the repre-

sentational elements grow with the number of training examples, and no assumptions are

made about the number or distribution of categories. The prototype model assumes that

there are a fixed number of components (category prototypes) whose distributional param-

eters must be learned, and these are the only representational elements stored in memory.
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Several models have been proposed that exist between these extremes (e.g., the Varying

Abstraction model; see Vanpaemel, Storms, & Ons, 2005). Here, we will consider Ander-

son’s Rational model (Anderson, 1990, 1991) as it has been highly influential and closely

resembles models encountered in machine learning.

Whereas exemplar models treat the individual labeled items ðx; yÞ1:i�1 as the base rep-

resentational elements, and prototype models treat prototypes of each category (k ∈ K) as
the base elements, the base elements in the Rational model can range from individual

items to large clusters depending on the best fit to the data and prior beliefs. A learned

model consists of a partitioning of the labeled data into clusters. In general, each category

may be represented by a number of clusters, where the number is not fixed prior to learn-

ing but can grow indefinitely with more training examples.

A version of the Rational algorithm, slightly modified from the presentation in Ander-

son (1991), is presented in Algorithm 2.2 Each labeled example is assigned either to an

existing cluster or, with some probability, to a completely new cluster that contains only

the new item. If a new cluster is created, it is then included as one of the existing clusters

under consideration when the next labeled item is assigned.

The term Pðzi ¼ l0 j xiÞ controls the probability that a given item will be assigned to a

new cluster, with the effect that the number of representational elements in a trained

model will vary with this term. This probability in turn depends on a “coupling parame-

ter” that specifies the prior probability of any two items being drawn from the same clus-

ter. When the coupling parameter is low, Pðzi ¼ l0 j xiÞ is high, so each labeled item will

likely be placed in its own cluster, similar to the exemplar model. When the coupling

parameter is high, Pðzi ¼ l0 j xiÞ is low and relatively few clusters will be learned, similar

to the prototype model. In Anderson (1991), the coupling parameter is assumed to be

fixed in advance of training.

1.3.1. Dirichlet process mixture models
Dirichlet Process Mixture Models (DPMMs) are to KDEs and GMMs as the Rational

model is to exemplar and prototype models: DPMMs allow the number of components of

the mixture model to grow dynamically with the number of data points observed. Ander-

Algorithm 2

Rational model of categorization

Given: the cluster assignments z1:i�1 assigning x1:i�1 to clusters in L:
for each cluster l ∈ L do
calculate Pðzi ¼ l j xi; x1:i�1; z1:i�1Þ, the probability that xi comes from cluster l.

end for
Also, let Pðzi ¼ l0 j xiÞ be the probability that xi comes from a new cluster l0.
Assign xi to the cluster with maximum probability:

zi ¼ arg maxl2fL;l0g
Pðzi ¼ l j xi; x1:i�1; z1:i�1Þ
Pðzi ¼ l0 j xiÞ

�
ð15Þ

If the assigned cluster is the new l0, add l0 to L.
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son’s Rational model was in fact shown to be equivalent to the DPMM (Griffiths et al.,

2011; Neal, 1998; Sanborn et al., 2006). To understand how this model works in a

categorization task, it is first necessary to understand DPMMs as generative models that

specify both (a) how a dynamically growing number of components in a mixture model

can be generated using a Dirichlet Process (DP) (Teh, 2010), and (b) how items are

generated from the growing mixture model.

The DP takes two parameters: a concentration parameter a (similar to Pðzi ¼ l0 j xiÞ in
the Rational model) and a base distribution H. The concentration parameter a is a posi-

tive real number that regulates how often a new component for the mixture will be gener-

ated. The base distribution H is a distribution over parameters h of the components of the

mixture model. Each component is itself a distribution F(x;h) and each time a new com-

ponent is added to the mixture its parameters are sampled from the base distribution H.
For example, consider a mixture of 1D Gaussian components all sharing a fixed variance

r2. Each component is defined by its mean l (the cluster center) so that for the compo-

nent l, hðlÞ ¼ lðlÞ and Fðx; hðlÞÞ ¼ N ðx;lðlÞ;r2Þ. The base distribution H is then some

distribution over all possible l ∈ R. For instance, it could be another 1D Gaussian,

H ¼ Nð0; 1Þ.
Now consider how a sequence of items x1; x2; . . . might be generated from a DPMM.

To generate the first item x1, we must determine from which component of the mixture it

is to be sampled. Since the number of components is zero in the beginning, the only

option is to create a new component for the mixture. We assign the item an integer index

z1 that indicates from which component it will be sampled. In this case, there is only one

component, so z1 ¼ 1. We then define the first component by drawing its parameters

from the base distribution H: hð1Þ �H. In the 1D example, we draw the new mean

lð1Þ �N ð0; 1Þ. Then, to generate the actual item, we sample an observation from this

component: x1�Fðhð1ÞÞ, for example, x1 �Nðlð1Þ; r2Þ.
To generate x2, we must again decide from which component to draw the sample and

then indicate this with a component index z2. In this case, there are two options: The item

can be drawn from the existing component, in which case z2 ¼ 1, so that x2 and x1
“belong to” the same component and x2 �Fðhð1ÞÞ, for example, x2 �Nðlð1Þ; r2Þ. Alterna-
tively, x2 can be drawn from a new component, in which case z2 ¼ 2 and the parameters

for this new component are sampled: hð2Þ �H, for example, lð2Þ �N ð0; 1Þ. The new item

is drawn from this component: x2 �Fðhð2ÞÞ, for example, x2 �Nðlð2Þ; r2Þ. Importantly,

the assignment that z2 receives—that is, the decision about which component will be used

to generate the sample—is defined by the following probability:

Pðzi ¼ l j z1:i�1Þ ¼
nl

i�1þa if nl > 0

a
i�1þa if nl ¼ 0,

(
ð16Þ

where nl is the number of items assigned to component l and a is the concentration

parameter. Thus, components that have generated many previous items are more likely to
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be used to generate the new item; and larger values of a make it more likely that a new

component will be added to the mixture. This generative process continues for i = 3,4,…,

producing (a) a sequence of items xi, (b) a component assignment index zi for each item,

and (c) an increasing number of components in the mixture. For n items, the component

assignments z1:n represent a particular partitioning of the items over components. That is,

some subset of x1:n will be “assigned to” (i.e., were generated from) component 1, some

to component 2, and so on. Eq. 16 then defines the conditional distribution over such par-

titions.

