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Summary-A method is developed for representing any communica- 
tion system geometrically. Messages and  the corresponding signals are 
points in two “function spaces, I’ and the modulation process is a mapping 
of one space into the other. Using this representation, a number of results 
in communication theory are deduced concerning expansion and compres- 
sion of bandwidth and the  threshold effect. Formulas are found for the 
maximum  rate of transmission of binary digits over a system when the 
signal is perturbed by various types of noise. Some of the properties of 
“ideal” system which transmii at this maximum rate are disncrsed The 
equivalent number of binary digits per second for certain information 
sources is calculated 

I. INTRODUCTION 
A general  communications  system is shown  schematically 

in Fig. 1. It consists  essentially of  five elements. 

Fig. 1-General communications system. 

1. An infomation  sowce. The  source selects one message 
from  a  set of possible  messages  to  be  transmitted  to  the 
receiving  terminal.  The mesage may be of various types; for 
example,  a sequence of letters  or numbers, as in telegraphy or 
teletype,  or  a continuous function of time f ( r ) ,  as in radio or 
telephony. 

2. The  rransmirrer. This operates on the message in some 
way and  produces  a si@ suitable  for transmission to the 
receiving  point  over  the  channel. In telephony, this operation 
consists of merely  changing  sound  pressure into a  propor- 
tional electrical  current. In telegraphy, we  have an en- 
operation which  produces  a  sequence  of  dots,  dashes,  and 
spaces corresponding to the  letters of the message. To take  a 
more  complex  example, in the case of multiplex PCM tele- 
phony  the  different speech functions  must  be  sampled,  com- 
pressed, quantized and encoded, and finally  interleaved  prop- 
erly to construct  the signal. 

3. The channel. This is merely  the medium used to transmit 
the signal from  the  transmitting to the receiving point. It may 

*Decimal classification:  621.38. Original manuscript  received  by the 
Institute, July 23, 1940. Presented, 1948 IRE National  Convention, 
New  York, N.Y., March 24,1948; and IRE New York Section, New 
Yo&, N.Y., November 12,1W7. 

+ B e l l  Telephone  Laboratories, Murray Hill, N.J. 

Reprinted from Proceedings of the /.R.€., vol. 37, pp. 10-21, 
January  1949.  Copyright,  1949, by The  Institute of Radio  Engineers, 
Inc. 

be  a  pair  of  wires,  a  coaxial  cable,  a  band of radio  frequencies, 
etc.  During  transmission, or at the  receiving  terminal,  the 
signal  may  be  perturbed  by  noise  or  &stortion.  Noise  and 
distortion may  be  differentiated on the  basis  that  distortion is 
a  fixed  operation  applied to the  signal,  while  noise  involves 
statistical  and  unpredictable  perturbations.  Distortion  can,  in 
principle, be  corrected by applying  the  inverse  operation, 
while  a perturbation due to noise cannot  always  be  removed, 
since  the  signal  does  not  always  undergo  the  same  change 
during  transmission. 

4. The receiver. This operates on the  received  signal and 
attempts to reproduce,  from it, the  original  message.  Ordi- 
narily it will perform  approximately  the  mathematical  inverse 
of the  operations of the transmitter, although  they may differ 
somewhat  with  best  design in order  to  combat  noise. 

5 .  The destination. This is  the  person  or  thing  for  whom  the 
message  is  intended. 

Following  Nyquist’  and  Hartley,’ it is convenient  to  use  a 
logarithmic  measure of information. If a  device has n possible 
positions it can, be definition,  store logan units of informa- 
tion.  The  choice of the  base 6 amounts  to  a  choice of unit, 
sincelog,n=logaclog,n.Wewillusethebase2andcallthe 
resulting  units  binary &gib or bits. A group of m relays or 
flip-flop  circuits has 2”’ possible sets of positions,  and  can 
therefore  store log, 2“‘ = m bits. 

If it is possible to distinguish  reliably M different  signal 
functions of duration T on a  channel, we can say  that  the 
channel can transmit  log, M bits in time T. The rate of 
transmission is then log2 M/T. More  precisely,  the channel 
capaciry may be  defined as 

c =  - 

A precise  meaning will be given later to the  requirement of 
reliable  resolution of the M signals. 

log2 M 
~+rn T . (1) 

11. THE SAMPLING THEOREM 
Let us suppose that the  channel has a  certain  bandwidth W 

in cps  s tar t ing at zero  frequency,  and  that we are allowed to 
use this channel  for  a  certain period of time T. Without  any 
further restrictions this would  mean that we can use as signal 
functions  any  functions of time  whose  spectra  lie  entirely 
within the  band W, and  whose  time  functions  lie  within  the 
interval T. Although it is not possible to fulfill both of these 
conditions  exactly, it is possible to keep the spectrum within 
the  band W ,  and to have  the  time  function  very small outside 
the  interval T. Can we describe in a  more useful way the 
functions which satisfy these  conditions?  One  answer is the 
following: 
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T?~EOR.EM 1 :  If a function f ( t )  contains no frequencies higher 
than W cps, it is completely determined by giving its ordinates at 
a series of points spaced I / 2 W  seconh apart. 

