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Abstract1

Learning an accurate representation of the environment is a difficult task for both animals2

and humans, because the causal structures of the environment are unobservable and must be3

inferred from the observable input. In this article, we argue that this difficulty is further in-4

creased by the multi-context nature of realistic learning environments. When the environment5

undergoes a change in context without explicit cueing, the learner must detect the change and6

employ a new causal model to predict upcoming observations correctly. We discuss the prob-7

lems and strategies that a rational learner might adopt and existing findings that support such8

strategies. We advocate hierarchical models as an optimal structure for retaining causal models9

learned in past contexts, thereby avoiding relearning familiar contexts in the future.10

11

Keywords: multi-context environment; contextual ambiguity; representation learning; contextual cue;12

change detection13

1 Introduction14

Learning requires a mechanism that infers from observable events in the environment a minimally15

sufficient hypothesis of the unobservable underlying structures. This hypothesis not only serves as16

an efficient representation of the causal relations in the environment, at least for a particular task,17

but also enables the learner to generalize to events that have not been observed. For example, if18

the task involves predicting the consumption of different food items in a school cafeteria, then a19

reasonable approximation is to tally the quantity of each food item that was consumed over some20

running average of the past (e.g., the prior month). However, there is considerable variation in these21

tallies across hours of the day, days of the week, and specific occasions such as holidays. Thus,22

in order to prevent more than the occasional dissatisfied customer, the manager of the cafeteria23

must develop a fairly flexible model that can modulate its predictions of the demand for food24

items dynamically given the values of these key variables. We will refer to these key variables as25

contexts and the cafeteria environment as an example of a multi-context environment. Each context26

in such an environment is typically associated with a distinctive causal structure. In the present27

article, we argue that most realistic environments are inherently multi-context, and that learning28

a flexible model that embeds information about contexts is the general task that confronts naive29

learners. To successfully accomplish this task, learners must be able to 1) infer (with uncertainty)30

whether a context change has occurred; 2) adapt to a changed context and learn new causal models31

if necessary; and 3) represent contexts along with corresponding causal models in an optimal32

manner. We discuss each of these three aspects next.33

Context changes often signal that a different underlying causal model now applies. However,34

2



contexts are rarely explicitly labeled in the input available to the learner, and many contextual cues35

that are easily observable are not relevant to the underlying causal model. The canonical case,36

then, involves implicit contexts that must be discerned by the learner, often by noting that the37

current causal model does not provide an adequate fit with the most recent input. Thus, the first38

challenge of learning in a multi-context environment is to detect context changes from unexpected39

observations alone. This would be a trivial problem if the causal relations within each context were40

strictly deterministic. Consider the cafeteria example again. If the consumption rate of bottled milk41

during breakfast hours is exactly 10 bottles per minute, it is not difficult to conclude that breakfast42

is over when the rate drops to 1 bottle per minute. However, such deterministic relations are rare43

in reality. It is possible that the average consumption rate of bottled milk is 10 bottles per minute44

during the BREAKFAST context, but occasionally, it might be as low as 2 bottles or as high as45

20. The uncertainty resulting from random and probabilistic variations creates a difficult situation46

for the manager: if a large lecture class, originally scheduled at 9 A.M., is cancelled because47

the professor’s return flight from a conference is delayed by bad weather, then the demand for48

milk at the cafeteria may be altered idiosyncratically - the manager may observe a decrease as49

students are likely to get up later and skip breakfast. Unaware of the implicit context (i.e. CLASS50

CANCELLED), the manager is now faced with the problem of contextual ambiguity: should the51

manager interpret this decrease as acceptable random variations in the regular BREAKFAST context52

or as the representative characteristic of a changed context?53

Resolving contextual ambiguity is only the first step of learning in a multi-context environment.54

Once a learner arrives at the conclusion that a different context has come into effect, they must also55

decide how to adapt to the changed context. Here, a learner at least two choices. They can either56

learn a new model and associate it with the context, or retrieve from memory a causal model57

learned for a past context, which closely resembles or even matches the current context. The58

need to learn a new causal model arises when the learner encounters a novel context. Consider59

a new manager of a school cafeteria. Although the new manager may draw upon her experience60

of working in a cafeteria at a different university, there remains the possibility of encountering61

novel contexts on the current campus. For example, students at the current university may prefer62

sleeping in over attending classes on Friday mornings, which would require reduced stocking of63

bottled milk on those days. Like a naı̈ve learner in any task, the new manager not only has to64

learn the average quantity of milk to stock (i.e. the model), but also has to associate it with Friday65

mornings (i.e. the appropriate context). The difficulty lies in the fact that there are often no explicit66

cues for the manager to gain sudden insight into what the appropriate context is: Instead of using67