Given the above DPMM generative process, we can compute the useful conditional

probability Pðxi j x1:i�1Þ. This probability describes the distribution over possible values

for a novel item xi, given past examples x1:i�1. It is useful because, as we shall see later,

a slight variant will allow us to use DPMM for categorization. The computation requires

three steps. First, the posterior probability over the hidden cluster assignments

Pðz1:i�1 j x1:i�1Þ is computed. Second, the probability of the new index Pðzi j z1:i�1Þ is

computed. Finally, the probability of the new item Pðxi j ziÞ is computed. Multiplying

these terms and marginalizing out z1:i and h gives the desired Pðxi j x1:i�1Þ.
In categorization, we wish to predict the category label yi for a novel item xi after

viewing a preceding sequence of ðx; yÞ1:i�1 pairs (i.e., the labeled training data). We may

consider the labels yi to be simply another feature dimension, replacing xi with the

extended vector ðxi; yiÞ, for instance, xi 2 R and yi 2 f�1; 1g for two-category classifica-

tion. In this case, h is extended accordingly so that hðlÞ ¼ ðlðlÞ; pðlÞÞ, where p is the

parameter for a Bernoulli distribution (i.e., the head probability of a coin toss). Similarly,

Fðx; y; hðlÞÞ ¼ N ðx; lðlÞ; r2Þ � Bernoulliðy; pÞ. Finally, the base distribution H can be a

product of Gaussian and Beta distributions. With this extension, categorization can be

viewed as a variant of the conditional probability above:

Pðyi ¼ k j xi; ðx; yÞ1:i�1Þ /
X
z1:i

Pðyi ¼ k; xi j ziÞPðzi j z1:i�1ÞPðz1:i�1 j ðx; yÞ1:i�1Þ; ð17Þ

where we marginalize over the possible z1:i partitions, and h is marginalized out implic-

itly. The first term on the right-hand side of Eq. 17 is defined by the distribution F. The
second term, Pðzi j z1:i�1Þ, is the conditional distribution over partitions defined in Eq. 16.

Exact computation of Eq. 17 requires the sum to be taken over all possible partitions

z1:i�1, resulting in an intractable combinatorial explosion. Instead, sampling methods such

as particle filtering are often used, where a subset of all possible partitions is used to

approximate Pðz1:i�1 j ðx; yÞ1:i�1Þ. A discussion of this technique goes beyond the scope of

this paper and we instead refer the reader to Zhu et al. (2010); Bishop (2007), and the

references therein.

1.3.2. Lifting the Rational model
Section 1.3.1 described how DPMMs can be used to model mixtures of components

where the underlying number of components is unknown and can grow dynamically with

the data. That was in the supervised case, where the data consist of labeled (x,y) pairs.
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Just as in the semi-supervised exemplar and prototype models, lifting the DPMM requires

modifications to accommodate both labeled (x,y) pairs and unlabeled x items with no

corresponding ground truth labels y. Specifically, the probability of partition assignments

z1:i in Eq. 17 assumes that all data consist of (x,y) pairs, that is, labeled data. What is

needed is a method of calculating the probability distribution over partition assignments

Pðz1:i�1 j ðx; yÞ1:i�1Þ when some of the y’s are unlabeled. With Bayes rule, this conditional

probability can be shown to be proportional to the product of three probabilities:

Pðx1:i�1 j z1:i�1ÞPðy1:i�1 j z1:i�1ÞPðz1:i�1Þ: ð18Þ

In this equation, only the middle quantity Pðy1:i�1 j z1:i�1Þ depends on the label history

y1:i�1. The first quantity captures the probability distribution of both labeled a unlabeled

items in the feature space x, while the third quantity is obtained from the definition of a

DP in Eq. 16. The second quantity, then, is what differentiates supervised from SSL in

this framework. If we let L be the set of indices between 1, …, i-1 that correspond to

labeled data, then the unknown labels marginalize out, resulting in

Pðy1:i�1 j z1:i�1Þ ¼ PðyL j zLÞ: ð19Þ

As in the supervised case, the particle filtering method can be used to approximate the

intractable sum over all possible z1:i�1. Readers interested in more detail are again

referred to Zhu et al. (2010).

The key point is that the probability distribution over partition assignments, which is

central to the Rational/DPMM approach, is influenced here by the distribution of both

labeled and unlabeled examples in the feature space, as well as by the labels given to the

labeled items. Unlabeled data thus influence category learning by influencing which parti-

tions of the feature space are most probable.

2. Experiments and model assessment

Before we consider whether the semi-supervised models of Section 1 provide candidate

psychological models, we must first consider the evidence that human participants are

affected by both labeled and unlabeled data when learning a categorization task. It may

well be that people ignore and are unaffected by unlabeled examples for the purpose of

categorization; or alternatively that they perform unsupervised clustering of unlabeled

data and only use labeled data to figure out which labels “go with” which clusters. In

either case, there would be little reason to consider models of SSL further. Here, we

review three recent studies that investigated these questions.

Experiments 1 and 2 examined human learner sensitivity to the distributions of unla-

beled examples in categorization. In both, participants first encountered a small set of

items, each appearing with one of two possible labels, that together suggested a particular

boundary between the two categories. Subsequently, participants classified a large set of
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unlabeled items sampled from a bimodal distribution in which the low-density region did

not align with the boundary implied by the preceding labeled items. If participants learn

from unlabeled items, their beliefs about the location of the category boundary should

change with exposure to the unlabeled distribution. If learning is solely based on the

supervised experience, beliefs about the boundary location should not change. If learning

is based solely on unsupervised learning, beliefs about the boundary location should only

reflect the unlabeled distribution and should not be influenced by the initial labeled expe-

rience.

2.1. Experiment 1

The first study was designed simply to assess whether human categorization decisions

are influenced by the distribution of unlabeled examples (Zhu, Rogers, Qian, & Kalish,

2007). To our knowledge, this was the first study designed to explicitly address this SSL

question. Twenty-two students at the University of Wisconsin completed a binary catego-

rization task with complex novel shapes varying in a single continuous parameter

x ∈ [�2,2] as shown by the examples in Fig. 1. The two categories were denoted by

y = 0 or y = 1. Participants first received two labeled items: (x,y) = (�1,0) and (1,1),

repeated 10 times each in random order. These items were “labeled” in that feedback

indicating the correct response was provided after each trial. Participants next classified

795 unlabeled test examples in one of two experimental conditions, differing only in how

the majority of the unlabeled items were generated. In the L-shift condition, 690 of the

unlabeled test items were drawn from a mixture of two Gaussians with a trough shifted

Fig. 1. Example stimuli used in Experiment 1, with corresponding x values.

Fig. 2. Example of the data set used in the L-shift condition of Experiment 1. Labeled points are represented

as negative (◯) and positive (+). The black curve is the bimodal distribution P(x) from which unlabeled items

were drawn. The dashed vertical line represents the boundary implied by the labeled points alone. Note that

the trough in the unlabeled distribution is shifted to the left with respect to the supervised learning boundary.
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to the left of the boundary implied by the labeled training items (see Fig. 2). The other

condition, R-shift, varied only in that the trough between the Gaussians was now shifted

to the right of the implied labeled boundary. In both conditions, the remaining unlabeled

test items were items drawn from a grid across the entire range of x, ensuring that both

unlabeled distributions spanned the same range. The grid items appeared in random order

at the beginning and end of the unsupervised phase, allowing us to measure the category

boundary participants learned immediately following the supervised experience and

following exposure to the unlabeled bimodal distribution. Methodological details are

provided in Zhu et al. (2007).

Fig. 3 shows a summary of the results by pooling human behavior by condition and fit-

ting logistic regression curves to show the conditional probability P(y = 1 | x). Two sub-

sets of the data are examined. The early subset shows behavior on the first 50 unlabeled

test items (presented immediately after the labeled training phase), whereas the late sub-

set shows behavior on the final 50 unlabeled test items (presented at the end of exposure

to unlabeled data).

Comparing the early items, the two groups look essentially the same and the curves

overlap. On the late items the curves are substantially different. The decision threshold,

that is, the value of x producing P(y = 1 | x) = 0.5, shifted in opposite directions in the

two conditions, moving to the left in the L-shift condition and to the right in the R-shift
condition. In the late subset, the majority of participants classified the items

x ∈ [�0.07,0.50] differently in the two conditions. If participants were unaffected by

unlabeled data, the late test curves should be identical to the early curves and overlap.

