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binary and continuous choice
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Excessive variability in binary choice (categorical judgment) can take the form of probability match-
ing rather than the normatively correct behavior of deterministically choosing the more likely alterna-
tive. Excessive variability in continuous choice (judgment rating) can take the form of underconfi-
dence, understating the probability of highly likely events and overstating the probability of very
unlikely events. We investigated the origins of choice variability in terms of noise prior to decision (at
the evidence stage) and at the decision stage. A version of the well-known medical diagnosis task was
conducted with binary and continuous choice on each trial. Noise at evidence stage was reduced by al-
lowing the subjects to view historical summaries of prior relevant trials, and noise at the decision stage
was reduced by giving the subjects a numerical score on the basis of their continuous choice and the
actual outcome. Both treatments greatly reduced variability. Cash payments based on the numerical
score had a less reliable incremental effect in our experiment. The overall results are more consistent
with a Logit model of decision than with a simple criterion (or maximization) rule or a simple probability-

matching rule.

One of the most striking aspects of human behavior is
its variability. Sometimes a poker player might open with
a small pair; other times he might check. In the labora-
tory, a given subject presented with a given description of
a hypothetical person (entertaining, vain, and agreeable,
for example) might judge the hypothetical person to be
introverted in some trials and extroverted in other trials.
Townsend and Busemeyer (1995), for instance, reported
considerable variation across trials in the cash equivalent
estimated by a given subject for a given gamble.

Variability might be expected when there is no objec-
tively correct answer or when a random response is opti-
mal. However, it also occurs in situations in which a
specific invariant behavior is objectively better. Subjects
are asked, for example, to predict which of two lights will
flash, given experience that the left one flashes about
70% of the time. To maximize the probability of correct
prediction, subjects should always choose the left light,
but typically they choose the right light about 30% of the
time. This sort of variability is called probability-matching
behavior. Such behavior has been observed in many
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probability-learning experiments in humans and other
animals (Davison & McCarthy, 1988; Estes, 1954, 1984;
Myers, 1976; Thomas & Legge, 1970). Although over-
shooting is sometimes observed (Massaro, 1969; Myers
& Cruse, 1968), people clearly are not responding with
the more frequent alternative all of the time.

Another sort of variability has also been documented.
When asked to estimate the likelihood of very improbable
or very probable events (say, objective probability .01 or
.99), subjects often report (or act as if they use) less de-
cisive subjective probabilities (say, subjective probability
of .15 or .85). This sort of variability, which we refer to as
undershooting, has been interpreted as conservatism, or
underconfidence (Camerer, 1995; Kahneman & Tversky,
1979).

Faced with such variability, theorists have found it dif-
ficult to provide a coherent description of human deci-
sion making. The general goal of the present paper is to
provide a framework with which to measure and to iden-
tify the processes that lead to the observed variability. A
simple conceptual model frames our inquiry. As is shown
in Figure 1, we decompose the choice process in any given
task into two stages—evidence and decision. The input to
the evidence stage is all stimuli (both internal and exter-
nal to the subject) associated with the task, and the out-
put is a subjective value g(r) for each response alterna-
tive r available in the task. The value g(r), which we refer
to as the goodness of the response alternative, may accu-
rately reflect the objective evidence, may be biased in some
way, or may incorporate noise to some degree (Green &
Swets, 1966; McClelland, 1991). Given the g(r) for each
possible choice r, the decision stage selects a specific re-
sponse #*, and this selection process may itself be noisy
to some degree.
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Figure 1. Evidence and decision stages in any given task. The
input to the evidence stage is all stimuli (both internal and external
to the subject) associated with the task, and the output is a sub-
jective value g(r) for each response alternative r available in the
task. The goodness values g(r) are inputs to the decision stage,
whose output is a specific response r*.

In this paper, we analyze formally both origins of vari-
ability and assess them empirically. The theoretical analy-
sis develops three alternative rules governing the deci-
sion stage: the simple maximization or criterion rule, the
standard stochastic decision rule of matching estimated
probabilities, and a flexible stochastic rule known as Logit.
The rules offer differing predictions on how observed re-
sponses depend on noise at evidence and at decision.

The empirical work involved only specific variants of
the well-known medical diagnosis task (Estes, Camp-
bell, Hatsopoulos, & Hurwitz, 1989; Friedman, Massaro,
Kitzis, & Cohen, 1995; Gluck & Bower, 1988; Nosof-
sky, Kruschke, & McKinley, 1992). Each trial, the sub-
ject viewed a medical chart (a list of symptoms; each was
binary valued in most previous work, but here each symp-
tom had four possible values), chose a diagnosis, and
then was told the actual disease, which was stochastically
related to the symptoms. We used two response modes for
reporting the diagnosis—binary and continuous. In the
binary mode (also known as categorical choice), the sub-
jects chose either disease A or disease B as the more likely.
In the continuous mode (also known as ratings judg-
ment), the subjects reported the degree of confidence in
their choice of A or B.

There is a history of both binary choice and continuous
judgments in experimental psychology, psychophysics,
and judgment. Continuous judgments are employed in
magnitude estimation tasks (Marks, 1976) and informa-
tion integration experiments (N. H. Anderson, 1981, 1982)
and can even be considered to be reflected in the reaction
times for making discrete judgments (Luce, 1986). In the
medical diagnosis task, on the other hand, psychologists
routinely analyze binary choice data (usually after aver-
aging across subjects and trials) but not continuous choice
data. For example, Nososfsky et al. (1992) collected both
sorts of data but neglected the continuous choices in com-
paring competing models. They correctly observed that
“there is no generally agreed-on method for using the
models to predict direct probability estimates” (p. 219). A
secondary goal of our paper is to show that continuous
choice data (including direct probability estimates) con-
tain potentially valuable fine-grained information on the
level of individual subjects (Friedman et al., 1995) and
to show how to extract that information even when there
is variability associated with the rating judgments, as
might be found with underconfidence.
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The innovative work of McDowell and Oden (1995)
substantiated the value of utilizing both binary and con-
tinuous dependent measures and highlighted several im-
portant issues for the current investigation. Their sub-
jects were presented with cursive test words that varied
in ambiguity between the target words eat and lot. Most
sessions required both response modes—binary (which
target word is closest to the test word?) and continuous
(to what degree?). Separate sessions with a single response
mode indicated that responses in either mode were not
systematically affected by the presence of the second
mode. Their most striking finding was that the relation be-
tween the two modes was monotone but nonlinear. Small
changes in the stimulus word produced larger changes in
the continuous response than in the average binary re-
sponse for the relatively unambiguous test words, and the
reverse was true for the more ambiguous words. That is,
in terminology explained below, the binary response over-
shoots relative to the continuous response. We shall ex-
plore the interpretation that binary categorization neces-
sarily loses information about what the subject perceives
(and knows) and that the information tends to be pre-
served in the continuous rating judgment. In both types
of judgment, however, the processes involved in the task
can be made more transparent by accounting for their
variability.

Our research strategy was to manipulate laboratory
conditions that affect the amount of noise at the evidence
stage and the amount of noise at the decision stage. Noise
at the evidence stage was varied by providing (or not pro-
viding) summaries of the association between medical
charts and diseases seen in previous trials. Noise at the de-
cision stage was varied by providing trial-by-trial feed-
back only on the actual disease, by also providing a con-
tinuous score based on the response and the actual disease,
or by also offering a substantial cash payment on the
basis of the score. The data from the two response modes
allow us to infer the relative contribution of the two sources
of variability for individual subjects.

The next section presents a simple two-stage informa-
tion processing framework and the three alternative mod-
els of the second (decision) stage. It summarizes the mod-
els’ distinctive predictions regarding the variability of
binary and continuous choice and the impact of noise at
each stage. It also offers a new theoretical explanation of
underconfidence, based on a selection bias when evidence
is noisy. The underlying mathematical arguments are
collected in an Appendix.