This is a  fact which  is  common  knowledge  in  the  communi- 
cation art. The  intuitive  justification is that, if f ( t )  contains 
no frequencies  higher  than W ,  it cannot  change to a  substan- 
tially new value in a  time  less than one-half  cycle of the 
highest  frequency, that is, 1/2W.  A mathematical  proof  show- 
ing  that this is  not  only  approximately, but exactly,  true  can 
be  given as follows.  Let F( w )  be  the  spectrum of f ( t ) .  Then 

f ( t )  = -/ F(w)e'"'dw ( 2 )  
1 m  

2a - m  

since F ( w )  is assumed  zero  outside  the  band W .  If we let 
t = -  n 

2w 
where n is any  positive  or  negative  integer, we obtain 

f( &) = -/ F ( o ) e i u ? w d w .  1 +2nW 
( 5 )  2 a  -2nW 

On the  left  are  the  values of f ( t )  at the  sampling  points.  The 
integral on the  right will be  recognized as essentially  the nth 
coefficient in a  Fourier-series  expansion of the  function F( w ) ,  
taking  the  interval - W to + W as a  fundamental  period. This 
means that the  values of the  samples f ( n / 2 W )  determine  the 
Fourier  coefficients in the  series  expansion of F( 0) .  Thus  they 
determine F ( o ) ,  since F ( o )  is  zero  for  frequencies  greater 
than W ,  and for  lower  frequencies F ( w )  is determined if its 
Fourier  coefficients  are  determined. But F( w )  determines  the 
original  function f ( t )  completely, since a  function is de- 
termined if its spectrum is known. Therefore  the  original 
samples  determine  the  function f ( t )  completely.  There is one 
and only  one  function  whose  spectrum is limited to a  band W ,  
and which  passes through given  values at sampling  points 
separated 1/2W seconds apart. The  function can be  simply 
reconstructed  from  the  samples  by  using  a  pulse of the  type 

sin2rWt 
2awr . (6) 

This function is unity at t = 0 and  zero at t = n/2W, i.e., at 
all  other  sample points. Furthermore, its spectrum is constant 
in the  band W and zero outside.  At each sample point a  pulse 
of this type is placed  whose  amplitude is adjusted  to  equal 
that of the  sample.  The sum of these pulses is the  required 
function, since it satisfies  the  conditions on the spectrum and 
passes  through  the  sampled  values. 

Mathematically, this process can be described as follows. 
Let x ,  be the nth sample.  Then  the  function f( 1 )  is repre- 
sented by 

AsimilarresultistrueifthebandWdoesnotstartatzero 
frequency but at some higher  value, and can be proved  by  a 
linear translation (corresponding physically to single-sideband 
modulation) of the  zero-frequency case. In this case the  ele- 
mentary  pulse is obtained from sin x / x  by  angle-side-band 
modulation. 

If the  function is limited to the time interval T and the 
samples are spaced 1/2W seconds apart, there will be a total 

of 2TW samples in the  interval. All samples  outside will be 
substantially  zero. To be  more  precise, we can  define  a  func- 
tion  to  be  limited to the  time  interval T if, and  only if, all  the 
samples  outside this interval are exactly  zero.  Then we can  say 
that  any  function  limited to the  bandwidth W and  the  time 
interval T can  be  specified  by  giving 2TW numbers. 

Theorem 1 has been given  previously in other  forms  by 
mathematicians3 but in spite of its evident  importance seems 
not  to  have  appeared  explicitly in the  literature of communica- 
tion theory. N y q u i ~ t , ~ . ~  however,  and  more  recently Gabor,6 
have  pointed  out that approximately 2TW numbers  are  suffi- 
cient,  basing  their  arguments on a  Fourier  series  expansion of 
the  function  over  the  time  interval T. a s  gives TW sine  and 
(TW + 1 )  cosine  terms  up to frequency W .  The  slight dis- 
crepancy  is  due  to  the  fact  that  the  functions  obtained  in this 
way will not  be  strictly  limited  to  the  band W but, because of 
the  sudden  starting  and  stopping of the  sine  and  cosine 
components,  contain some  frequency  content  outside  the  band. 
Nyquist  pointed out the  fundamental  importance of the 
time  interval 1/2W seconds in connection  with  telegraphy, 
and we will call this the  Nyquist  interval  corresponding  to  the 
band W .  