FRIDAY MORNING, the manager could just as easily consider the weather on that particular day.68

The benefits of identifying the appropriate contexts, on the other hand, also extend to the second69

choice of adapting to the change in context: reusing a learned model. If the learner has correctly70
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associated the causal model (e.g., decreased demand for bottled milk) with the relevant context71

(e.g. FRIDAY MORNING), then, in theory, they will be able to retrieve and reinstate the model72

when the target context is effective again (e.g. next Friday).73

Assuming that the learner has the ability to reinstate a previously learned causal model, does74

it mean that the learner must be capable of storing and representing multiple contexts simultane-75

ously? Although intuitively, the answer to this question has to be a strong “yes” (since learning a76

new causal model should not lead to elimination of the an old one), it is not immediately transpar-77

ent how these multiple contexts and their corresponding causal models are organized in the mind of78

the learner. Are contexts represented without order, as in “a bag of contexts / models”, or are they79

structurally organized? For example, do learners represent the relations between different contexts80

so that the changes in one context may be generalized to another? A rational approach might pre-81

dict that contexts with similar causal models are clustered to achieve an efficient representation as82

well as to highlight the relationships among contexts. How can these intuitions be captured in a83

formal model for learning in multi-context environments?84

In the rest of this article, we integrate existing findings that are relevant to the issue of learn-85

ing in a multi-context environment. Our primary goal is to offer a comprehensive overview that86

brings together insights from across various literatures of cognitive science, so that one may come87

to realize what is yet to be investigated and understood. Additionally, we outline the directions for88

future research. How the learner determines when a change in context is relevant and then learns89

a new causal theory must, we claim, involve building hierarchical models (or heuristic approxima-90

tions of them). Such a hierarchical model must include the storage of multiple contexts so that the91

unexpected input serves as a trigger to shift from one causal model to another, rather than simply92

updating the current model to improve the fit. Finally, we hypothesize that contexts themselves93

are structurally rich components that may share cues, so that it is possible to infer whether the94

environment has returned to a previous context at the time of a context change.95

2 Detecting a context change96

In a realistic learning task, the learner has to rely on observations that unfold over time to form97

hypotheses about the environment. If the environment consists of a single context, the sequential98

nature of the input is less likely to be a problem since an optimal learning strategy, as prescribed by99

Bayesian belief updating, is available (for general discussions on Bayesian modeling of cognition,100

see Griffiths et al., 2008; Jones & Love, 2011). Similarly, if the learner is given explicit information101

regarding which context they are currently in, there is no contextual ambiguities to solve. However,102

in most cases (such as the cafeteria example), the environment might change from one context to103

another implicitly, leaving the learner with the difficult task of estimating where one context ends104
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and another one begins. The difficulty is further compounded by the sequential availability of the105

input – recognizing the emergence of a different context must be achieved in an on-line manner106

rather than with post-hoc analysis. Detecting context changes is commonly referred to as a change107

detection problem in many studies (e.g. Behrens et al., 2007; Yu, 2007).108

While monitoring for unexpected observations in the input is an intuitive strategy for detecting109

context changes, at the core is the problem of interpreting ambiguity in the unexpected data: they110

can be interpreted as outliers if we assume the environment is still in the same context as before,111

or, they can also be interpreted as representative samples of a new context that is already in effect.112

As mentioned in the Introduction, we refer to this type of ambiguity as contextual ambiguity. How113

do learners resolve contextual ambiguity? Can they do so optimally? A satisfying answer to these114

questions requires a definition of optimality in the context of resolving contextual ambiguity. We115

discuss the factors that have been shown to influence how the learner resolves contextual ambiguity116

before presenting our definition of optimal ambiguity resolution.117

2.1 Prediction error118

Prediction error is widely recognized as one factor that can be used to adjudicate between outliers119

versus a true context change. In typical experimental settings, prediction error is either explicitly120

signaled by the degree of reduction in reward on a trial-by-trial basis (Behrens et al., 2007; Pearson121

et al., 2009; Nassar et al., 2010) or assumed to be (subconsciously) computed by learners who seek122

to optimize overall gains (e.g. Fine et al., 2010). Large prediction errors, especially when they123

persist over time, imply a change in context, while small prediction errors are likely to be random124

deviations in the current context. Thus, on average, learners will resolve contextual ambiguity125

faster when the new context differs greatly from the previous context. In the animal conditioning126

literature, the partial reinforcement extinction effect describes exactly that situation – after the127

extinction of reward, animals stop displaying the conditioned behavior more quickly when the128

behavior was trained with a high reward rate than with a low reward rate (Tarpy, 1982; Pearce129

et al., 1997). Going from a high reward rate environment to the extinction stage results in more130

prediction errors than from a low reward rate environment. Similarly, during foraging, animals131

tend to stop visiting a depleted food source more quickly if the source location was previously132

associated with a high return of food (Kacelnik et al., 1987; Dall et al., 1999; Freidin & Kacelnik,133