The rest of the paper is empirical. We describe the med-
ical diagnosis experiment and the data and construct two
quantitative measures of choice variability. The measures
(called overshooting and b, a regression slope coeffi-
cient) clearly indicate variability for both choice modes
in the baseline conditions. With the partial exception of
cash payments, the treatments intended to reduce vari-
ability actually did reduce (in some cases, virtually elim-
inate) choice variability according to our measures. Over-
all, the flexible decision rule (Logit) predicted the observed
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choice data better than did the alternatives we consider.
In the last section, we offer some interpretations and sug-
gestions for further work.

The Evidence Stage

The task defines the objective stimuli se.J and the
available responses € /. We assume that there is a suffi-
cient statistic, x = x (s), that would objectively code each
stimulus s in the absence of noise. When noise is present
at the evidence stage, the subjects do not have access to x
but only to a noisy version of it, y = x + e, where the error
or noise, e, has mean and mode zero (Green & Swets,
1966; McClelland, 1991). In general, x and y are vectors,
but for the task considered in this paper, both are scalars
in the unit interval [0,1]. In our medical diagnosis task,
x(s) is the true posterior probability of disease A, given
symptom configuration s, and y is the corresponding sub-
jective estimate. In the letter identification task of Mas-
saro and Hary (1986), x (s) summarized the objective ev-
idence for one target letter in the test letter s, and y was
the corresponding subjective estimate.

Recall that, in our information processing framework,
the evidence stage transmits to the decision stage a scale
value g(r), the goodness, for each available response r.
By assumption, y is a sufficient statistic for the noisy ev-
idence, so there is a function that expresses the g(7) in
terms of y. That is, there is some function G such that
g(r)=G(r,y) for each available response r€ /. Examples
of goodness functions G will be presented below.

We should note that it is possible to model the evidence
stage in more detail. Massaro and Friedman (1990), for
example, decomposed it into (1) evaluation of the sources
of available information and (2) integration of these
sources. Our focus here is on the decision stage, so we sim-
ply summarize all the processes prior to decision as the
evidence stage and summarize in e all noise introduced
prior to decision. However, we should acknowledge that
systematic manipulation of the separate processes con-
tributing to the evidence outcome potentially can shed
further light on decision processes.

The Decision Stage

The decision stage produces the actual response r*e/
from the goodnesses according to some general rule. For
example, if the response mode is binary, with the two
choices coded as 1 for disease A and 0 for disease B, the
decision rule assigns either »* =1 or r* = 0, given the re-
alized scale values g(0) and g(1). If the response mode is
continuous, with responses scaled to the unit interval / =
(0,11, the decision rule assigns some number r*e[0,1],
given the realized scale values {g(r): rel}.

Because human choices are always variable to some
degree, every sensible empirical model must introduce
variability at some point. Some models have variability
only at the evidence stage, prior to decision (Green &
Swets, 1966; McClelland, 1991), whereas other models
allow variability only at the final decision stage (Massaro

& Friedman, 1990). The three decision rules we consider
differ primarily in whether and how they introduce vari-
ability at the decision stage.

Criterion Rule. Most economists and some psychol-
ogists favor the rule r* = argmax,. ;g (r)—that is, always
pick a response with maximum goodness. For logical com-
pleteness, we assume that all responses with maximal
g(r) are equally likely but we note that ties have proba-
bility zero for standard specifications of noise at the ev-
idence stage. Psychologists generally refer to this maxi-
mization rule as the criterion rule, or CR (Green & Swets,
1966; Macmillan & Creelman, 1991). With the negligi-
ble exception of resolving ties, CR is deterministic; the
observed choice variability is attributed entirely to the
error e introduced at the evidence stage.

The formalization of the CR originated in Thurstone
(1927) case V but actually can be traced back to the as-
sumption of a deterministic decision process in early
psychophysics (Massaro, 1989, chaps. 10 and 11). The
idea is that the decision process maintains a criterion or
threshold level y, in a binary choice task. The decision is
based on where the noisy evidence summary y falls rel-
ative to the criterion value. If the evidence value falls on
one side of the criterion, one response is made; if it falls
on the other side of the criterion, the other response is
made. Under the standard assumptions of signal detec-
tion theory (Green & Swets, 1966; Macmillan & Creel-
man, 1991), this rule is equivalent to maximizing g(r)
when the criterion y, is chosen to equalize the discriminal
processes G(1,y) and G(0,y).

Relative Goodness Rule. Many psychologists favor a
stochastic rule called the relative goodness rule, or RGR,
also known as Luce’s choice rule (Luce, 1959; Shepard,
1957). It assigns probability pROR(¥*) = g (r*)V/Z,., g (¥)
to choice r*; that is, the choice probability directly reflects
the relative evidence. The probability that * = 1 is chosen
in binary mode is pRCR = g (1)/[g (1) + g(0)]. The prob-
ability density that »* is selected in continuous mode is
TRERG™) =g () fig (rdr.

The probability-matching behavior predicted by the
RGR is nonoptimal in the sense that it does not maximize
the likelihood of being correct. Consider, for example, bi-
nary choice when disease A occurs 85% of the time, and
suppose that the goodnesses reflect this fact—for exam-
ple, g(1)=.85and g (0)=.15. Then, the subject responds
A with probability .85 and is correct in 74.5% of the tri-
als (= .852 correct A choices +.152 correct B choices). By
contrast, the CR in this case would always select disease
A and thus be correct in 85% of the trials. When viewed
in another light, however, behavior following the RGR
might be considered reasonable (see Friedman et al.,
1995). For example, the subject may be communicating
information about the rate of occurrence of some event by
matching it with the rate of responding, or the subject may
find it too boring to always make the same choice.

Logit Rule. Many empirical social scientists (e.g.,
S. Anderson, de Palma, & Thisse, 1992; Greene, 1990;
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Figure 2. The probability of * =1 in binary choice as a function of the summary evi-
dence y according to the Logit model with parameter A.

McKelvey and Palfrey, 1995) favor the Logit rule, which
assigns to choice »* the probability

proE (| A) = exp(Ag(r")/ X, exp(Ag (r). (1)

One justification for the Logit rule is the roughly loga-
rithmic relationship between many dimensions of the
physical world and our psychological experience of that
world. It is well known, for example, that perceived dif-
ferences are a constant proportion of a light’s intensity
rather than an absolute difference. The name Logit is stan-
dard and comes from the fact that the log odds In[ pLosit
(r| A)/plLegit(s| A)] are linear, indeed equal to A times the
difference goodness g(r) —'g(s). The precision parameter
Areflects the variability level in the evidence and decision
processes. Lemma 2 in the Appendix shows that Logit
choice probabilities converge to the noiseless CR choice
probabilities as A — oo, that Logit choice probabilities
are noisier than RGR choice probabilities for A suffi-
ciently small, and that Logit choice probabilities con-
verge to the uniform distribution as A — 0. The uniform
distribution assigns equal probability to each possible re-
sponse, independent of the evidence and goodnesses; it
represents the noisiest possible decision process. Fig-
ure 2 graphs the Logit probability of #* = 1 in binary choice
as a function of the summary evidence y for various values
of the precision parameter A.

The Logit rule has two important advantages. First, it
is quite flexible regarding the noise source and level. The
CR assumes no noise at the decision stage, and the RGR
necessarily predicts a specific level of decision noise—
for example, binomial sampling variance for binary choice
(Massaro, 1998). By contrast, Logit allows us to estimate
empirically the noise level from the data via the parameter
A. Second, the Logit rule (like the CR) allows us to work

with negative as well as positive scale values for g(r).
The RGR requires that some g(r)s are positive and none
are negative; otherwise, it can produce nonsensical neg-
ative probabilities or probabilities exceeding 1.0.

The Logit rule is closely related to the CR. McFadden
(1973), Yellott (1977), and others have shown that the CR
applied to goodnesses g (») perturbed by a noise term with
the extreme value (also known as a double negative ex-
ponential or Weibull) distribution will reproduce the Logit
choice probabilites. The Logit rule also is related to the
RGR; indeed, it is the precisely the RGR formula applied
to g(r)s transformed with the standard exponential fam-
ily T(x; A ) = exp(A x). As was mentioned earlier, the psy-
chophysical literature offers a justification of this trans-
formation.