The 2TW numbers  used  to spedy the  function need not be 
the  equally  spaced  samples used above. For example,  the 
samples can be unevenly  spaced,  although, if there is consider- 
able  bunching,  the  samples  must  be known very  accurately to 
give a good reconstruction of the  function.  The  reconstruction 
process  is  also  more  involved  with  unequal  spacing.  One  can 
further show that the  value of the  function  and its derivative 
at  every  other  sample  point  are  sufficient.  The  value  and  first 
and second  derivatives at every  third  sample  point give a still 
different  set of parameters which  uniquely  determine  the 
function.  Generally speaking, any  set of 2TW independent 
numbers associated  with  the  function can be used to describe 
it. 

111. GEOMETRICAL REPRESENTATION 
OF THE SIGNALS 

A set of three numbers xl, x 2 ,  x3, regardless of their  source, 
can always be thought of as co-ordinates of a point in three- 
dimensional space. Similarly, the 2TW evenly spaced samples 
of a signal can be thought of as co-ordinates of a  point in a 
space of 2TW dimensions. Each particular  selection of thex 
numbers corresponds to a  particular  point in this space.  Thus 
there is exactly  one  point corresponding to  each signal in the 
band W and  with duration T. 

The number of dimensions 2TW will be, in general,  very 
high. A 5-Mc television signal lasting  for an hour  would be 
representedbyapointinaspacewith2X5XlO6x60'= 
3.6 X 10" dimensions. Needless to say,  such  a space cannot 
be vis-. It is possible,  however, to study ady tml ly  the 
properties of n-dimensional space. To a  considerable  extent, 

3J. M. Whittaker, "Interpolatory Function Theory," Cambridge 
Tracts in Mathematics and Mathematical Physics, No. 33, Cambridge 
University Press, Chapt IV; 1935. 
4H. Nyquist, "Certain topics in telegraph transmission theory,'' 

A. I.   E. E. Transactions, p. 617; April, 1928. 
'W. R Bennett, ''Tune division multiplex systems,'' Bell Sysr. Tech. 

Jour., vol. 20, p. 199; April, 1941, where a res ult similar to Theorem 1 
is established, but on a steady-state basis. 
6D. Gabor, "Theory of commuuication," Jour. I.   E. E. (London), 

vol. 93; part 3, no. 26, p. 429; 1%. 
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these properties are a simple generalization of the properties 
of two- and three-dimensional space, and can often be arrived 
at  by inductive reasoning from these cases. The advantage of 
this geometrical representation of the signals is that we can 
use the vocabulary and the results of geometry in the com- 
munication problem. Essentially, we have replaced a complex 
entity (say, a television signal) in a simple environment (the 
signal requires only a plane for its representation as f( t ) )  by a 
simple entity (a point) in a complex environment (2TW di- 
mensional space). 

If we imagine the 2TW co-ordinate axes to be at right 
angles to each other, then distances in the space have a simple 
interpretation. The distance from the origin to a point is 
analogous to the two- and three-dimensional cases 

w 

= i -2 n = 1  x,’ 
where x, is the nth sample. Now,  since 

we have 

using the fact that 

(11) 
Hence, the square of the distance to a point is 2W times the 
energy (more precisely, the energy into a unit resistance) of 
the corresponding signal 

d 2  = 2WE 
= 2wTP (12) 

where P is the average power over the time T. Similarly, the 
distance between two points is  times the rms dis- 
crepancy between the two corresponding signals. 

If  we consider only signals whose  average  power  is  less than 
P, these will correspond to points within a sphere of radius 

r = 4ZEF. (13) 
If noise is added to the signal in transmission, it means that 

the point  corresponding to the signal has been moved a 
certain distance in the space proportional to the rms value of 
the noise. Thus noise produces a small region of uncertainty 
about each point  in the space. A fixed distortion in the 
channel corresponds to a warping of the space, so that each 
point is moved, but  in a definite fixed way. 