2011).134

When human learners are tested in a similar experimental paradigm known as the “bandit135

game”, which features sequential choices among several alternatives with various rewarding rates,136

they tend to show higher learning rates when experimenters change reward rates without announc-137

ing the changes (Behrens et al., 2007; Nassar et al., 2010). Intuitively, high learning rates can138
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accelerate the process of learning a new causal model, which helps quickly minimize the ongoing139

prediction error. The more important finding is, however, that the learning rate positively correlates140

with the magnitude of prediction error (Courville et al., 2006; Nassar et al., 2010). This implies that141

human learners potentially react to context changes in an optimal (or at least near-optimal) fashion:142

with small prediction errors, the learner adjusts their current behavior conservatively since small143

errors are likely to be random variations; with large prediction errors, the learner adopts a high144

learning rate to catch up with what is probably a changed context.145

Converging evidence for the role of prediction error is also provided by imaging and multi-146

electrode recording studies. It has been suggested that the brain region known as the anterior cin-147

gulate cortex (ACC) represents predictions errors at the time of outcome (see Yu, 2007; Rushworth148

& Behrens, 2008; Pearson et al., 2011, for reviews and opinions on the role of ACC) or related149

quantities (e.g. the “volatility” of an environment; Behrens et al., 2007). More recent studies also150

suggested that prediction error belongs to the set of variables that are encoded by the neurons in151

the ACC to guide choice behavior in general (Hayden et al., 2011).152

In the above scenarios, the information about prediction error is assumed to be immediately153

available once the learner has made a decision. However, there are other cases where such an154

assumption does not hold. For example, when prediction errors are derived from rewards, the155

learner will experience delayed prediction errors if rewards are given out in batches rather than on156

a trial-by-trial basis. How should the learner detect a context change in these situations? If learners157

adopt the same strategy as in an environment with immediate feedback, the overall loss will likely158

be widened because the incorrect causal model will be applied for a much longer period of time.159

So far, little to no empirical research has been conducted to investigate what kinds of strategies160

learners actually use to detect context changes in an environment coupled with delayed prediction161

errors.162

2.2 Estimation uncertainty163

Although large and small prediction errors are correlated with different presumed explanations for164

outliers, there are two types of prediction errors that are worth distinguishing. In the first case, the165

learner makes a substantial number of prediction errors because a good model of the environment166

has not yet been formed. Those prediction errors are the result of random guessing and are thus167

unhelpful for the purpose of resolving contextual ambiguity. The other type of prediction error168

arises when the learner is confident that the current causal model has been sufficiently refined to be169

a good theory for the current context, and then becomes genuinely surprised by the inadequate fit170

with the most recent input. From the rational decision-making perspective, only this second type171

of prediction error is meaningful to the learner (the solution to the former is simply to collect more172
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data). Thus, one expects that when facing a particularly difficult task (due to either complexity173

or limited sampling), learners will be less likely to reach a low-uncertainty estimate of the current174

causal model, and they will consequently fail to recognize new contexts as easily as they have done175

in the studies reviewed above.176

Unfortunately, none of the studies that we are aware of have addressed this issue directly within177

a single experimental paradigm. However, an artificial language learning experiment has provided178

some interesting insights. In Gebhart et al. (2009), learners listen to two artificial languages pre-179

sented successively in a single session (with equal amount of exposure and without an overtly180

signaled change point). Under these conditions, only the first language is learned. The crucial181

difference between artificial grammar learning paradigms and simple decision-making tasks (such182

as the bandit games in Behrens et al., 2007) is that learners in the latter environment are able to183

reach asymptotic performance relatively effortlessly. On the contrary, learners cannot easily reach184

asymptotic performance in an artificial grammar learning experiment due to the high-dimensional185

nature of the linguistic input (Gerken, 2010). Therefore, the high uncertainty associated with the186

model of the first language prevents the learners from resolving the contextual ambiguity and learn-187

ing a second grammar. Another experiment, in which subjects were tested with a variant of the188

famous Wisconsin Card Sorting task, showed that learners failed to detect when the sorting game189