The fact that they do not indicates that participants are affected by the unlabeled data for

this categorization task. To statistically test these observations, decision boundaries for

the early and late grid-test items were computed separately for each participant using

logistic regression on the participant’s categorization decisions. A repeated measures anal-

ysis of variance assessing the influence of early versus late and L-shift versus R-shift on
the location of the decision showed a significant interaction between the two factors
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Fig. 3. Experiment 1 results from shift in unlabeled distribution. The thick black line marks items on which

the majority of human categorization differs in the two conditions.
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(F(1,18) = 7.82, p < 0.02), indicating that after exposure to the unlabeled data, the deci-

sion boundary shifted in significantly different directions for the two groups. Thus, expo-

sure to the unlabeled bimodal distribution appears to alter participants’ beliefs about the

location of the category boundary.

2.2. Experiment 2

The second study had a somewhat different goal—namely to investigate whether SSL

might provide part of an explanation as to why people are often prone to form incorrect

beliefs about social categories (Kalish et al., 2011). The experiment is useful for current

purposes, however, because it revealed similar effects to those reported by Zhu et al.

(2007) even though it used quite different stimuli and a different method for measuring

the effect of unlabeled items. In this experiment, the unlabeled distribution was held con-

stant, while the location of the original labeled examples varied across experimental

groups.

Forty-three undergraduates viewed schematic images of women varying along the sin-

gle dimension of width. The women were described as coming from one of two islands.

As in Experiment 1, each participant first completed a supervised phase where a labeled

example from each category (i.e., “Island”) was presented five times in random order for

a total of 10 labeled examples. In the L-labeled condition, participants viewed two rela-

tively thin stimuli (pixel-widths of 80 and 115), whereas those in the R-labeled condition

viewed two somewhat wider stimuli (pixel-widths of 135 and 165). All participants then

classified a set of unlabeled items without feedback. In the experimental conditions, both

L-labeled and R-labeled groups viewed the same set of unlabeled items, including 37

initial test items sampled from a uniform grid along the full stimulus range, 300 items

sampled from a mixture of two Gaussian distributions, and a final set of 37 test items

sampled from the grid. The mixture of Gaussians was constructed so that the modes of

the distribution lay midway between the labeled points in the L-Labeled and R-labeled
conditions (see Fig. 4). In a control condition, participants received the same L-labeled

Fig. 4. Examples of the Island Women stimuli, the labeled points, and the bimodal distribution from which

unlabeled items are sampled.
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or R-labeled experience, but only viewed items lying on a grid between the two labeled

items in the unsupervised phase.

In Zhu et al. (2007), the trough of the unlabeled distribution fell between the labeled

points. In contrast, in this study the two labeled points both fell to one side of the trough

in the unlabeled distribution, resulting in an even stronger conflict between the boundaries

suggested by supervised and unsupervised experience. Given this mismatch, would learn-

ers still be affected by the unlabeled distributions? To answer this question, the authors

considered three different measures. First, like Zhu et al. (2007), they considered how

participants categorized unlabeled items along the grid prior to and following exposure to

the bimodal unlabeled distribution. Second, following the unsupervised phase of the

experiment, they asked participants to explicitly indicate where the boundary was located

by adjusting a slider that controlled the width of a pictured stimulus. Finally, using the

same slider, they asked participants to indicate the “most typical” example of each cate-

gory.

All three measures showed beliefs about category structure to be strongly shaped by

the distribution of the unlabeled examples. In the control condition, participant behavior

strongly reflected their supervised learning experience: The estimate of the implicit cate-

gory boundary and the participants’ explicit reports of the boundary were closely aligned

with and not significantly different from the midpoint between the labeled examples,

while their judgments of the most typical example of each class aligned closely with and

did not differ significantly from the labeled examples they had received. In comparison,

implicit boundary estimates in the experimental groups were significantly shifted toward

the trough in the unlabeled distributions—that is, toward the right in the L-labeled condi-

tion, and toward the left in the R-labeled condition. This shift was reflected even more

strongly in the explicit boundary judgments. Moreover, choices about the most typical

examples of each category aligned closely with the modes of the unlabeled distribution,

shifting very dramatically away from the labeled items observed in the beginning of the

experiment. Perhaps most interesting, the majority of participants in each condition actu-

ally altered their beliefs about one of the two labeled examples, coming to classify it with

the opposite label than that viewed during the supervised phase.

Given these substantial effects of unlabeled data, one might inquire whether partici-

pants accurately remember the labeled examples and simply change their beliefs about

the accuracy of the earlier supervisory feedback, or whether their memory for the labeled

items itself changes. Kalish et al. (2011) addressed this question in a follow-up experi-

ment where, following exposure to the unlabeled items, participants used the slider in an

attempt to reproduce the two labeled items that had appeared at the beginning of the

study. Strikingly, their reproduction were also strongly influenced by the unlabeled data,

lining up closely with the two modes of the unlabeled distribution, even though, in actual-

ity, the two labeled points lay on either side of one of the modes. Thus, memory for the

original labeled examples appeared to be distorted by exposure to the unlabeled items.

One might further wonder whether the labeled experience has any impact at all in

these studies beyond providing basic information about which “cluster” in the unlabeled

distribution should get which label. Kalish et al. (2011) were able to show that the
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labeled information does, in fact, have a persisting influence even after extensive un-

labeled experience: Despite being exposed to exactly the same unlabeled items, partici-

pants in the L-labeled and R-labeled conditions of these studies did not end up with

exactly the same beliefs about the location of the boundary. Instead, the L-labeled
group’s final boundary was displaced significantly to the left of the R-labeled group’s

final boundary, indicating some lasting effect of the original supervisory experience.

Finally, this study rules out an alternative explanation of the effects of unlabeled data

in these experiments. In the Zhu et al. (2007) study, because participants in the different

experimental groups viewed different sets of unlabeled items, it was possible that the

observed differences in categorization boundaries might arise from perceptual contrast

effects. For instance, a given stimulus in that study might look “more pointy” or “less

pointy” depending on how pointy the preceding stimulus was. It is conceivable that these

local perceptual contrast effects might lead to consistent differences in the estimated cate-

gory boundary depending on the location of the trough in the unlabeled distribution. In

the study of Kalish et al. (2011), however, both experimental groups viewed the exact

same set of unlabeled items, in the same fixed order, but nevertheless showed systematic

differences in their estimate of the category boundary depending on their supervised

experience. Thus, the learning in this study appears to be truly semi-supervised, reflecting

contributions from both labeled and unlabeled experience.

2.3. Experiment 3

Although the preceding studies investigated the effects of the distribution of labeled

and unlabeled examples, the final study we consider investigated effects of the order in

which unlabeled items are encountered. Such effects have been previously reported in the

literature, which generally shows that participants continue to learn from the unlabeled

test items presented following a fully supervised learning session (Palmeri & Flanery,

1999, 2002; Zaki & Nosofsky, 2007). Here, we focus on work described by Zhu et al.

(2010) because it employed the same “blob” stimuli used in Zhu et al. (2007). This

allows for a clear comparison in the next section of how well the models developed in

Section 1 account for the effects of both the distribution and ordering of unlabeled exam-

ples on human categorization.