Three other related models are worth noting briefly.
McDowell and Oden (1995), Tang (1996), and others have
used the variable power RGR, whose choice probabilities
are g(r")4/ X, ., g(r)* The power RGR, like the regular
(A= 1) RGR, requires positive goodness values for g(r).
When goodnesses are positive, one can take logs and put
these into the Logit formula. The result is precisely the
power RGR. A second closely related model is obtained
by transforming arbitrary positive g(r)s so that they are
uniformly bounded, using the transformation U(x) =
x/(1 +x). The composition S = U°T'is an order-preserving
map of an arbitrary real number x into the point S(x; 1) =
exp(Ax)/(1 + exp(Ax)) The connectionist (or CMP; Gluck
& Bower, 1988) decision rule uses this logistic (or sig-
moid or squashing) transformation S instead of the trans-
formation 7"in the RGR. A third choice model, known as
Probit, is also quite similar to Logit but uses the cumu-
lative normal distribution function instead of T'(see, e.g.,
Cheung & Friedman, 1997). Every empirical study we
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Figure 3. Undershooting and overshooting classifications for
possible scatterplots of the data P or R against the true values x.
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know that compares the Logit, Probit, power RGR, and
sigmoid rules concludes that they all produce quite sim-
ilar fits and inferences.

Theoretical Predictions for Binary Choice

Consider a binary choice task with varying stimuli s,
and recall that x(s)e [0,1] in this context refers to the true
posterior probability that » = 1 is better, given a particular
stimulus s. Thus x = 0 means that » =0 is certainly better,
given s, whereas x = | means that r = [ is certainly better,
and x = .6 means that r = 1 is better with objective prob-
ability .6, and so forth. Data gathered in such binary choice
tasks typically are analyzed by calculating P(s), the ac-
tual proportion of r = 1 choices in trials with some given
stimulus s. The experimenter compares P(s) to the predic-
tions of various theoretical models and perhaps to x(s).

Figure 3 classifies possible scatterplots of the data P(s)
against the true values x(s) as the stimulus s varies. Psy-
chologists’ usual null hypothesis is that the data lie near
the diagonal P =x—that is, subjects probability match. We
say that a subject overshoots if, for some critical value ¢
near .5, the data P tend to lie below (above) the diagonal
when x < ¢ (when x > ¢) and when x is not very close to
0 or 1. The qualification about the endpoints is due to
the fact that there is little room for P to lie below the di-
agonal when x is near 0 or above the diagonal when x is
near 1. If two subjects both overshoot, we will say the first
overshoots more if his or her choice data are further away
from the diagonal. Economists’ usual null hypothesis is
extreme overshooting, with P =0 forx <.5and P=1 for
x > .5—that s, the unit step function at one-half. It is easy
to see that this pattern arises from the CR with no noise
at the evidence stage (Massaro, 1987, p. 116).

Another possible choice pattern is undershooting, where
P tends to lie below (above) the diagonal when x > ¢ (when

x < ¢); see also Figure 4 of Kahneman and Tversky (1979).
An extreme case is constant P(s) = ¢, unresponsive to the
evidence s. For example, binary choice under the uniform
distribution is constant with ¢ = .5. Finally, we can have
a general bias toward r = 1 (or toward r = 0) if P tends
everywhere to lie above (or below) the diagonal.

In the Appendix, we show that the different models of
the decision stage imply distinct predictions regarding
binary choice patterns. The CR predicts that overshooting
decreases as the noise at the evidence stage increases. The
intuition is that noise decreases the probability that sub-
Jjects correctly perceive the better alternative (especially
on close calls), so P increases (decreases) for x below
(above) .5 (especially on close calls). The RGR predicts
choice probabilities precisely on the diagonal-—probabil-
ity matching with no over- or undershooting—when the
evidence stage is noiseless and predicts increasingly strong
undershooting as the noise at the evidence stage increases.
The intuition here is that noise is more likely to increase
than to decrease evidence for x(s) below .5 and that the re-
verse is true for x(s) above .5. Hence P increases for x
below .5, and P decreases for x above .5. Note that the CR
assumes no variability at decision, and the RGR predicts
sampling variability, so neither predicts an impact for noise
at the decision stage. For precision A > 2.0, the Logit
model predicts overshooting when the evidence stage is
noiseless and predicts less overshooting (or more under-
shooting) with increasing noise at either the evidence or
the decision stage.

Predictions for Continuous Choice

Some laboratory tasks offer subjects an essentially
continuous choice from a range of alternatives (N. H. An-
derson, 1981, 1982; Varey, Mellers, & Birnbaum, 1990).
As a practical matter, choice is bounded above and below,
so, perhaps after linear rescaling, the range of choices
can be coded as the unit interval / = [0,1]. The natural
way to analyze data gathered in such a continuous choice
task is to calculate R(s), the mean choice for a given stim-
ulus s by a given subject (or group of subjects). The exper-
imenter can compare R(s) to the objective value x(s) and
to predictions of appropriate theoretical models. Again,
the relation between R and x can involve over- or under-
shooting, depending on the the subject’s decision rule.

Recall that undershooting in continuous choice can arise
from underconfidence. In some contexts, underconfi-
dence might be rationalized as arising from risk aversion
or, more generally, from an asymmetric utility or loss func-
tion. For example, due to competition for market share,
established professional forecasters suffer excessive penal-
ties from forthright but wrong forecasts and so rationally
will avoid forthright forecasts (see, e.g., Friedman, 1983).
But such explanations seem implausible in typical repet-
itive laboratory tasks, where the stakes are small or nil.

Here, we offer a new explanation of undershooting and
underconfidence on the basis of a selection bias. The in-
tuition is that noisy evidence that points towards an ex-
treme action is (in many contexts) more likely to contain
errors of exaggeration than errors of moderation. There is
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Figure 4. Examples of medical diagnosis screens used in the ex-
periment. The three panels show, respectively, the basic screen
(top), the history condition (middle), and the score (bottom).

never a sure thing. Indeed, if the evidence points to one
of the most extreme actions (0 or 1), it could not possibly
contain a significant error of moderation. Hence, evi-
dence should be discounted more heavily when it is
noisy and extreme, resulting in underconfidence and un-
dershooting. Lemma 1 and Proposition 3 in the Appendix
formalize this explanation.
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One technical point remains before proceeding with
the models’ predictions for continuous choice. Since the
true value x, the noisy signal y, and the allowable choices
r are all on the same scale /= [0,1], it is natural to assign
goodnesses on the basis of the closeness of r to y, using,
say, the squared Euclidean distance. Then, the maximum
value 4 of closeness is attained when » = y, and it ex-
ceeds the minimum value (by some amount B > 0) when
r and y are as far apart as possible. These conventions
imply that the goodness function is g(r)=G(r,y)=A4 —
B(r — y)2. The Appendix shows that this natural good-
ness function is formally identical to the quadratic scoring
rule, which has a long history in decision theory and some
useful incentive properties.

When the goodnesses come from the quadratic scoring
rule, the different choice models imply distinctive pre-
dictions for continuous choice. The CR choice pattern is
diagonal when the evidence stage is noiseless and in-
creasingly undershoots as noise at the evidence stage in-
creases. The RGR choice pattern is close to the uniform
distribution even when the evidence stage is noiseless
and is relatively insensitive to noise at the evidence stage.!
Logit choice always undershoots in the continuous re-
sponse mode, and the degree of undershooting increases
with noise at the evidence stage or the decision stage. See
the Appendix for formal derivations of these statements.

Table 1 summarizes the theoretical predictions. All three
choice models predict that increased noise at the evi-
dence stage will decrease overshooting or increase un-
dershooting. In the limit, as noise completely dominates,
the signal y is virtually independent of x, and we get ex-
treme undershooting, as in the uniform distribution. The
choice models differ in their basic patterns and in their
predictions regarding noise at the decision stage. For ex-
ample, if we find no impact for treatments designed to
decrease decision stage noise and if binary choice patterns
are approximately diagonal and continuous choice pat-
terns nearly constant (uniform), we would conclude that
the plain RGR is a good model of the decision process.