entered a new context (characterized by changes in the reward rules) as optimally as a Bayesian190

learner (Wilson & Niv, 2012). Presumably, this is also because it is difficult to reach low estima-191

tion uncertainty when context changes result in structural differences in the causal relations, which192

is a more demanding learning task. Future studies, however, must test the hypothesis of estima-193

tion uncertainty directly within a single experimental paradigm to further our understanding of this194

issue.195

2.3 Prior expectation for context change196

What happens if learners approach the problem of resolving contextual ambiguity with a bias197

towards looking for changes in context? Put differently, will believing that there are multiple198

contexts prior to learning improve the recognition of changes? A variant of the foregoing artificial199

language learning experiment was conducted, where not only the subjects knew that there would be200

two languages (i.e., contexts), but also they experienced a 30-second silent pause between these two201

languages (Gebhart et al., 2009). With this change, subjects readily learned both languages. The202

bias towards changes can also be introduced by the use of more subtle explicit cues (e.g. subjects203

learn separate models when each context is coupled with a speaker-voice cue: Weiss et al., 2009),204

or by familiarizing learners with the pattern of a multi-context environment prior to conducting the205

target trials (Gallistel et al., 2001). These findings suggest that the prior expectation for a change206
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in context enhances the ability of recognizing context changes in subsequent sequential input.207

Is having a prior expectation for changes in context beneficial for learning in realistic and208

ecologically valid environments? This is largely an empirical question that awaits much more209

experimental investigation (see Green et al., 2010 for relevant discussions). Theoretically, it is not210

difficult to see that such a prior expectation is only advantageous when it matches the frequency of211

context changes in the environment. If the prior expectation for context change is comparatively212

weak, learners would simply ignore contextual ambiguity and miss the new context. However, if213

it is too strong, learners may effectively treat each minor deviation as a signal for a new context in214

the environment – thus overfitting the data. In that case, no stable learning can be achieved.215

The ideal solution for the learner would be to estimate the frequency of context changes in the216

environment before learning begins. However, such a strategy is only possible when the learner is217

familiar with the task environment and can anticipate the start of the learning process. Estimating218

the frequency of context changes in a novel environment, whose cues and features are entirely dif-219

ferent from what the learner has encountered before, is indeterminate because there is no certainty220

about the type of changes and when they occur. The question of interest is then: how strong a prior221

the learner has for context changes in these novel environments? While experimental evidence222

on this issue is thin, we do know that prior expectations for context change, in the absence of ex-223

plicit instruction from the experimenter or explicit cues from the environment, must be relatively224

moderate. Such insights come from experiments where the context of the environment alternates225

frequently, resulting in an unrealistically volatile causal structure. In those conditions, learning is226

either virtually non-existent (Clapper & Bower, 2002) or substituted by a heuristic strategy that227

heavily depends on recent exemplars (Summerfield et al., 2011). The tendency of preferring lo-228

cally stable and coherent observations is also seen in young infants: in the absence of suggestive229

information, infants are more likely to assume that a sequence of observations consists of corre-230

lated samples with common properties rather than independent samples randomly drawn from the231

whole population (Gweon et al., 2010).232

3 Adapting to the changed context233

Once a context change is hypothesized to have occurred, the learner must decide how to adapt to234

the changed context. If the context is novel, the learner has no choices other than to infer a set of235

new causal relations from observations. If the context is familiar, however, the learner may retrieve236

from memory the causal model of a past context and use it to predict future observations. Instead237

of discussing both scenarios directly (which we will cover slightly later), here we focus on two238

theoretical assumptions that must be in place to make these scenarios possible: the capacity of239

storing multiple contexts and the organization of these contexts in memory.240
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3.1 In with the new, while retaining the old?241

When the environment presents a novel context, a new causal model should be generated to rep-242

resent the dependencies between the variables of interest. To achieve this goal, the learner can243

either update the current causal model, parametrically or structurally, or learn a second model that244

will co-exist in parallel with the previous one. Existing accounts, such as associative strength245

theories (e.g. the Rescorla-Wagner model; Rescorla & Wagner, 1972) or reinforcement learning246

models (see Payzan-LeNestour & Bossaerts, 2011 for an example), have typically assumed the for-247

mer theoretical position. Such a theoretical position is also shared by the more recently proposed248

change detection models (see Box 1) and sequential sampling models (see Box 2), both of which249

are intended to explain how ideal learners should behave in multi-context tasks.250