In this study, 40 undergraduates learned to classify the stimuli used in Zhu et al.

(2007) (Fig. 1). Similar to Experiments 1 and 2, participants first classified, with correc-

tive feedback, two labeled items (x,y) = (�2,0) and (2,1) repeated five times each, fol-

lowed by 81 unlabeled items (i.e., presented without feedback) on a regular grid between

x = �2 and x = 2. The two experimental conditions were identical except for the order

in which the unlabeled items were presented: In the L to R condition, test items were

presented from smallest to largest values of x, while in the R to L condition this ordering

was reversed. The central question was whether the participants’ category boundary

would differ depending upon the order in which the test items were presented.

Fig. 5 shows a plot of Pðyi ¼ 1 j xi; ðx; yÞ1:i�1Þ, estimated by the fraction of subjects in

each condition who classified xi with label yi ¼ 1. The test item ordering clearly had a
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strong effect on categorization. Participants in the L to R condition tended to classify

more test items as ŷ ¼ 0, while those in the R to L condition tended to classify more as

ŷ ¼ 1. A paired-sample t-test shows that the two conditions differed significantly

(p\ 3 � 10�7). Thus, the category boundary acquired appears to depend, not just upon the

distribution of unlabeled items, but also upon the order in which these are encountered.

2.4. Model fitting experiments

These empirical studies indicate that, at least in the simple case of one-dimensional stim-

uli with two mutually exclusive categories, human category learning is sensitive to both the

labeled data and the distribution and ordering of unlabeled data. In the remainder of this

section, we consider how well the SSL models proposed in Section 1 fit the observed human

behavior. We will focus on fitting the models to the data from Experiments 1 and 3, since

these employed the same stimulus set and the same experimental procedure, allowing for

comparison between model family as well as experiment. The central question we pose is

how well, both qualitatively and quantitatively, the different SSL models described earlier

can produce behavior that fits the observed human behavior.

Before presenting the results, we must consider how best to parametrize the different

models. In each of the three models we have considered, some parameters must be cho-

sen by the theorist a priori. The subsequent behavior of the model will vary depending

on the choices made. Thus, each of the three general models entail a family of associated

models, with each individual model corresponding to a particular choice of parameters.

The theorist interested in understanding which theoretical approach offers the best

account of human SSL cannot just consider the fit of specific individual models within

each type but must consider how best to adjudicate the different model families. In what

follows, we illustrate that the different models can lead to quite different behaviors

depending on the parametrization, with some models apparently providing a qualitatively

better match than others. We then consider one method for empirically adjudicating the
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Fig. 5. Experiment 3 results from ordered unlabeled examples. The thick black line marks items on which

the majority of human categorization differs in the two conditions.
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different model families, note some shortcomings of this approach, and sketch an alterna-

tive approach for use in future work.

Each model family potentially has several associated parameters. A full exploration of

the parameter space for every model family is beyond the scope of this review. Instead,

we will consider the effects of varying a single critical parameter for each model. For the

semi-supervised exemplar model, the parameter we consider is h, the bandwidth, which
determines how the influence of a stored example on a query item diminishes with dis-

tance. Small values of h mean that only very similar items are strongly weighted in the

categorization decision, whereas larger values mean that distal items still receive substan-

tial weight. For the semi-supervised prototype model, the critical parameter is n0, a count

of pseudo-items used to initialize the Gaussians for each category to be learned. This

parameter effectively captures the strength of prior beliefs about the frequencies, modes,

and variances of the two category prototypes. Higher values indicate stronger prior beliefs

in the initial distributions, meaning that more evidence is required to shift the parameter

estimates to reflect the clusters in the data. All Gaussian distributions are initialized to

have a mean of zero and variance of one in these simulations. For the semi-supervised

Rational model, the critical parameter is a, which controls the likelihood that each newly

encountered item will begin a new cluster. When a is high, many clusters will be created,

and when a is low, few clusters will be created.

Fig. 6 shows the behavior of each model family (rows), under different values of the

critical parameter (columns), and fit to a data set similar to that used in Experiment 1

(Fig. 2). The middle column shows the parametrization that provides a good fit to the

empirical data, while the other two columns show much smaller and larger parametriza-

tion to exhibit the variability of the models. Each item in the experiment is represented

as a real-valued number x, and each label is coded as y ∈ {0,1}. The data set includes

two labeled items at x = �1 and x = 1 followed by a large number of unlabeled data

from the bimodal distribution. The curves show Pðyi ¼ 1 j xi; ðx; yÞ1:i�1Þ for the different

values of x in the first 50 unlabeled test trials after 10 exposures to two labeled items

(early), as well as the last 50 unlabeled test trials (late).
Two observations are of note. First, all three models show patterns of behavior qualita-

tively similar to those observed in the empirical data in Fig. 3: Following exposure to the

unlabeled items, the decision curves shift toward the trough, that is, leftward in the left-

shifted case and rightward in the right-shifted case. Second, the exact behavior of each

model family does vary considerably depending on the choice of parameters, with some

models varying more than others. All three models appear to provide a relatively good

match to the empirical data under some but not other parameter choices.

The same models were also fit to the data set used in Experiment 3, which included

two labeled items at (x,y) = (�2,0) and (x,y) = (2,1) followed by 81 unlabeled items

lying on a grid in the range (�2,2) and ordered either smallest to largest (L to R) or in
the reverse direction (R to L). Fig. 7 shows the behavior of the three models under three

different settings for the relevant critical parameter. All three models are clearly influ-

enced by the ordering of the unlabeled items, with the direction of the effect consistent

with that observed in the behavioral data and the magnitude varying substantially with
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model choice and parametrization. In this case, however, one model family makes predic-

tions that are grossly inconsistent with the observed data. Specifically, the semi-super-

vised exemplar model predicts, under each parametrization, that participants should

almost always guess the same label in this experiment. To see this, note that in the R to L
condition the conditional probability P(y = 1 | x) is almost always larger than 0.5. In

other words, when the test items are presented in decreasing order, the semi-supervised

exemplar model assigns almost all test items the label y = 1. Similarly, in the R to L
condition the model assigns almost all test items the label y = 0. This pattern is qualita-

tively different from that shown by the participants and by the semi-supervised prototype

and Rational models, which all show a right-shifted boundary in the left-to-right ordering

and a left-shifted boundary in the right-to-left condition. Thus, by inspection, the behav-

ioral data appear to disconfirm the semi-supervised exemplar model but are qualitatively

consistent with the semi-supervised prototype and Rational models.

We are left with the question of how best to quantitatively adjudicate the different

model families. Here, we will consider the approach employed by Zhu et al. (2010),

which uses a training/test set split procedure to quantitatively measure how well different

models match the observed results in each task, a method commonly used in machine
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Fig. 6. Model predictions Pðyi ¼ 1 j xi; ðx; yÞ1:i�1Þ on the shifted distribution task of Experiment 1. Items in

early represented by ◯, in late by +. The L-shift condition is colored in blue, R-shift in red. Vertical dashed

lines represent derived decision boundaries.
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learning for model comparison. The data set under consideration is the conjoined results

of Experiments 1 and 3—studies that employed the same stimuli and test procedures, and

so which might reasonably be expected to involve the same model parametrization. The

procedure involves dividing all the trials in these two experiments into a training set that
includes 90% of trials selected at random, and a test set, which includes the remaining

10% of trials. Training involves examining the performance of each model family under

a wide range of parameter settings and selecting the settings ĥ that provide the best fit to

the training dataset as measured by log likelihood ‘trainðĥÞ. The resulting model for each

type is used to generate predicted labelings for the test items, which are in turn compared

to the aggregate experimental results for the corresponding items using log likelihood

‘testðĥÞ. This method of creating a training and test split of the data set results in a better

comparison of generalization between models.