In ordinary three-dimensional space it is possible to set up 
many different co-ordinate systems. This is also possible in the 
signal space of 2TW dimensions that we are considering. A 
different  co-ordinate system corresponds to a different way  of 
describing the same signal function. The various ways  of 
specifylng a function given above are special cases of this. One 
other way of particular  importance in communication is in 
terms of frequency components. The function f(r) can be 
expanded as a sum of sines and cosines of frequencies 1/T 
apart, and the coefficients used as a different set of coordi- 

nates. It can be shown that these co-ordinates arc al l  per. 
pendicular to each other  and are obtained by  what is essen. 
tially a rotation of the original co-ordinate system. 

Passing a signal through an ideal filter corresponds to 
projecting the corresponding point onto a certain region in the 
space. In fact,  in the frequency-co-ordinate system those corn. 
ponents lying in the pass band of the filter are retained and 
those outside are eliminated, so that the projection is on one 
of the co-ordinate lines, planes, or hyperplanes. Any filter 
performs a linear operation on the vectors of the space, 
producing a new vector linearly related to the  old one. 

IV. GEOMETRICAL REPRESENTATION 
OF MESSAGES 

We  have associated a space of 2TW dimensions with the 
set of possible signals. In a similar way one can associate a 
space with the set of possible messages. Suppose we  are 
considering a speech system and that the messages  consist  of 
all possible sounds which contain no frequencies over a cer- 
tain limit W, and last for a time T,. 

Just as for the case of the signals, these messages  can be 
represented in a one-to-one way in a space of  2T1W1 dimen- 
sions. There are several points to be noted, however.  In  the 
first place, various different points may represent the same 
message, insofar as the final destination is concerned. For 
example, in the case of speech, the ear is insensitive to a 
certain amount of phase distortion. Messages differing only in 
the phases of their components (to a limited extent) sound the 
same. This may have the effect of reducing the number of 
essential dimensions in the message space. All the points 
which are equivalent for the destination can be grouped 
together and treated as one point.  It may then require fewer- 
numbers to specify one of these “equivalence classes” than to 
specify an arbitrary point. For example, in Fig. 2 we  have a 
two-dimensional space, the set of points in a square. If all 

Fig. 2-Reduction of dimensionality through equivalence classes 

points on a circle are regarded as equivalent, it reduces to a 
one-dimensional space-a point can now be specified by one 
number, the radius of the circle. In the case of sounds, if the 
ear were completely insensitive to phase, then the number of 
dimensions would be reduced by one-half due to this cause 
alone. The sine and cosine components (I, and b, for a given 
frequenc would not need to be specified independently, but 
only F- uf + b,‘ ; that is, the total amplitude for this frequency. 
The reduction in frequency discrimination of the ear as 
frequency increases indicates  that a further reduction in di- 
mensionality occurs. The vocoder makes use to a considerable 
extent of these equivalences among speech sounds, in the  first 
place by eliminating, to a large degree, phase information, and 
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in the second place by lumping groups of frequencies together, 
particularly at the higher frequencies. 

In other types of communication there may not be any 
equivalence classes of this type. The final destination is sensi- 
tive to any change in the message within the full message 
space of 2T1W1 dimensions. This appears to be the case in 
television transmission. 

A second point to be noted is that the information source 
may put certain restrictions on the actual messages. The space 
of 2T1W1 dimensions contains a point for every function of 
time f( r )  limited to the band Wl and of duration T,. The class 
of messages we wish to transmit may be only a small subset of 
these functions. For example, speech sounds must be pro- 
duced by the human vocal system. If  we are willing to forego 
the transmission of any other sounds, the effective dimen- 
sionality may be considerably decreased. A similar effect can 
occur through probability considerations. Certain messages 
may  be possible, but so improbable relative to the others that 
we c a n ,  in a certain sense, neglect them. In a television image, 
for example, successive frames are likely to be very nearly 
identical. There is a fair probability of a particular picture 
element having the same light intensity in successive frames. If 
this is analyzed mathematically, it results in an effective 
reduction of dimensionality of the message space when T, is 
large. 

We  will not go further into these  two effects at present, but 
let  us suppose that, when they are taken into account, the 
resulting  message space has a dimensionality D, which will, of 
course, be less than or equal to 2T1W1. In many cases,  even 
though the effects are present, their utilization involves too 
much complication in the way of equipment. The system is 
then designed on the basis that all functions are different and 
that there are no limitations on the information source. In this 
case, the message space is considered to have the full 2T1W1 
dimensions. 