— Insert Box 1 approximately here (box content on page 14) –251

— Insert Box 2 approximately here (box content on page 16) —252

However, disrupting or erasing the causal model learned under a past context (also known as253

catastrophic interference in connectionist terms; French, 1999) might not be a rational choice, es-254

pecially when the environment may revert back to a past context. Experimental findings suggest255

that animals and humans do not simply abandon knowledge of past contexts. For example, in256

conditioning experiments, animals that have gone through extinction still possess a trace of the257

learned dependencies between the conditioned stimulus and response, which can spontaneously258

recover (e.g. Sissons & Miller, 2009), be renewed (e.g. Bouton & King, 1983) or be reinstated259

(e.g. Thanellou & Green, 2011) under the right conditions. Adult barn owls can rapidly re-adapt260

to an abnormal association between auditory cues and locations in visual space if they have previ-261

ously learned such abnormal audio-visual dependencies when they were young (Knudsen, 1998;262

Linkenhoker et al., 2005). Humans also routinely switch back and forth between a certain set of263

contexts, without relearning a causal model each time a previously encountered context is active264

(for example, becoming familiar with a foreign accent does not lead to a complete relearning of265

your native accent). It is impossible for learners to display such behaviors without, implicitly266

or explicitly, representing multiple contexts concurrently. A theory for learning in multi-context267

environments must include a hypothesis about how these contexts are stored.268

3.2 A bag of contexts?269

Nevertheless, more behavioral and theoretical studies are needed to understand whether learners270

optimally represent learned models of past contexts, as would be predicted by a theory of a rational271

learner. When a past context has little to no chance of reappearing in the future, it seems unnec-272

essary to store its information in memory (c.f. Anderson & Schooler, 1991). When a past context273
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is quite common overall, or when a repetitive pattern of environmental changes has appeared,274

learners will benefit greatly if its information remains readily available through the learning pro-275

cess. In addition, in order to efficiently retrieve a causal model of a past context from memory,276

the learner must implement mechanisms that support the identification of familiar contexts. In the277

case where there are observable cues co-occurring with the advent of contexts, it is possible to278

index contexts with these cues for later retrieval. This is especially helpful as most contexts do279

not come with explicit labels – the use of co-occurring cues may serve as the functional labels for280

these contexts, which will then become easily retrievable (Garcı́a-Gutiérrez & Rosas, 2003; Rosas281

& Callejas-Aguilera, 2006; Abad et al., 2009). In the case where there are no cues whatsoever, we282

expect learners to have a more difficult time identifying familiar contexts, potentially because such283

identification would have to rely on the assessment of multiple existing models.284

These types of optimal learning decisions call for a sophisticated theory that, in our opinion,285

must extend beyond a process of parameter or structural revision of a single causal model. This is286

because at the end of the day, the outcome of the learning process should be more than a snapshot287

of the latest context of the environment, but rather an organized body of knowledge summarizing288

various forms of causal relations in the environment, past and present. We outline a picture of289

such a model – in the form of a Bayesian hierarchical model – in the next section. Finding the290

answers to these questions can greatly supplement our understanding of how animals and humans291

learn multiple causal models for multiple contexts to solve a particular task through sequential292

observations.293

4 A hierarchical framework for learning in multi-context envi-294

ronments295

The hierarchical Bayesian modeling framework has been successfully applied to a wide range of296

cognitive phenomena (e.g. Kemp et al., 2007; Kemp & Tenenbaum, 2008; also see Lee, 2011, for297

a review). In fact, most existing Bayesian models of change detection fall into the category of298

hierarchical models, where the volatility parameter is treated as a hyper-parameter (Behrens et al.,299

2007; and most notably the nested volatility model in Wilson et al., 2010). While we also advocate300

a hierarchical Bayesian approach for modeling learning behaviors in a multi-context environment,301

our primary goal is to understand whether the learner forms a hierarchical representation of the302

environment. Previous modeling efforts, on the other hand, have typically emphasized the issue303

of whether and how learners can dynamically adapt their strategies when contexts change. We304

argue that only when a generative model simultaneously represents multiple contexts and their305

corresponding causal models, will the ideal learner be able to attribute unexpected observations to306
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the right sources, and retain and reuse causal models from past contexts (see Kording et al., 2007,307

for similar ideas).308

Figure 1: One potential hierarchical model for representing information learned in a multi-context
environment.