Table 1 shows the best-fitting parameter values ĥ found using the training set and the

associated log likelihoods ‘testðĥÞ for each model family applied to the test set. Larger

scores indicate a better fit. Under this measure, the prototype and Rational models pro-

vide a better match to the empirical data than does the exemplar model; and the Rational

model shows an even better match to the data than does the prototype model.
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Fig. 7. Model predictions Pðyi ¼ 1 j xi; ðx; yÞ1:i�1Þ on the order task of Experiment 3. L to R condition repre-

sented by ◯, R to L by +. Vertical dashed lines represent derived decision boundaries.
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With regard to the question posed earlier, then, both the qualitative and quantitative

analyses suggest three tentative conclusions. First, all three model families can provide a

qualitatively good match to the behavioral data observed in some experiments, under

some parametrization. Indeed, the three model families appear to provide approximately

equally good fits to the data, considering just the best parametrization of each. These

results thus establish the face validity of all three families in accounting for human SSL.

Second, the model-fitting results for Experiment 3 establish that the different model fami-

lies can make qualitatively different predictions about expected behavior in semi-super-

vised category learning experiments, only some of which are consistent with the observed

behavior. Thus, SSL may prove a useful experimental paradigm for adjudicating between

the different theories of human categorization. In the present case, for instance, evidence

from Experiment 3 appears to disconfirm predictions of the semi-supervised exemplar

model. Finally, the quantitative analysis above provides some evidence that, across both

experiments, the semi-supervised Rational model provides a somewhat better fit than the

alternative approaches.

These results must be viewed as preliminary in at least three respects, however. First,

the approach we have sketched for quantitatively adjudicating model families, though in

relatively common usage, has an important flaw. The reason is that the model families

may not be matched for their complexity. Even though we have limited each model to

a single tuning parameter, the intrinsic complexity of those models may still vary. The

semi-supervised prototype (i.e., GMM) family, for instance, models each category with

a single Gaussian, and consequently can only learn to form a single threshold decision

boundary or an interval decision boundary in the 1D case. In the semi-supervised

Rational (i.e., DPMM) model, in contrast, the number of Gaussian components can grow

indefinitely, and as a consequence, this model is capable of learning multiple boundaries

in the 1D case. So, though both model families have a single tuning parameter, the

complexity and expressive power of the Rational model is greater. Richer model fami-

lies are more likely to out-perform less complex model families on training data, but

they are also more prone to overfitting. A fairer comparison of models, then, would

control the complexity of the model families under consideration—a strategy we leave

for future work.

Second, these analyses consider just two experiments, both with relatively simple one-

dimensional, two-category learning problems. In contrast, standard variants of exemplar,

prototype, and Rational models have been assessed against a great number of more com-

plex category learning problems. It also remains for future work, then, to determine

whether these preliminary results will apply across a comparably broad range of findings.

Table 1

Log likelihood on the held aside test set

Exemplar Prototype RMC

ĥ h = 0.6 n0 ¼ 12 a = 0.3

‘testðĥÞ �3,727 �2,460 �2,169
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We emphasize that these results do not conclusively favor the lifted Rational over the

lifted exemplar and prototype SSL models.

Third, although all three model variants do a good job of fitting some of the empirical

data, there remain alternative explanations of the observed effects that do not require the

assumption that human learning is semi-supervised. One hypothesis that has been repeat-

edly raised in discussion of this work is the possibility that participants learn and endea-

vor to retain important information from the supervised learning examples, beyond the

location of the category boundary. For example, participants might learn from supervised

experience that examples of the two categories occur about equally frequently. When sub-

sequently classifying unlabeled items, they may take care to retain this information,

ensuring that they assign category labels with equal frequency. Such a strategy would

lead them to place a boundary in a location that divides the unlabeled items approxi-

mately in half, consistent with the behavior reported in Experiments 1 and 2. Or partici-

pants may notice from the supervised experience that both categories are about equally

variable, and may assign labels to unlabeled examples to preserve this aspect of the

supervised distributions. Future work must be conducted to formulate model that corre-

spond to these hypotheses and to design experiments that discriminate them.

These caveats notwithstanding, there are two general conclusions we would like to

draw. First, the preceding results establish the face validity of the general hypothesis that

human category learning is semi-supervised—that is, influenced jointly by labeled and

unlabeled experience—and also of the more specific hypotheses expressed in the formal

models developed earlier. Second, because the different models can make differing pre-

dictions about human behavior in SSL scenarios, SSL may provide a new way of testing

the theoretical commitments that underlie exemplar, prototype, and Rational models. A

great deal of research in cognitive science has been concerned with understanding which

method provides the most useful framework for understanding human categorization. This

debate has been useful in elaborating computational descriptions of the different theories,

but with the result that all three models seem capable of explaining much if not all of the

available data, sometimes simply through the addition of parameters. In some respects

this is not surprising: It is possible to show that, under appropriate parametrization, super-

vised variants of all three models will eventually converge on the same posterior proba-

bility distribution (i.e., the true posterior). However, as we have seen, this is not

necessarily true of lifted variants of the same models. The models we have described rely

on assumptions about how unlabeled items are distributed, and how labelings relate to

these distributions. It can be shown that the lifted models also converge on the true pos-

terior, but only so long as the corresponding assumptions are valid. When the assump-

tions are not valid, the different semi-supervised models can fail, in somewhat different

ways. The test-item ordering effects reported above represent one such failure: All of the

models assume that observations are independently and identically distributed, whereas

this is clearly not the case when the test items are ordered. As a consequence of this

violation of an assumption, the different models show different behaviors depending on

the ordering of the unlabeled items; and these effects provide the basis for figuring out

which model framework best accounts for human behavior. Other violations of SSL
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assumptions—such as, for instance, the assumption that the true category boundary will

lie in the “gap” between clusters in feature space, which was violated in Experiment 2—
may likewise provide opportunities for understanding which SSL models best help to

explain human behavior.

3. Other SSL assumptions

The preceding sections focused on semi-supervised models that adopt the mixture-

model assumption since these bear the most transparent relationship to familiar models in

psychology. There are, however, several other kinds of assumptions that can be adopted

to support SSL (Chapelle et al., 2006; Zhu & Goldberg, 2009). These include large sepa-

ration assumptions (that items which are separated by a large gap in feature space tend to

belong to different categories, such as in Semi-Supervised Support Vector Machines

Chapelle, Sindhwani, & Keerthi, 2008; Joachims, 1999; Lawrence & Jordan, 2005;

Vapnik, 1998), and the multi-view assumption (that the features can be split into separate

“views” that tend to be conditionally independent given the category, and separate learn-

ers on each view may cooperate; one example being Co-Training; see Blum & Mitchell,

1998). In this section, we will briefly consider another such assumption, the manifold
assumption, to illustrate how these models might lead to new hypotheses about how

humans use unlabeled data in categorization tasks.