METHOD

We tested our predictions using variants of the well-known med-
ical diagnosis task. As explained below, the main novelties are that
we used two symptoms each with four levels rather than three or
more binary-valued symptoms, as in most previous work; we used
an expanded factorial design for the symptom configurations rather
than a factorial design with interspersed trial blocks of single symp-
toms; and we introduced new treatments intended to manipulate
noise levels at the evidence stage and at the decision stage.

Subjects. A total of 123 undergraduates from the University of
California at Santa Cruz participated in this experiment in fulfill-
ment of a class requirement. The subjects, who were enrolled in ei-
ther of two lower division psychology classes, signed themselves up
for this specific experiment. One third of these subjects also re-
ceived pay for their participation: two of the six treatment cells in
the experiment involved the distribution of pay on the basis of in-
dividual performance. Individual earnings during the experiment
ranged from $5 to $17, with a mean of $13.63. The entire experi-
mental procedure was approximately 2 h in length.
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Table 1
Theoretical Predictions of the Three Choice Models

Decision Rule Response Mode

Basic Pattern

Evidence Noise Decision Noise

1. MR/CR binary step overshoot less NA
MR/CR continuous diagonal undershoot more NA

2. Plain RGR binary diagonal undershoot more NA
Plain RGR continuous near constant negligible NA

3. Logit binary overshoot (for A > 2)  overshoot less overshoot less
Logit continuous undershoot undershoot more undershoot more

Note—Basic patterns for scatterplots (of mean actual response vs. objective values) are predicted for each decision
rule and response mode. Step refers to extreme overshooting, constant refers to extreme undershooting, and diago-
nal refers to no over- or undershooting. The impact of noise at the evidence and the decision stages is also predicted.

Apparatus. The experiment utilized a graphics computer pro-
gram written in C++ and was conducted with Power Macintosh
7500/100 computers with full color monitors. Four sound-dampened
isolated testing rooms were used, with 1 subject per room. The sub-
jects viewed the experimental events on the monitor and responded
via clicking the mouse on various icons in the display.

Procedure. The subjects were told that they would be diagnos-
ing a series of fictitious patients on the basis of medical charts,
which consisted of values on the symptoms of temperature and
blood pressure (sometimes with one symptom missing). They were
told that this was a learning experiment in which the goal was to
learn the associations between symptoms and diseases. It was ex-
plained that the experiment reflected the real-life fact that the rela-
tionship between particular symptoms and a specific disease is
sometimes weak or strong but never entirely certain. The subjects
were informed that the experiment was designed to be difficult (es-
pecially in the beginning), that they could expect to make mistakes,
and that the presentation order of the diseases was random. The
subjects were asked not to take notes during the experiment, and
this was monitored.

Stimuli. Each trial began with the presentation of the symptom
values on the left side of the monitor display. The symptom values
were displayed using two thermometer icons labeled temperature
and blood pressure (see Figure 4, top panel). An enclosed area of
each thermometer was filled with red to indicate the particular level
of symptom that was present. Each symptom could take on one of
four different values: high, medium high, medium low, and low. For
example, a Y4 filled thermometer represented a low temperature or
blood pressure, and a % filled thermometer represented a medium-
high temperature or blood pressure. Also present on the monitor
were icons representing the two possible diseases: autochus and
burlosis. The previous cases information could be accessed by the
subject at this point (if available). The subjects selected a choice as
to which disease he/she believed that the current patient possessed
via clicking the mouse on the appropriate icon. A second response
was then collected in the form of a confidence rating. The subjects
were able to rate their confidence in their diagnosis for each patient
by clicking the mouse along a response continuum, represented by
a vertical bar, with the endpoints labeled Not at All Confident and
Completely Confident. After both responses, an updated display
was presented that indicated by a blue outline of its icon which of
the two diseases the patient did in fact have. Also presented was the
scoresheet (in the four conditions in which score was included).
After viewing the scoresheet (if present), the subjects would move
to the next trial via another mouse click.

Expanded factorial design. Table 2A-2B present the expanded
design used in our experiment. As in a single-factor design, each of
the symptoms is presented unimodally, for a total of 4 + 4 = 8 symp-
toms. As in the factorial design, each of the four temperature symp-
toms is combined with each of the four blood pressure symptoms
for another 16 symptom configurations. Thus, there are a total of 24
configurations. The entries in Table 2A show the number of trials
with each disease for each symptom configuration.

The experimental session consisted of a total of 480 trials. The
number of observations for the different symptom configurations
ranged from 11 to 33, with 18 of the 24 being between 16 and 26
observations. These frequencies were determined by the chosen
symptom likelihoods shown in Table 2B. The same randomized
presentation order of stimuli was used for all the subjects. The ex-
periment was subject paced. The subjects were told this fact and
also that all previous subjects had finished in less than the 2 allot-
ted h. (This information helped limit the subjects’ tendency to hurry
through the experiment, especially toward the end.) The experi-
ment was broken into three blocks of 160 trials, and the subjects
were permitted S-min breaks between blocks.

Treatments. A 2 X 3 factorial between-subjects design was
used, with 20 subjects in each cell. (Attendance fluctuations gave
us 2 extra subjects in one cell and 1 extra in another.) The evidence
treatment had two conditions, history and no history, and the deci-
sion treatment had three conditions, pay + score, score, and no
score, as explained below.

The history condition is intended to reduce noise at the evidence
stage. It gave the subjects the option on each trial, before making
their response, to view a chart of relevant cases previously encoun-
tered. If selected by clicking a previous cases icon, the chart stayed
on the screen until the subject finished viewing it and clicked an OK
icon. The chart displayed the number of previous patients with each
disease that had possessed the symptom levels present in the current
patient, as in Figure 4 (middle panel). The subjects in the no history
condition had no access to such a chart.

The score condition is intended to reduce noise at the decision
stage. It involved the computation of a score calculated in each trial
from the continuous response re[0,1] and the actual disease d =1
(autochus) or d = 0 (burlosis), using the quadratic scoring rule
S(r,d)=A4 — B(r — d)2, with 4 = 80 and B = 280. The maximum
possible score on a trial (correct binary response with complete
confidence, so » =d =0 or 1) was 4 = 80 points. The lowest possi-
ble score (incorrect binary response, with complete confidence so
|r — d|=1) was 4 — B =negative 200 points. A not at all confident
answer, coded r = .5, always resulted in A — .25B = 10 points. See
the Appendix for more discussion of the quadratic scoring rule.

In the score and pay + score conditions, following each trial the
screen presented the subject’s score on that trial and the cumulative
score to that point of the experiment, as in Figure 4 (bottom panel).
Each subject in the pay + score condition was also paid $1 per 1,000
points of his or her final cumulative score at the end of the experi-
ment. The payment procedures in this condition were explained im-
mediately before to the beginning of the experiment. In the no score
condition, no scores were presented, and no pay was given or dis-
cussed.?

RESULTS

In a given set of trials with symptom configuration s,
let P(s) be the mean binary response (the fraction of tri-



Table 2A
Expanded Factorial Design:
Instances of Disease (A, B) by Symptom Configuration

Blood Pressure

Medium  Medium
Temperature High High Low Low None
High 3,8 10,5 19,2 32,1 16,4
Medium high 2,16 7,10 14,5 24,2 12,8
Medium low 2,24 5,14 10,7 16,2 8,12
Low 1,32 2,19 5,10 8,3 4,16
None 2,20 6,12 12,6 20,2

Note—The first entry in the top row, for example, means that there
were three cases of autochus (disease A) and eight cases of burlosis
(disease B) in medical charts showing high temperature and high blood
pressure; the last entry in the top row indicates 20 charts (16A and 4B)
with no blood pressure reported and high temperature.

als in which d = 1, or autochus is chosen) and let R(s) be
the mean continuous response. As usual, let x(s) represent
the true (Bayesian posterior) probability of autochus, given
5. We group each subject’s responses into Block 1 = Tri-
als 1-240 and Block 2 = Trials 241-480. For each of the
24 symptom configurations s, we tabulate R (s) and P(s)
separately for each of the 123 subjects (in the 2 X 3 dif-
ferent conditions) in each of the two blocks. Thus, we have
24 X 123 X 2=5,904 summary observations of P(s) and
another 5,904 observations of R(s).