Figure 1 shows one possible realization of such a hierarchical representation. For simplicity,309

consider an example where the causal models differ across contexts only in their parameter values,310

shown as θ1, θ2, θ3 . . . θn in the figure (bold symbols denote vectors of variables). There are three311

components in this hierarchical representation. The first component (highlighted in blue) consists312

of the contexts and causal models, each of which describes a theory of how the observations of313

interest yi are generated from the parameters θ. Importantly, the parameters of the causal model314

of each context are individually represented, thus allowing for the storage of multiple contexts and315

avoiding catastrophic interference between these contexts. The second component is the mecha-316

nism that infers the identity of the currently active context ci (highlighted in red). This decision317

process in turn depends on two variables: the hyperparameter αci , which reflects the likelihood318

of context ci coming into effect without explicit cues, and the inferred identity of the previously319

encountered context ci−1. The identity of the currently active context corresponds to only one of320

the causal models (i.e. one of θ1, θ2, θ3 . . . θn). Thus, once the identity of the current context has321

been correctly inferred (which might not be true due to probabilistic nature of the model), it can322

prevent the irrelevant contexts from being used to explain the observed data yi or being revised to323

fit unrelated data. In other words, the dependence between yi and ci, as shown in the figure, serves324

as a regulator that chooses the appropriate context as needed.325

The third component in the hierarchical representation is the optional cuing mechanism (high-326
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lighted in green). When covarying cues ui are available, the values of these cues will depend on327

the identity of the contexts and the causal relations between contexts and these cues (the effect of328

φ on ui). Therefore, these cues, in theory, serve the same functional purpose as the observations329

of interest y – evidence for inferring the identity of the current context. There is a vast literature on330

how humans may be able to optimally combine two sources of information to perform inferences331

(Ernst & Banks, 2002; Knill, 2007; Toscano & McMurray, 2010, to name a few). By building332

this cueing mechanism into the hierarchical representation, we are also making the assumption333

that learners should take advantage of the covarying cues as an extra source of information when334

available.335

To be clear, Figure 1 is only meant to illustrate one of the many possible ways of constructing336

a hierarchical model to capture context-sensitive learning. Many details, such as the prior for the337

appropriate number of θ variables and any hyperparameter reflecting the relationships between338

them, are not shown in the figure. Our goal here is to provide a concrete sense of what a hierarchi-339

cal framework may look like for future modeling efforts. Experimental studies, especially those340

designed to test the effect of recognizing past contexts, are needed to further tease apart the factors341

that affect learning in a multi-context environment.342

5 Considerations for single-context laboratory experiments343

If animal and human subjects can readily detect new contexts without being explicitly instructed344

to do so, then we have reason to suspect that subjects will involuntarily look for context changes345

even in laboratory experiments where subjects are expected to learn a causal model for a fixed346

but unknown context. In a variety of such behavioral tasks, subjects exhibit an automatic and347

seemingly suboptimal behavior: they put an undue emphasis on the sequence of past observations,348

even when these observed stimuli are independent samples from the same causal model. Two349

notable instances of such suboptimal behavior in the literature are the hot hand illusion (Gilovich350

et al., 1985) and the tendency of reinforcing local patterns (e.g. Cho et al., 2002; Maloney et al.,351

2005; Gökaydin et al., 2011). While the conventional interpretation is that learners are irrational352

in that they perceive spurious correlations between past and upcoming outcomes, these seemingly353

suboptimal behaviors may well be the result of learners automatically inferring multiple contexts354

(e.g., hot hand context vs. cold hand context) from the sequential input (for similar opinions,355

see Jones & Sieck, 2003; Yu & Cohen, 2008; Wilder et al., 2010; Green et al., 2010). More356

generally, the bias for perceiving multiple contexts may also hold the key to explaining order357

effects in learning (e.g. Sakamoto et al., 2008; Rottman & Keil, 2012). At the same time, it raises358

the concern that such a bias may lead to misinterpreted experimental findings because participants359

readily adapt to what they perceive to be changes in contexts (perhaps subconsciously). The above360
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cited studies are in fact the best examples to show that the use of balanced designs in experiments361

do not effectively prevent participants from “inappropriately” adopting this bias (see Jaeger, 2010362

for similar discussions).363

6 Conclusions364

Recognizing context changes in the environment helps learners build or choose the appropriate365

causal model and make accurate predictions about the consequences of their actions. In this arti-366

cle, we have addressed several questions about what we believe is the canonical case of context367

learning: when the changes in context are implicit rather then being explicitly noted by a ‘teacher’.368

Current research findings suggest that learners are able to resolve contextual ambiguity and thereby369

recognize a new context by only observing sequential input, albeit with some limitations. Recog-370

nizing a new context is, however, only a part of the bigger picture. How do learners store the371

causal models of past contexts? Can learners reuse previously learned causal models? Crucially,372

the definition of rationality should rely on one important issue: given a change in context, should373

the learner build a new causal model or try to reuse, and potentially update, an old one? How374

should the learner decide? These intriguing questions are open for future research.375
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Box 1: Bayesian change detection models376