3.1. Manifolds

The manifold assumption, a graph-based method, holds that (a) data are distributed

along an underlying lower-dimensional manifold in the feature space, and (b) category

membership propagates along this manifold. This propagation may produce labelings that

conflict with the labelings suggested by Euclidean proximity in the original feature space.

To see this, consider the classic “two-moons” data set shown in Fig. 8A. The data consist

of items distributed in a 2D continuous space, with two labeled points and a set of unla-

beled points. A simple supervised learner that classifies items solely on the basis of their

similarity to labeled points in the 2D space (such as, for instance, the nearest-neighbor

(A) (B) (C)

Fig. 8. The two-moons data set, with ◯ and + representing labeled points and black dots representing unla-

beled points. (B) and (C) represent the categorizations learned by a supervised linear-boundary learner and a

semi-supervised manifold learner, respectively.
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classifier using Euclidean distance) will produce the classification shown in Fig. 8B.

Under the manifold assumption, however, the solution shown in Fig. 8C is more appro-

priate: Each category is associated with a one-dimensional manifold embedded in the

two-dimensional space. This assignment produces a classification solution that violates

Euclidean proximity in the 2D space. For instance, the leftmost point of the bottom

“moon” is more similar to the blue than to the red labeled item in the 2D space, but it is

classified as belonging to the red category. Note that this is not a simple case of linear

dimension-reduction, where all the data can be projected onto a single dimension without

loss of information. Standard linear dimension-reduction methods like principal compo-

nents analysis will not recover the two categories shown in Fig. 8B. Instead, this behavior

arises from the fact that the data lie along one-dimensional manifolds embedded in the

2D space. If the data are assumed to be so distributed, the key learning task is to find the

most likely manifold in the original feature space—a task for which unlabeled examples

can provide important information. When the manifold has been learned, it can be used

to determine how category labels should generalize. Unlabeled items can be classified

based on their proximity to labeled items along the manifold, rather than their proximity

in the original space.

This example is somewhat abstract, but there are many real-world problems in cogni-

tive science for which the manifold assumption might prove useful. Consider, for

instance, the fact that face recognition is largely viewpoint-invariant. When shown a per-

son’s face from the front and told his or her name, the learner can still identify the per-

son from a three-quarter profile. One does not need to be given separate (picture, name)

pairs from every possible angle to successfully identify the individual. Several different

models have been advanced in the literature to explain viewpoint-invariant face recogni-

tion, and in many cases these correspond to variants of the exemplar and prototype mod-

els familiar from earlier sections (Tarr & Bulthoff, 1998). The manifold assumption

permits another kind of hypothesis. Specifically, the visual images corresponding to dif-

ferent views of a given face may lie on a lower-dimensional manifold along which the

name label is able to propagate. Fig. 9 demonstrates this idea. Two sets of images were

taken of the heads of two individuals as they rotated one full turn, starting from looking

at the camera, to looking directly away from the camera and back to directly at the

camera again. Each image is composed of a set of pixels, each associated with a single

Fig. 9. On the left are examples from collections of pictures taken of the heads of two individual rotating in

space. On the right are the 2D representations of each collection, denoted by color, where each point corre-

sponds to a single image in a collection.
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continuous “intensity” value. Thus, each image can be considered a point in a continuous

space with each pixel corresponding to a dimension. With this conception, we can visual-

ize the distribution of images in this high-dimensional space using Principle Components

Analysis (PCA) to reduce each set to two dimensions. For each set, the points form a

clear one-dimensional manifold in two-dimensional space, in this case a circle. It is easy

to imagine a label associated with a front-facing image propagating along this circle so

that identification can still be made without seeing additional labels for each point. It is

also easy to see that a labeled image of one individual will tend to propagate to other

images of the same individual, which lie along the same manifold, rather than to images

depicting the other individual, even if these images are closer in the encompassing fea-

ture space.

More generally, many problems in cognitive science require the learner to figure out

the “right” similarity relations existing among a set of stimuli in a given domain; and in

many cases the relations that need to be learned are not transparently available directly

from the sensory structure of the environment. The manifold assumption in SSL provides

one way of learning relationships that do not correspond to a simple linear dimensional

reduction of the encompassing high-dimensional space, and of using these relations to

determine how category labels should generalize. Thus, it is of considerable interest to

know whether people are capable of using manifolds to generalize category labels.

Gibson, Zhu, Rogers, Kalish, and Harrison (2010) designed a set of experiments to under-

stand under what conditions humans are capable of SSL using manifolds in a synthetic

setting. The results suggest that manifold-learning is possible, but only when strong hints

are provided and there is no alternative, simpler explanation of the data.

3.2. Experiment 4: Learning manifolds

In this experiment, 139 participants were asked to provide a binary label for a set of

“cards” shown on a computer screen after viewing a small set of labeled examples. The

feature space consisted of two dimensions x1; x2 2 [0,1]. The stimuli consisted of two

crossing lines, one vertical and one horizontal, with x1 specifying the position of the ver-

tical line left to right horizontally and x2 the position of the horizontal line from bottom

to top vertically. Examples of the stimuli are shown in Fig. 10. Participants viewed all of

the unlabeled items together on the screen at one time and “labeled” these items by drag-

ging them to a bin on either the left or right side of the screen.

Fig. 10. Examples of stimuli used in the manifold experiment with associated ðx1; x2Þ feature values.
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Participants performed this task in one of two conditions differing only in how the

unlabeled items were distributed. In the manifold condition, items were distributed in a

manner similar to the two-moons dataset described above ðmoonsUÞ, whereas in the uni-
form condition items were distributed on a uniform grid over the stimulus space ðgridUÞ.
The authors also manipulated the number of labeled items shown (two in 2l vs. four in

4l), and whether close neighbors in the stimulus space were visually highlighted in the

display (indicated by h). In the manifold condition with two labeled points, the ends of

the manifolds are labeled, just as in Fig. 8A. In the same condition with four labeled

points, two additional labels were added at points inconsistent with a single linear bound-

ary in either dimension. The same labeled points were employed in the uniform

condition.

The resulting data sets are shown in Fig. 11. When given just two labeled points, par-

ticipants did not use the manifold to generalize the label, even when hints to the structure

were provided by highlighting close neighbors in the feature space. Instead, these partici-

pants always learned a linear axis-parallel category boundary consistent with the labeled

points. When four labeled points were provided, but no hints were provided via highlight-

ing, participants again failed to follow the manifold when labeling, although they did

abandon the single linear boundary solution since it did not match the labeled data. Only

when four labels were provided and close neighbors were highlighted in the display

ð4lmoonsUhÞ did subjects exhibit manifold learning behavior.

One possible interpretation of this result is that participants did not learn the mani-

fold at all, but simply selected whichever cards were shown by the highlighting to be

similar to the preceding card. Three points of evidence contradict this interpretation,

however. First, despite the highlighting, participants in 2lmoonsUh condition failed to

learn the manifold—only when hints were combined with sufficient labeled evidence

(as in the 4lmoonsUh condition) did the manifold pattern emerge. If participants were

simply following the highlighting, manifold learning should have been observed in both

conditions. Second, if participants were simply following the highlighting, they should

never classify items that were not highlighted by the user interface. In fact, these

“un-highlighted” classifications were observed fairly frequently—an average of 17 of 78

categorizations—by participants in the 4lmoonsUh condition. Third, in a control

experiment conducted with identical labeled and unlabeled points, but with the neighbor

Fig. 11. The six conditions for the manifold experiment, followed by the “random neighbor” experimental

condition. Large symbols indicate labeled items; dots indicate unlabeled items. Highlighting shown to partici-

pants is represented as graph edges.
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relations used for highlighting randomized (see the 4lmoonsUhR condition in Fig. 11),

participants essentially ignored the highlighting—suggesting that, in the original study,

participants must have a sense of the underlying manifold and did not blindly follow

the highlighting.