The scatterplot in Figure 5 illustrates the summary
data for the subject with the highest earnings in the history
with pay + score condition. Note that this subject tended
to overshoot in binary choice and to undershoot in con-
tinuous choice. Figures 6a—6f show aggregate scatterplots,
in which R(s) and P(s) are averaged across all subjects
(and both blocks) in a given condition. The fitted curves
will be explained shortly. Again, we have undershooting
in continuous choice and overshooting in binary choice.
The reader may be able to-detect regularities consistent
with the main theoretical predictions in these scatter-
plots, but a more systematic analysis is in order.

We first construct a direct summary measure of under-
shooting or overshooting the Bayesian posteriori proba-
bilities. We define the sign indicator i(s) = sgn(x(s) — .5),
so i is +1 if autochus is more likely and —1 if burlosis is
more likely, given s. The measure is the signed deviation
Dg(s) = (x(s) — P(s))i(s) for binary choice and D.(s) =
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(x(s) — R(5))i(s) for continuous choice. Notice that D is
zero for probability matching and is positive for over-
shooting with mean value (over x in [0,1]) of .25 in the
case of extreme overshooting—that is, for the step func-
tion at .5. Likewise, D is negative for undershooting and
has a mean value of —.25 in the case of extreme under-
shooting—that is, for the uniform or constant response
pattern.

Figure 7 reports the mean values of D, averaged over the
24 symptom conditions, as a function of block, evidence
condition, decision condition, and response mode. Ac-
cording to the present theoretical framework, we expect
main effects for each of these variables, as well as inter-
actions between evidence condition and response mode
and between decision condition and response mode. To
provide a statistical evaluation of these effects,a 2 X 2 X
3 X 2 X ~20 analysis of variance (ANOVA) was carried
out on this measure, with block, evidence condition, de-
cision condition, response mode, and subjects as factors.
The mean values vary considerably and cover much of the
possible range between —0.25 and +0.25. The most strik-
ing result is the effect of response mode [F(1,117) =
1,385, p <.001]: all entries are positive for binary choice,
implying overshooting, whereas most entries are negative
for continuous choice, implying undershooting. This is
consistent with the Logit choice model.

Every Block 2 entry is larger than the corresponding
Block 1 entry [F(1,117) =311, p <.001], suggesting that
underconfidence and probability matching diminish
with experience. Every history bar is higher than the cor-
responding no history bar [F(1,117)=362, p < .001], con-
sistent with theoretical predictions. Finally, every score bar
is higher than the corresponding no score bar [F(1,117) =
89, p < .001], consistent with the Logit model. However,
the pay + score bars bear no consistent relation to the cor-
responding score bars; in a few cases they are higher, but
more often they are lower or about the same. The associ-
ated ANOVA results [F(1,117) =49, p < .001] indicate
that pay + score produces, on balance, less overshooting
than does score, but the overall main effect of the score
treatment was positive and significant [F(2,117) =47.5,
p <.001].

Only two interactions were statistically significant
(p < .01): the two-way interaction of decision condition

Table 2B
Expanded Factorial Design: Objective Symptom Likelihoods

p(Temperature|Disease)

p(Blood Pressure|Disease)

Symptom Level A B Log Odds A B Log Odds
High 4 .1 1.39 .05 5 2.40
Medium high 3 2 0.41 .15 3 0.69
Medium low 2 3 -0.41 3 15 —0.69
Low .1 4 —1.39 5 .05 —2.40

Note—The underlying likelihoods used to generate the medical charts. For example,
when a chart for a patient with disease A shows temperature, it reports a high level with
probability .4. With disease B, the corresponding probability is .1, and the log-odds are

In(4/.1) = 1.39.
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Figure 5. Scatterplot of responses P(s) and R(s) for Subject 28, who
had the highest earnings in the history with pay + score condition.
The fitted curves are explained later in the text.

and response mode [F(2,117) =9.39, p < .001] and the
three-way interaction of evidence, decision condition, and
response mode [F(2,117) =7.89, p < .001].

The results based on our measure of overshooting seem
quite conclusive, but one potential difficulty comes to
mind. The definition of the dependent variable implicitly
assumes that all the subjects use the same unbiased crit-
ical value ¢ = .5. If a subject were biased to respond with
one of the two diseases, the D value would not properly
measure under- or overshooting for that subject.

To resolve the difficulty, we constructed for each sub-
ject and decision mode a more sophisticated measure of
overshooting. It is based on the log odds transformation3
L(g) = Ing — In(1 — q), the inverse of the unit logistic
transformation S(x|A = 1) =(1 + exp(—x))~L. The idea
is that transforming the data P(s) and R(s) and the ex-
planatory variable x(s) by L permits us to estimate plau-
sible linear relationships that, transformed back by L~ =
S, display clearly the degree of over- or undershooting.
The measure generalizes that of McDowell and Oden
(1995) by allowing the critical value ¢ to vary freely.

For each subject and each block, we run the regression

L(P(s)) = a+ bL(x(s)) + e(s) ()

on the 24 data points given by the different values of s. The
regression gives us coefficient estimatesd and b for binary
choice for that subject and block. We also run the corre-
sponding continuous regression, with dependent vari-
able L(R(s)). The fitted curve P(x) = S@ + bL(x)) displays
directly the degree of overshooting in binary choice, and
the corresponding curve R(x), using the coefficient esti-
mates from the L(P(s)) regression, shows the degree of
overshooting in continuous choice. The fitted curves are
illustrated in Figures 6a—6h.

One can infer the degree of overshooting and the crit-
ical value from the estimated coefficients 4 and b. Since
S(a) is the height of the fitted curveP(x) orR(x)atx=.5,
we see thata has inverse relation to ¢. Positive values of

a imply a bias toward r = 1, and negative values imply a
bias towards r = 0. The coefficient estimate b = 0 implies
that L(P) is constant; hence, P is constant, and we have ex-
treme undershooting. The estimate 5= 1 implies that L(P)
increases 1 for 1 with L(x); hence, (ignoring any bias from
nonzero a) the choice pattern is dlagonal For very large
values of b, the fitted curve P(x) is close to the unit step
function. In short, b > 1 implies overshooting, and b < 1
implies undershooting.

Figure 8 presents the mean estimates b. The patterns of
overshooting and undershooting are very similar to those
of the cruder measure D reported in Figure 7. The mean
estimates for binary choice range from 1.25 to 2.0, im-
plying clear overshooting, whereas those for continuous
choice are mostly below 1.0 and all below 1.25, implying
undershooting or approximate probability-matching be-
havior. Indeed, mean behavior is almost precise proba-
bility matching (= .99) in the least noisy continuous re-
sponse case, Block 2 with history and score. Estimates
always increase as we move from Block 1 to Block 2, from
no history to history, or from no score to score. In agree-
ment with the ANOVA on the overshooting measure D,
all main effects and the relevant interactions were statis-
tically significant (p < .001).

Other Evidence

Besides data in the 2 X 3 = 6 conditions just described,
we have pilot experiment data from 26 subjects. The
stimuli and response alternatives were exactly the same
but presented in a slightly different format. The subjects in
this seventh cell had no history and no score. We also an-
alyzed binary and continuous choice data aggregated over
the 60 subjects in the medical diagnosis experiment of
Nosofsky et al. (1992), as listed in their Table 2. Again,
the treatments were no history and no score.