Detecting a change in context is an important step in learning a rich representation of a multi-377

context environment. The traditional approach to change detection comes from studies of con-378

trolled stochastic processes (e.g. Shiryaev, 1978), where the goal is to find an optimal policy for379

mapping observations to stopping decisions (i.e., whether or not to consider that a context has380

ended). While the solutions are useful for many engineering applications, it is often difficult to381

attach a cognitive interpretation to the algorithms used in those solutions.382

Here we focus on the Bayesian change detection approach that has recently become popular in383

the cognitive science community. As a computational-level theory, these models describe how a384

rational observer should learn a causal model given a particular formulation of the problem (Marr,385

1982). Consider a simple scenario where the goal is to predict the number of automobiles that386

pass through a given intersection in each 24-hour period. The parameter of interest is θ, which387

refers to the number of automobiles being driven from point A to point B. The causal model to be388

discovered by the learner specifies the relation between the parameter θ and the observation y, the389

number of automobiles passing through the intersection. However, at any given time step, a change390

in context might happen (e.g., road construction), which will alter the previous relation in effect391

and yield unexpected observations. Detecting the change then depends on how likely the learner392

is to attribute the unexpected observations to a change in the value of θ. The change detection393

approach assumes the determining factor here is the learner’s expectation of the volatility of θ. If394

θ is assumed to be changing smoothly and with little variance (i.e. non-volatile), then learners395

will tend to view unexpected observations as outliers and keep the value of θ unchanged. If θ is396

assumed to be capable of abrupt changes of substantial magnitude, learners will more likely update397

the value of θ when observing unexpected data.398

Formally, the volatility of an environment, represented by a hyper-parameter α, can range from399

0 to 1: With probability α, θt will be the same value as θt−1; with probability 1 − α, θt will be400

randomly drawn from a predefined reset distribution p0. Thus, if α is 1, then learners are essentially401

assuming a single-context environment, where the value of θ is the same at each time step. If its402

value is 0, then learners are essentially assuming a completely chaotic multi-context environment,403

where the value of θ at the preceding time step has no predictive value over the current time step at404

all. Any intermediate value reflects the degree to which learners are biased against single-context405

environments. Additionally, the value of α, i.e. the degree of volatility, can change over time as406

well.407

This model gained its popularity due to its conceptual simplicity and the range of phenomena408

it can explain (Cho et al., 2002; Yu & Cohen, 2008; Wilder et al., 2010; Wilson et al., 2010; see409

also Nassar et al., 2010; Mathys et al., 2011 for variants that are claimed to be cognitively more410
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plausible; and Summerfield et al., 2011; Wilson & Niv, 2012 for cases where the Bayesian change411

detection model is not the best descriptor of human behavior). A significant drawback of this class412

of models, however, lies in its memory-less learning mechanism. Once the ideal learner detects a413

change in context, it learns the new parameter settings by overriding those of the old context. This414

is undesirable since animal and human learners have clearly demonstrated the ability of holding415

onto knowledge learned from past contexts.416
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Box 2: Sequential sampling methods417

Sequential sampling models are another approach to learning in multi-context environments. These418

models are inspired by sequential Monte Carlo sampling techniques, which are commonly used to419

approximate Bayesian inference in analytically non-tractable problems. In the cognitive science420

community, the particle filter, one of the most common sequential sampling algorithms (e.g. San-421

born et al., 2010), has been successfully applied to learning tasks where there are changes in422

context (Brown & Steyvers, 2009). In a particle filter model, the learner is assumed to simulta-423

neously entertain a limited number of hypotheses (called particles) about the values of parameters424

in the environment. This contrasts with the Bayesian change-detection approach, where learners425

are assumed to maintain full uncertainty about the estimates of the volatility (i.e. α) and state (i.e.426

θ) parameters. At the beginning of the learning process, random values of θ are assigned to the427

particles since the learner has not made any observation of the environment. Each particle is then428

repeatedly updated according to subsequent observations. If a particle reflects a theory of the en-429

vironment that is consistent with a new observation, then it is likely to be retained. Otherwise, the430

particle is likely to be reset and its value resampled from the hypothesis space. Since this sampling431

process is stochastic, there is always some chance that a few particles are inconsistent with the cur-432

rent state of the environment. These inconsistent particles are useful for detecting context changes433

in the environment. When the learner encounters an unexpected observation, particles that used434

to be consistent with the previous context now need to be reset, while those that were previously435

inconsistent are retained and duplicated, thus achieving the goal of detecting changes.436