This study provides some preliminary evidence that when labeled evidence rules out

the preferred single-linear-boundary solutions, and when the task provides some percep-

tual cues, people are capable of using unlabeled data to learn non-linear manifolds. Semi-

supervised learning models developed under the manifold assumption may provide

hypotheses about learning processes in such scenarios. Of course, the particular cues to

manifold structure used in this study—highlighting near neighbors in the graphical dis-

play—were highly artificial, as was the task itself (sorting cards bisected by orthogonal

lines). It is not difficult, however, to think of more realistic real-world cues to manifold

structure. In the case of 3D object recognition, for instance, people presumably have con-

siderable prior knowledge about how objects are capable of moving in space. Participants

may be able to better employ manifold structure in category learning if provided with

learning scenarios that allow them to exploit such knowledge—for instance, if told that

the different images are “snapshots” of two objects as they move around in some envi-

ronment. Thus, the import of manifold-based SSL for problems in cognitive science

remains to be assessed in future work. More generally, there exist a variety of other

semi-supervised assumptions in machine learning that likewise may provide a source of

hypotheses about ways in which human beings can capitalize on unlabeled data to sup-

port category learning.

4. Some challenges for models of SSL

The preceding sections suggest that human behavior in categorization tasks can be

influenced by both labeled and unlabeled experiences, in ways that are qualitatively

consistent with some SSL models. In this final section, we consider some of the ways

in which human behavior does not seem to be well accounted for by standard SSL

models.

The issues we identify mainly stem from the consideration of SSL in higher dimen-

sional stimulus spaces. With the exception of the manifold-learning work, the experiments

and models described earlier assumed that the items to be categorized varied along a sin-

gle dimension (or at least along a 1D subspace in a multidimensional feature space).

Although generalization of the models themselves to higher dimensional spaces is

straightforward, the application of these ideas to human SSL raises some challenges that

are not clearly met by current machine learning models.

4.1. Feature weighting and SSL

One issue concerns the question of feature-selection or feature-weighting: When

stimuli vary in many different ways, human beings have the ability to selectively
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attend to or weight various feature dimensions differently when making a categoriza-

tion decision. Feature-weighting (and its extreme form, feature selection) is, of course,

an issue that has been extensively studied in both machine learning and cognitive sci-

ence. Such approaches, however, generally rely upon the fact that learning is fully

supervised: Features receive a strong weighting when they are useful for discriminating

among categories, and they receive lower weightings when they are not. In SSL, it is

less clear how feature weighting should be handled: The unlabeled distribution of

items provides clues about how the items should be partitioned, but should the learner

attend only to the distribution along feature dimensions that, from the labeled items,

seem important to the categorization task, or should the full distribution in the feature

space matter?

To illustrate the issue, consider the learning problems in Fig. 12. In both, labeled and

unlabeled items are situated in a 2D feature space, and the labeled items (colored sym-

bols) suggest a vertical boundary in x1. In the left panel, unlabeled items are distributed

uniformly across the space, but with a substantial gap in x2. The gap in the distribution is

orthogonal to the boundary suggested by the labeled data—thus, a semi-supervised lear-

ner may be prone to “selecting” the wrong feature dimension (x2) if she is heavily influ-

enced by the distribution of unlabeled items. In this case, it seems that the right thing to

do is to use the labeled examples to determine the feature weights—for instance, heavily

weighting x1—and to ignore the distribution on the other dimension. This approach, how-

ever, will not work well with the distribution shown in the right panel. Here, the labeled

items suggest the same boundary in x1, but the distribution of unlabeled items suggests

that an oblique boundary in both x1 and x2 might be more appropriate. A semi-supervised

learner that weights feature dimensions based solely on labeled examples will neglect

important distributional information in this case. The question of how best to weight fea-

ture dimensions in SSL—and the empirical question of how human beings do so—
remains to be addressed.

(A) (B)

Fig. 12. An example of a contradictory unlabeled distribution on the left, and a helpful unlabeled distribution

on the right. Points labeled negative are represented by ◯, points labeled positive by +, and points unlabeled

by black dots. The labeled boundary is indicated by a dashed line.
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4.2. Integral and separable feature dimensions

A second challenge arises from the fact that human beings do not treat all perceptual

feature dimensions equally. In some cases, perceptual dimensions that are independent in

principle appear to be “coupled” in human experience—it is difficult for people to

respond to one such dimension without also being influenced by others (Shepard, 1991).

One common example of such integral dimensions is the saturation and brightness of

a given color where one dimension cannot be varied without a perceived change in the

other (the first row of Fig. 13). Other perceptual features are easily separable: People can

selectively process information on one such dimension without being greatly influenced

by the other. The frequency and orientation of a Gabor patch, for instance, constitute psy-

chologically separable dimensions (the second row of Fig. 13).

It has long been known that separability of stimulus feature dimensions can strongly

influence behavior in supervised category-learning tasks where all training items are

labeled. For instance, when dimensions are separable, SL models better fit human data if

the distance between stimuli is measured using a city-block rather than a Euclidean met-

ric (Nosofsky, 1987).

Zhu, Gibson, and Rogers (2011) recently demonstrated, however, that the distinction

may have a further influence on categorization behavior in the context of SSL. In a sim-

ple 2D semi-supervised task, participants learned to classify two labeled items in a short

supervised phase, then categorized a large number of unlabeled items. The data were

composed of four clusters arranged in a “diamond” configuration, as seen in Fig. 14. Two

labeled items appeared at the center of the left-most and top-most clusters and thus were

consistent with three single linear boundaries: a vertical boundary in x1, a horizontal

boundary in x2, or an oblique boundary in both x1 and x2.
When the stimulus dimensions were separable (frequency and orientation of Gabor

patches, as in the second row of Fig. 13), participants usually selected an axis-parallel

boundary—only 17 of 45 participants selected an oblique boundary that took both feature

dimensions into account. In contrast, when the dimensions were integral (brightness and

Fig. 13. Examples of color stimuli varying in brightness and saturation (first row) and Gabor patch stimuli

varying in frequency and rotation (second row), with the corresponding values ðx1; x2Þ in feature space.
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saturation of a colored square, as in the first row of Fig. 13), all participants (34 of 34)

selected an oblique boundary. This result suggests that, when dimensions are separable,

participants may attend selectively to only a subset of the stimulus properties, without

noticing or processing values along other dimensions. If this is so, there are obvious

implications for SSL—specifically, learning may not be influenced by the distribution of

unlabeled items along unattended stimulus dimensions. This in turn suggests that SSL

may be less apparent in multi-dimensional tasks with separable stimulus dimensions: If

the interesting distributional information from unlabeled items happens to be carried by

stimulus dimensions that are unattended/unselected, then this information will not be

available to influence learning. Such a result was reported by Vandist, De Schryver, and

Rosseel (2009), who failed to find evidence for SSL that employed Gabor patches varying

in frequency and orientation as the feature dimensions. On the other hand, participants

may be more strongly influenced by the full distribution of unlabeled items in the feature

space when stimulus dimensions are integral.