Figures 6g—6h plot the two supplementary data sets
and corroborate our findings from the main data set. The
Nosofsky et al. (1992) experiment a priori should be nois-
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Figure 6. Scatterplots of subjects’ responses R(s) and P(s) averaged across all subjects (and
both blocks) in a given condition. The fitted curves are explained in the text. Panels a—f give
the data for the present experiment. Panel g is from “Combining Exemplar-Based Category
Representations and Connectionist Learning Rules,” by R. M. Nosofsky, J. K. Kruschke, and
S. C. McKinley, 1992, Journal of Experimental Psychology: Learning, Memory, & Cognition, 18,
211-233 (Table 2); copyright 1992 by the American Psychological Association. Adapted with
permission. Panel h is from a pilot experiment.
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Figure 6 (continued).
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Figure 7. The mean values of the overshooting measure D averaged over the 24 symptom conditions, as a func-
tion of evidence condition (history vs. no history), decision condition (NS = no score vs, S =score only vs. P+ S =
pay + score), and response mode. The light bars correspond to Block 1, and the dark bars, to Block 2.

ier than ours, because they used a more complicated set
of stimuli (81 configurations with unequal prior probabil-
ities) and no noise reduction treatments. The b slope esti-
mates from their data are indeed smaller than those in our
data: the fitted continuous curve undershoots greatly
(b =.384), and the fitted binary curve is almost diagonal
(b=.948). Our pilot data also are a priori quite noisy, and
the results are quite similar, with b =.374 for continuous
and .932 for binary choice.

A potential problem with the analysis in the previous
subsection is that the experimental design manipulated the
decision and evidence conditions as between-subjects in-
dependent variables. Individual subject variability, thus,
could have washed out the influence of evidence and de-
cision treatments, or, on the other hand, the estimated treat-
ment effects could have been due to a few aberrant indi-
vidual subjects. To resolve the problem with the broadest
possible assessment, we combine Block 1 and Block 2

responses and also look at the pilot data. We screen out
a few of the most erratic subjects—those whose choices
were not systematic, as indicated by an R2 for regression
Equation 2 below .50. Table 3 counts the number of re-
maining subjects whose coefficient estimates fall into the
relevant ranges. The ranges corresponding to pointsa = 0
and b = 1 include one standard error on either side of the
point. Almost a fifth of our systematic subjects show a bias
toward =1 (29 of 138 in binary choice and 26 of 142 in
continuous choice), and a few show a bias toward » =0,
but a clear majority fall into the unbiased categorya = 0.

Table 3 generally confirms undershooting in continu-
ous choice and overshooting in binary choice. In binary
choice, 115 subjects overshoot (b > 1), whereas only 19
probability match and only 4 undershoot, despite the
rather generous convention for probability matching (b =
1) that includes a standard error either way; typically b
between 0.8 to 1.2 is classified as b = 1. In continuous
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Figure 8. The mean values of overshooting measure b. Description same as in Figure 7.

choice, undershooting b < 1) dominates, with 91 such
subjects versus 26 probability matchers and 25 over-
shooters. Combining the evidence, we get a very strong
result from panel C of the table: 147 of the subjects over-
shoot more in binary than in continuous tasks, none are
within a standard error of overshooting equally or less,
and only 2 subjects had ill-fitting regressions.

In short, all the evidence we have seen corroborates the
inferences drawn from Figure 7: As predicted by the Logit
model, continuous choice tends to undershoot, especially
in noisier conditions, and binary choice tends to overshoot,
especially in less noisy conditions.

Our data bear on another related question. Are continu-
ous choice data reliable? We have already noted the reser-
vations of Nosofsky et al. (1992), which are widespread
among psychologists. It is true that only in the least noisy
conditions do we find continuous choice on the diagonal,
where it can be regarded as a direct report of subjective

probability. However, a simple transformation on the basis
of Equation 2 brings the continuous data into close
alignment with objective probabilities. For 113 of 123 test
subjects (and for 23 of 26 pilot subjects), the R? is higher
for the continuous choice data than for the binary choice
data in Equation 2 regressions; the binomial (or signs)
test indicates a significant difference (p < .001). We con-
clude that, in a meaningful sense, the continuous data are
more internally consistent than the binary choice data.

DISCUSSION

Our analysis points to several conclusions. First, the
data clearly exhibit undershooting in continuous choice
(or ratings). The degree of undershooting is systematically
reduced by treatments designed to reduce noise at the ev-
idence stage and at the decision stage. Indeed, under-
shooting in continuous choice virtually disappears in the
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Table 3A
P-Coefficient Estimates for Individual Subjects

Intercept Estimate

Slope Estimate

Condition Nobs a<0 a=0 a>0 b<1 b=1 b>1
No history
No score 21 0 15 3 1 3 14
Pilot data 26 6 11 4 1 6 14
Score 20 )| 15 3 1 3 15
Pay + score 20 2 13 4 1 4 14
History
No score 22 1 14 6 0 2 19
Score 20 1 16 3 0 1 19
Pay +score 20 0 14 6 0 0 20
Total 149 il 98 29 4 19 115

Note—Coefficient estimates from the binary regression L(P) = a + b*L(x) are
classified for each subject as follows. If the intercept estimate a plus its stan-
dard error is less than 0, it is classified as @ < 0; if ¢ minus its standard error
is greater than 0, it is classified a > 0. The classification for the slope estimate
b uses similar conventions with respect to b= 1. Subjects whose regression had

R?2 less than .5 are not classified.

Table 3B
R-Coefficient Estimates for Individual Subjects

Intercept Estimate

Slope Estimate

Condition Nobs a<0 a=0 a>0 b<1 b=1 b>1
No history
No score 21 2 18 0 16 4 0
Pilot data 26 19 1 2 22 0 0
Score 20 3 15 2 10 5 5
Pay + score 20 3 13 2 13 4 1
History
No score 22 1 15 6 12 2 8
Score 20 1 13 6 7 5 8
Pay + score 20 0 12 8 11 6 3
Total 149 29 87 26 91 26 25

Note—Coefficient estimates from the continuous choice regression L(R) = a
+ b*L(x) are classified for each subject as in Table 3A.

Table 3C
P Versus R Coefficient Estimates for Individual Subjects

Intercept Estimate Slope  Estimate
Condition Nobs a<0 a=0 a>0 b<l b=1 b>1
No history
No Score pa 3 10 8 0 0 21
Pilot data 26 0 3 23 0 0 26
Score 20 0 13 7 0 G 20
Pay + score 20 ¢ 15 3 0 0 18
History
No score 22 3 10 9 0 0 22
Score 20 1 15 5 0 0 20
Pay + score 20 0 17 3 0 0 20
Total 149 7 83 57 0 0 147

Note—Coefficient estimates from the binary versus continuous choice regres-
sion L(P) = a + b*L(R) are classified for each subject as in Table 3A.

most favorable treatments (history and score). These find-
ings are consistent with our theoretical explanation that
underconfidence and undershooting arise from a selec-
tion bias for noisy evidence.

Second, probability matching in binary choice (or cat-
egorical judgment) is less robust than most psychologists
seem to believe. Even in our noisier treatments, the sub-
jects tended to overshoot—that is, they chose the more
likely alternative more often than in probability matching.

The noise reduction treatments history and score sys-
tematically increased overshooting. However, in all treat-
ments, a substantial gap remained between optimal deter-
ministic behavior (always pick the more likely alternative)
and typical subject behavior.

Third, the reluctance of many psychologists to collect
and analyze continuous choice data (or ratings) seems
misplaced. In our experiments, the continuous choice data
at the individual level seem to be at least as informative
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as the binary choice data and more informative than the
binary data averaged across subjects. Given the under-
confidence shown by most subjects, it may be appropriate
to use a Logistic transformation before trying to infer scale
values. For example, in testing among models of integra-
tion (Massaro & Friedman, 1990), one could use Logit
transform of individual ratings instead of binary choices
averaged across subjects.