While we are not aware of any study directly testing the different predictions made by the437

change detection and the particle filter models, one crucial difference exists between them. The438

particle filter model, due to its stochastic nature and the limited number of observations in se-439

quential sampling, is suited for predicting individual-level results (Brown & Steyvers, 2009; Yi440

& Steyvers, 2009; Frankenhuis & Panchanathan, 2011). The change-detection model, because its441

goal is to characterize rational behaviors, is suited for predicting average behavior. Patterns of442

individual learning outcomes tend to be different from group-averaged learning outcomes (Newell443

et al., 2001; Gallistel et al., 2004). Particle filter models can readily accommodate such differ-444

ences – a single run of a sequential sampler tends to yield unpredictable patterns, but the average445

of many runs, by definition, reflects the expected properties of the probability distribution that is446

being sampled from (see Daw & Courville, 2008, for a similar argument).447

16



References
Abad, M. J. F., Ramos-Alvarez, M. M., & Rosas, J. M. (2009). Partial reinforcement and context

switch effects in human predictive learning. Q. J. Exp. Psychol., 62(1), 174–88.

Anderson, J., & Schooler, L. (1991). Reflections of the environment in memory. Psychol. Sci.,
2(6), 396–408.

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the
value of information in an uncertain world. Nat. Neurosci., 10(9), 1214–21.

Bouton, M. E., & King, D. A. (1983). Contextual control of the extinction of conditioned fear: tests
for the associative value of the context. J. Exp. Psychol. Anim. Behav. Process, 9(3), 248–65.

Brown, S. D., & Steyvers, M. (2009). Detecting and predicting changes. Cogn. Psychol., 58(1),
49–67.

Cho, R. Y., Nystrom, L. E., Brown, E. T., Jones, A. D., Braver, T. S., Holmes, P. J., et al. (2002).
Mechanisms underlying dependencies of performance on stimulus history in a two-alternative
forced-choice task. Cogn. Affect. Behav. Neurosci., 2(4), 283–99.

Clapper, J. P., & Bower, G. H. (2002). Adaptive categorization in unsupervised learning. J. Exp.
Psychol. Learn. Mem. Cogn., 28(5), 908–923.

Courville, A. C., Daw, N. D., & Touretzky, D. S. (2006). Bayesian theories of conditioning in a
changing world. Trends. Cogn. Sci., 10(7), 294–300.

Dall, S., Mcnamara, J., & Cuthill, I. (1999). Interruptions to foraging and learning in a changing
environment. Anim. Behav., 57(1), 233–241.

Daw, N., & Courville, A. (2008). The pigeon as particle filter. Adv. Neural. Inf. Process. Syst., 20,
369–376.

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statisti-
cally optimal fashion. Nature, 415(6870), 429–33.

Fine, A., Qian, T., Jaeger, T., & Jacobs, R. (2010). Is there syntactic adaptation in language
comprehension? In Proceedings of CMCL Workshop (pp. 18–26). ACL.

Frankenhuis, W. E., & Panchanathan, K. (2011). Individual Differences in Developmental Plas-
ticity May Result From Stochastic Sampling. Perspect. Psychol. Sci., 6(4), 336–347.

Freidin, E., & Kacelnik, A. (2011). Rational Choice, Context Dependence, and the Value of
Information in European Starlings (Sturnus vulgaris). Science, 334(6058), 1000–1002.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends. Cogn. Sci., 3(4),
128–135.

Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: implications of a quanti-
tative analysis. Proc. Natl. Acad. Sci. U.S.A., 101(36), 13124–31.

17



Gallistel, C. R., Mark, T. A., King, A. P., & Latham, P. E. (2001). The rat approximates an ideal
detector of changes in rates of reward: Implications for the law of effect. J. Exp. Psychol. Anim.
Behav. Process, 27(4), 354–372.

Garcı́a-Gutiérrez, A., & Rosas, J. M. (2003). Context change as the mechanism of reinstatement
in causal learning. J. Exp. Psychol. Anim. Behav. Process, 29(4), 292–310.

Gebhart, A. L., Aslin, R. N., & Newport, E. L. (2009). Changing Structures in Midstream:
Learning Along the Statistical Garden Path. Cogn. Sci., 33(6), 1087–1116.

Gerken, L. (2010). Infants use rational decision criteria for choosing among models of their input.
Cognition, 115(2), 362–6.

Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball: On the misperception
of random sequences. Cogn. Psychol., 17(3), 295–314.
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