Rogers, Kalish, Gibson, Harrison, and Zhu (2010) recently reported results consistent

with this hypothesis. Participants learned to classify bisected circles that varied in the ori-

entation of the bisecting line and the radius of the circle (Nosofsky, 1986). In a semi-

supervised condition, 32 labeled learning trials were intermixed with 400 unlabeled trials

drawn from a distribution with a prominent gap aligned with the true category boundary.

In two control conditions, the same labeled items were presented all together in a single

block, or intermixed with unrelated filler trials. In this setup, a semi-supervised learner

might be expected to learn the correct boundary fastest in the experimental condition,

because the gap in the unlabeled distribution supplements the labeled experiences to pro-

vide an important cue to the location of the boundary. To the contrary, performance over

the course of learning, and on a subsequent set of unlabeled test trials drawn from a grid,

was no different, and relatively poor, across the three conditions, with several participants

placing the boundary on the irrelevant stimulus dimension.

Size and orientation are clearly separable psychological dimensions to which

participants can selectively attend. Thus, one explanation of this failure is that, when par-

ticipants selectively attend to the irrelevant dimension, they fail to “notice” or be

influenced by the trough in the unlabeled distribution on the unattended dimension, thus

(A) (B) (C) (D)

Fig. 14. The data set used in Zhu (2011), with two labeled points (◯ and +) and unlabeled items arranged in

four clusters. The three plots to the right show three possible labelings of the unlabeled data produced using

a single linear boundary, each consistent with the labeled points.
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reducing the influence of SSL overall. To test this hypothesis, the authors conducted a

second experiment identical to the first except that participants were pressured to respond

very rapidly, within 400 ms of stimulus onset. Allocation of selective attention is com-

monly thought to require at least 500 ms (Wolfe & Horowitz, 2004), so the authors rea-

soned that this time-pressure would prevent learners from selectively “screening out”

information on the unattended dimension. They therefore predicted a larger effect of SSL

in the speeded condition. Consistent with this prediction, the authors observed a substan-

tial SSL effect: Accuracy improved more rapidly, with a larger proportion of participants

learning to criterion, in the semi-supervised condition compared to both control condi-

tions. Moreover, performance was better overall when participants had limited time to

process and respond to the stimulus—suggesting that the unlimited response window in

the first experiment was actually hindering learning. These results suggest that, when

stimulus dimensions are separable, participants may selectively attend to some dimensions

and thus may be less influenced by the distribution of unlabeled items along unattended

dimensions. By definition, it is difficult to selectively focus on one dimension for inte-

gral-dimension stimuli. This suggests that SSL may have generally larger effects for such

items, though this hypothesis remains to be directly assessed.

More generally, machine learning has no analog to the distinction between integral and

separable dimensions. An important future challenge will be to better understand how

such models might be adapted to account for these kinds of effects in people.

4.3. Perceptual spaces are shaped by unlabeled distributions

A third related issue is that the perceived similarity of novel stimuli is not static in

human cognition but can vary substantially with learning and with perceptual adaptation.

Again, such effects have been the focus of extensive study in the context of fully super-

vised category learning (Goldstone, 1994) but have additional implications in the context

of SSL. Specifically, recent evidence suggests that perception can be radically re-shaped

by statistical structure among unlabeled stimuli over quite short periods of time. Stilp and

colleagues exposed participants to complex sounds varying in two psycho-acoustic dimen-

sions (attack/decay and spectral shape) carefully matched for perceptual discriminability

(Stilp, Rogers, & Kluender, 2010). Sounds were sampled frequently from a diagonal line

in the space, and only occasionally from the orthogonal line, thus inducing strong covari-

ance between the two dimensions. After 7 min of passive exposure to these sounds, par-

ticipants performed an AXB discrimination task for pairs of sounds sampled either along

the original line or orthogonal to it. Immediately following the passive exposure, partici-

pants were “deaf” to differences between sounds varying orthogonally to the direction of

experienced covariation—as though their auditory system collapsed the original two

dimensional space to a single dimension, aligned with the first principal component of

the perceptual space. With further exposure to the test sounds, sensitivity to the orthogo-

nal dimensional gradually recovered to pre-exposure levels.

There are, of course, many examples of perceptual change following extensive learning

with some novel stimulus domain. The Stilp et al. (2010) study adds to this literature in
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three ways that may be especially challenging for developing models of SSL. First, the

learning was incidental—participants were given no instructions, and indeed conducted a

distracting task (playing with an Etch-A-Sketch) while listening to the sounds. Second,

the period of exposure was only 7 min, much shorter than the standard categorization

study, suggesting that the perceptual structure of a given stimulus space might be chang-

ing at the same time that participants are learning to partition the space. Third, the study

suggests that such perceptual effects might go beyond simply learning how to weight dif-

ferent stimulus dimensions. In Stilp et al. (2010), the perceptual space appeared to

“collapse” from two dimensions to a single dimension on the basis of the strong covari-

ance between the two dimensions, so it was not just the weights on the dimensions that

were changing but the dimensionality of the space itself.

These effects pose challenges for applying machine learning models to human catego-

rization, because the models typically assume that stimuli can be represented as static

points within a feature space of fixed dimensionality. Indeed, many of the parameters in

the General Context Model that have no counterpart in our lifted exemplar model were

introduced by Nosofsky (2011) as a way of capturing both feature weighting and catego-

rization in a single framework. Of course, machine learning also encompasses a broad

variety of models for efficiently extracting or representing the information contained in

multidimensional distributions. The manifold-learning assumption and related models

addressed earlier provide one way of finding interesting low-dimensional structure within

a high-dimensional space, for instance. The interesting challenge for future work will be

to consider how these models might be combined with category learning models to simul-

taneously capture both their gradual learning about category membership and the percep-

tual changes that arise when they are exposed to structured unlabeled items.

5. Conclusion

It seems clear to us that the course of daily life provides a wealth of unlabeled experi-

ence relevant to categorization, over and above the occasional explicit labeling experi-

ences we receive. It also seems reasonable to suppose that such experiences are important

in shaping our category knowledge, but most formal models of human categorization

have not taken such influences into account. SSL models developed in the context of

machine learning can provide a rich source of hypotheses about how human SSL might

proceed, and recent empirical results suggest that people do combine labeled and un-

labeled learning experiences in ways that are highly consistent with some of these mod-

els. Moreover, different models can make differing predictions about how human beings

should behave in SSL contexts, and so may provide a way of adjudicating which catego-

rization theories are most useful for understanding human behavior. To this point, how-

ever, such work has mainly focused on learning in simple one-dimensional two-category

problems, and there remain critical challenges to generalizing the approach to more real-

istic multi-dimensional tasks. Future work in this vein will need to focus on understand-

ing feature-weighting and feature-separability in an SSL context.
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Notes

1. This property, where the number of exemplars grows with the number of examples,

makes KDE a non-parametric model, which is distinguished from parametric mod-

els such as GMMs, which are defined by a fixed number of parameters.

2. This version assumes a component distribution jointly over the feature vector x and

label y, so that a single cluster can produce examples with different label y value.

An alternative approach would be to assume that a separate model for each cate-

gory, as in the A Class model of Mansinghka, Roy, Rifkin, and Tenenbaum (2007).
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