Fourth, the Logit choice model made qualitative pre-
dictions that were generally consistent with the data. The
basic maximization rule (MR) and the basic RGR were
less successful. It surely is possible to extend the MR or
RGR models to accommodate the data, but the success
of its a priori predictions is a point in favor of Logit.

Fifth, the biggest surprise (at least for the economist
author) was that changing the decision treatment from
score to score + pay did not reliably increase the degree
of overshooting. Previous studies, such as Smith and
Walker (1993), led him to expect that offering salient cash
payments would reduce decision noise and would bring
behavior closer to the objective optimum. He proposes
two possible explanations: The subjects may have been
quite risk averse with respect to trial-by-trial payments,*
or the subjects may not have found the promise of payment
credible.’ Of course, it is also possible that psychologists
are correct in their tacit belief that cash payments typically
are inconsequential. To test these competing explanations,
new experiments will be required with different scoring
rule parameters and/or new procedures, such as paying
subjects their accumulated earnings after each block of
trials, payment in the form of lottery tickets, or recruiting
subjects who are accustomed to salient payments.

The work presented here opens up several other new
lines of inquiry. The variability across trials in a given sub-
Jject’s response to a given stimulus and the reaction times
and the frequency and duration of the history screen
access could be investigated in existing data. In a separate
paper, we plan systematically to explore individual learn-
ing behavior and behavioral variability across time and
across subjects. Most important, other investigators now
have a firmer theoretical and empirical basis for collecting
and analyzing continuous ratings in a wide variety of tasks.
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APPENDIX
Formal Definitions and Results

To formalize the definition of noise at the evidence stage,
consider the following signal-generating process that produces
y€[0,1] in a continuous decision task.

[SP1]: (i) generate an unobserved true value x from the uni-
form distribution on [0,1]; (ii) generate an independent unob-
served random error e from a known distribution F; (iii) ifx + €
is not in [0,1], then discard e and repeat step (ii); (iv) observe
the signal y=x +e.

The key assumption here is that the subject is unaware of dis-
cards; only y in [0,1] is actually observed. The idea is that
human evidence processing (e.g., evaluation and integration) is
imperfect and so introduces some error, but it is incapable of pro-
ducing nonsense. Thus, only errors that yield a legitimate signal
are observed. h

We will say that £ is a continuous distribution centered at 0 if
it has a unimodal density function f'symmetric around 0—that is,
if f(0) = f(u) = f(—u) = 0 and F(z) = [Z f(u)du for all z and u.
For example, the unit normal distribution and the uniform distri-
bution on [—1, 1] are both continuous distributions centered at 0.

LEMMA 1. Let [SP1] generate the signal y, and let F be a con-
tinuous distribution centered at 0. Then, the expected error or bias
b(y): =y — E(x|y) is an increasing function of y € [0,1] that sat-
isfies the skew symmetry condition b(5 +2z) + b(.5 —2) = 0.

PrOOF:® Let H(y) = [*_ef (¢)de. For fixed y = x + e, we have
y — 1 = e =y, since xe[0,1]. Hence, the bias can be written
b(y)=E(e|y)=[; _ ef(e)de=H(y) — H(y — 1). Hence, b'(y) =
H(y) = H'(y = 1)=y/(» — (y = Df(y = 1). Forallyin 0,1),
the first term y /() is strictly positive at points y where the den-
sity fis positive and zero elsewhere, and the second term —(y —
1)f(y — 1) is also positive or zero. Hence b is increasing. In-
deed, it is strictly increasing, except at points y, such that the
error density is zero at both yand y — 1.

The skew symmetry condition also is easily verified using the
function H. We have b(.5+2) +b(.5 —z)=H(5+2z) — H(—.5
+z)+ H(.5 ~— z) — H(—.5 — z). The first and last terms sum to

S+z
[T ef(ede=0

by the symmetry of . Similarly, the second and third terms sum to
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[ ef(e)de=0.-

The assumptions that the error distribution has a density and
that x is uniformly distributed simplify the proof but are not nec-
essary.

The results below refer to increases or decreases in the noise
amplitude a > 0. The definition is that the signal y is generated
by [SPq], the process in which the error e in [SP1] is replaced by
ae. It is easy to see that the bias in Lemma 1 increases in «.

A preliminary result on the Logit function will simplify the
proofs to follow. Parts (a) and (b) are well known in the literature,
but we include a sketch of the proofs here for completeness.

LEMMA 2. Let the number #1 of available responses be count-
able. Then:

(a) As precision A — o=, the Logit choice probabilities converge
to the CR choice probabilities; in particular, pLogit (r| 1) > 1 if
g(7) is uniquely maximized at r, and —0if g(r) is not maximized
atr.

(b) As precision A — 0, the Logit choice probabilities converge
to the uniform—yfor example, pLogit (r| 1) — 1/N when the num-
ber of alternative choices #I = N.

(c) When A is sufficiently small but positive, the Logit proba-
bilities pLogit (r | A) all lie between the uniform probabilities 1/#]
and the RGR probabilities.

PROOF:

(a) Let M = max,,[g(r)]. When there is exactly one r, such
that g(r) = M, divide the numerator and denominator of Equa-
tion 1 by exp[AM] and take the limit as A — oo to obtain the de-
sired conclusion. In the event that n > 1 of the g(r) are tied at M,
the same argument shows that, for those maximal choices, p Logit
(r{A) > 1/n.

(b) Recall that, by Taylor’s theorem, exp(x) = 1 + x + o(x) for
| x | small, where o(x) is second-order small. Use this expansion
in the numerator and denominator of Equation 1 withx=Ag(r),
and take the limit as A — 0.

(c) Use the same Taylor expansion as in (b), and divide the
numerator and denominator by A g, where g7 =% (., g(s). The
result is

1 pRR Gy 40(1)
Agr
#1

HL 1140
Agr

The conclusion then follows from the algebra fact that, for posi-
tive numbers, the expression (4 + B)/(C + D) is between 4/C
and B/D. A proof of this fact can be found in Friedman and Aoki
(1992, Lemma 1).*

It is easy to see that the analogue of Lemma 2(b) holds for re-
lated rules such as Probit, power RGR, and connectionist. How-
ever, in the connectionist model (denoted CMP), the analogue
of Lemma 2(a) does not hold, because the transformation S is
bounded—that is, in CMP, A is not a full-fledged precision pa-
rameter.

Main Results

The first proposition summarizes the predicted binary choice
patterns. Of course, the choice patterns in principle depend on
the goodness function G, but (with one exception, noted below)
for binary choice, the only thing that matters is the goodness dif-
ference A = g(1) — g(0). For the quadratic goodness function
g(r)=G(r,y)=A4 — B(r — y)}, wehave A= (4 — B(1 — y)?) —
(A — By?)=(2y — 1)B. Except for the factor B (which can be
scaled to 1.0 or absorbed into A), we have the same expression
for A in the simple binary goodness function g(1)=vand g(0) =
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1 — y. The proposition assumes that goodness differences are
indeed A = (2y — 1); generalization is quite straightforward, at
the cost of messier notation.

In binary choice, it suffices to write out only the probability
that » = 1 is chosen, since r = 0 automatically has the comple-
mentary probability. Accordingly, we will write PX( y) for the
more cumbersome but explicit expression pX(r = 1|4 ,y) for
X = Logit, CMP, and so on. Recall that S denotes the logistic or
sigmoid squashing function S(x;A ) = (1 + e=4x)~1.

PROPOSITION 1. Let the signal y arise from [SPa] witha = 0.
Then, for binary choice with given precision A > 0,

(a) the Logit choice probability is PLogt(y) = S(A; A), where
A=2y—1;

(b) PLogt gvershoots if a = 0 and A > 2.0, and overshoots
more as the precision A increases or the error amplitude a de-
creases; and

(c) CMP choice overshoots less than Logit—that is, it lies be-
tween Logit and uniform choice.

(d) RGR choice for simple goodnesses is precisely on the di-
agonal if a = 0 and increasingly undershoots as the error am-
plitude a increases;

(e) CR choice is given by the unit step function at one-half if
a = 0 and overshoots less as the error amplitude a increases.

PROOF: Part (a) is well known and is verified by direct cal-
culation:

PLogit - elg(l) — 1
elg(l)+ elg(o) 1+e—1g(1)e—1g(0)

=(1+e My = 5(A50).

Part (b) refines Lemma 2(a,b) for binary choice tasks. Given the
symmetry of the sigmoid function S, the inequality S(A;A) = x
for x >.5 in an open neighborhood of .5 will suffice to establish
the overshooting. Applying the log-odds transformation L(z): =
Inz — In{1 — 2) to both sides of the inequality, we get the equiv-
alent condition A(2x — 1) = L(x). By L’Hospital’s rule, the in-
equality holds as x — S iff A = L'(.5)/(2x — 1), s=4/2=2.
Hence, as required, A > 2 suffices for overshooting when y = x.

For part (c), calculate the CMP choice probability of r =1 di-
rectly:

—Ag(l) —1
oo Seay __ (+e™)
S(g(1)+5(g(0)) (1+e"1é"”)_1+(1+e“g‘°))_l
1470

2+(e—lg(0) +e~1g(1))

By the previously noted algebra fact that (4 + B)/(C + D) is be-
tween 4/C and B/D, the last expression above is between

1/2=pUt
and
eAEO R
e &0y -Ael) elg(l)_‘_elg(o)

For part (d), note that, for simple goodness G(1,y) = y and
G(0,y)=1 — y, we have

PROR. = —— Y

y+(l—y)

hence, choice is diagonal when x = y—that is, when a = 0. Note
that the qualification regarding simple goodnesses is needed
here but not needed for other decision rules. For part (e), note
that, for any unbiased goodness function, we have G(1,y) >

=y;

G(0,y) iff y > .5, so the CR choice pattern is the unit step func-
tion at .5.

Finally, note that, in each part of the proposition, the impact
of a follows immediately from Lemma 1 and the remarks follow-
ing the proof of Lemma 1. «

The next proposition deals with the case @ = 0 of noiseless
evidence. Here the observed data R(s) are predicted to coincide
with the expected value E(r | x(s)) under the relevant choice rule.

PROPOSITION 2. For continuous choice with quadratic good-
ness g(r) = G(r,x) = A — B(r — x)? based on true value x,

(a) CR choice is diagonal;

(b) Logit choice undershoots for all A = 0 and converges to
diagonal as A — oo,

(c) RGR choice strongly undershoots—that is, is close to uni-
form choice.

PrOOEF: Part (a) follows directly from the fact that the qua-
dratic expression for G(r,y) is maximized at r = y.

For part (b), note that the Logit response density is

exp(-A(r=x)*)
LI) exp({(—A(u— x)z)du'

By definition, fis the normal density function with mean x and
variance 02 = (24)~! truncated to the interval [0,1]. Therefore,
the variance of fis less than 1/(24). Unless x = .5, the truncation
is asymmetric, so the mean of fis between x and .5. In particu-
lar, the graph of E(r |x) as function of x undershoots the diago-
nal. As A — oo, the variance 02 — 0 and the effect of trunca-
tion disappears, so E(r | x) — x.

Part (c) follows from direct calculation, recalling that 4 > B
to ensure probabilities between 0 and 1. The very messy expres-
sions are suppressed to conserve space. *

The final proposition covers continuous choice with noise at
the evidence stage. It highlights a general underconfidence bias
against decisions near the endpoints and formalizes the intu-
itive argument in the body of the paper that evidence should be
discounted more heavily when it is noisy and extreme. Propo-
sition 2b formalized the argument for the specific case of a qua-
dratic goodness function and Logit choice, but the proposition
below shows that the intuition applies to a wide variety of other
specifications.

PROPOSITION 3. Suppose that g (r) is a decreasing function of
the distance between the continuous response r and the signal
». Then the CR choice r will be biased away from y and towards
.3 by an amount that depends positively on |y — .5| and on the
noise amplitude a.

Proor: Choice under CR here will be » = E(x | y) which, as
noted in Lemma 1, is y — b(y). Applying Lemma 1 to SPa, we
see that the bias —b(y) is zero at y = .5, decreases in y, and has
absolute value that is increasing in a. *

COROLLARY. The observed continuous choices R(s) under
every decision rule—CR, RGR, and Logit—will undershoot more
the larger the noise amplitude a.

Proor: Proposition 3 establishes the result for the CR rule
directly. Its proof shows that, in each of the other decision rules,
(1) the diagonal » = x must be replaced by the locus » = E(x | y)
when y is noisy, and (2) that locus increasingly undershoots as
the evidence noise amplitude a increases. Noise at the evidence
stage (by definition of the stages) has no further effect on deci-
sion. Hence (1) and (2) imply the desired conclusion. *

f(r|x, A/B)=

On the Quadratic Scoring Rule
Recall that the goodness function G(r,y)=A4 — B(r — )2 was
used for continuous choice (the goodness function being largely



irrelevant for binary choice). We argued informally in the body
of the paper that it is natural to make goodness a decreasing lin-
ear function of squared Euclidean distance between perceived
evidence y and available responses r. If 4 is the maximum good-
ness (achieved at » = y) and B > 0 is the increment of maximum
over minimum goodness (achieved at (» — y)2 = 1), then the re-
sult is G as written.

In general, a scoring rule is a numerical score assigned to a
forecaster based on his or her forecast y and the actual outcome
d, intended to motivate the forecaster ex ante to report a truthful
forecast incorporating all available information. See Savage
(1971) for a summary of the early literature and some original
results on proper scoring rules. In particular, Savage argues that
the quadratic scoring rule G(r,d) =4 — B(r — d)? is the simplest
proper scoring rule; subjects maximize subjective expected
score by truthfully reporting subjective probability and maxi-
mize objective expected score by reporting the objective proba-
bility. Friedman (1983) shows that the incentive properties of
the quadratic scoring rule extend to eliciting entire probability
distributions. Allen (1987) points out that risk-averse forecast-
ers may report biased forecasts, but McKelvey and Page (1990)
claim to eliminate the problem by paying in lottery tickets rather
than in cash. Selten (1996) offers an axiomatic derivation of the
quadratic scoring rule and emphasizes its advantages over the log
scoring rule—that is, the advantages of least squares over max-
imum likelihood as criteria for comparing probabilistic models.

NOTES

1. Thus, the RGR choice rule does not mesh well with the quadratic
goodness function in continuous response mode. An alternative
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implementation of RGR with some empirical success (Massaro, 1998,
chap. 9) is to ignore all goodnesses except the extremes g(1) and g(0)
and to apply a deterministic RGR that assigns a zero response proba-
bility to all r except for »* = g(1)/[g(1) + g(0)], which has probability 1.

2. One could argue that score (or pay + score or any other treatment
aimed at the decision stage) might influence attention and therefore
might affect the evidence as well as the decision stage. Our interpreta-
tion of the data incorporates our prior (and now posterior) belief that
scoring the response selected by a subject each trial impacts mainly the
response selection (decision) process.

3. To avoid the possibility of attempting to calculate the log of
zero, we shaded the variable slightly towards 0.5 before taking the log
odds transformation. The exact transformation we use on our data is
L(g) = In{qg + 0.01) — In(1.02 ~ q) for ¢ = x, P, R. To simplify notation
in the rest of this section, we ignore the distinction between this empir-
ical definition of L and the standard theoretical definition given in the
text.

4. Risk aversion with respect to total payment for the experiment or
with respect to day-end wealth seems inadequate to account for the ob-
served behavior, because it is irrational for subjects who care about final
wealth (and who know they have 480 trials) to depart much from risk
neutrality with respect to trial-by-trial payments.

5. The subjects were drawn from the psychology subject pool with no
payment expectation or experience, were instructed not to mention pay-
ment to anyone else, and received payment only after they finished all
trials.

6. We thank Duncan Luce for suggesting the following streamlined
proof of Lemma 1.

(Manuscript received November 15, 1996;
revision accepted for publication January 30, 1998.)