V. GEOMETRICAL REPRESENTATION 
OF THE TRANSMITTER AND RECEIVER 

We  now consider the function of the  transmitter from this 
geometrical standpoint. The  input to the transmitter is a 
message; that is, one  point in the message  space. Its output is 
a signal-one point  in the signal space. Whatever form of 
encoding or modulation is performed, the transmitter must 
establish some correspondence between the points  in the two 
spaces.  Every point in the message space must correspond to a 
point in the signal space, and no two messages can correspond 
to the same signal. If they did, there would be no way to 
determine at the receiver  which of the two messages was 
intended. The geometrical name for such a correspondence is 
a mapping. The  transmitter maps the message space into the 
signal space. 

In a similar way, the receiver maps the signal space back 
into the message space. Here, however, it is possible to have 
more than one point mapped into the same point. This means 
that several different signals are demodulated or decoded into 
the same message. In AM, for example, the phase of the 
carrier is lost in demodulation. Different signals which differ 
only in the phase of the carrier are demodulated into the same 
message. In FM the shape of the signal wave above the 
limiting value of the limiter does not affect the recovered 

message. In  PCM considerable distortion of the received  pulses 
is possible, with no effect on the output of the receiver. 

We have so f a r  established a correspondence between a 
communication system and  certain geometrical ideas. The 
correspondence is summarized in Table I. 

TABLE I 
Communication System Geometrical Entity 

~~~ 

The set of possible signals 
A particular  signal 
Distortion in the  channel 
Noise in the channel 

The average  power of the 

The set of signals of  power 

The set of possible messages 
The set of actual  messages 

distinguishable by  the 
destination 

signal 

P 

A message 
The  transmitter 

The receiver 

A space of 2 TW dimensions 
A point in the  space 
A warping of the  space 
A region of uncertainty  about  each 

point 
(2TW)-' times  the  square  of  the dis- 

tance  from  the  origin to the point 
The set of points in  a  sphere of radius 

A space of 2T1W1 dimensions 
A space of D dimensions  obtained by 

regarding all equivalent  messages 
as one point, and deleting  messages 
which  the  source  could  not  produce 

A point in this  space 
A mapping of the  message  space into 

the signal space 
A mapping of the  signal  space into 

the message  space 

m 

VI. MAPPING CONSIDERATIONS 
It is possible to draw  certain conclusions of a general 

nature regarding modulation  methods from the geometrical 
picture alone. Mathematically, the simplest types of mappings 
are those in which the two spaces have the same number of 
dimensions. Single-sideband amplitude modulation is an ex- 
ample of this type and an especially simple one, since the 
co-ordinates in the signal space are proportional to the corre- 
sponding co-ordinates in the message space. In double-side- 
band transmission the signal space has twice the number of 
coordinates, but they occur in  pairs with equal values. If there 
were only  one dimension in the message space and two in the 
signal space, it would correspond to mapping a line onto a 
square so that the point x on the line  is represented by ( x ,   x )  
in the square. Thus no significant use is made of the extra 
dimensions. All the messages go into a subspace having only 
2 TIW, dimensions. 

In frequency modulation  the  mapping is more involved. The 
signal space has a much larger dimensionality than the mes- 
sage space. The type of mapping can be suggested by Fig. 3, 
where a line is mapped into a three-dimensional space. The 
line starts at unit distance from the origin on the first co- 

Fig. 3-Mapping similar to frequency  modulation. 
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ordinate axis, stays at this distance  from  the  origin on a  circle 
to the  next  co-ordinate axis, and then goes to the third. It can 
be seen that the  line is lengthened in this mapping in propor- 
tion to the total number of m-ordinates. It is not, however, 
nearly as long as it could be if it wound  back and forth 
through  the  space, filling up the internal volume  of the  sphere 
it traverses. 

This expansion of the  line is related to the  improved  signal- 
to-noise ratio obtainable with  increased  bandwidth.  Since  the 
noise  produces  a  small  region of uncertainty about each point, 
the  effect of this on the  recovered  message will be less if the 
map is in a  large  scale. To obtain as large  a  scale as possible 
requires that the line wander  back  and forth through the 
higher-dimensional  region as indicated in Fig. 4, where  we 

c 
Fig. 4-Efficient mapping of a line into a square. 

have  mapped  a  line into a  square. It will be  noticed that when 
ths is done  the  effect of noise is small  relative to the  length of 
the  line,  provided  the  noise is less than a  certain  critical  value. 
At this value it becomes  uncertain at the  receiver as to which 
portion of the  line  contains  the message. This holds  generally, 
and it shows that any system which attempts to use  the capaci- 
ties of a wider band to the full extent possible will  suffer from a 
threshold  effect when there is noise. If the noise is  small,  very 
little distortion will occur, but at some  critical noise amplitude 
the message will become  very  badly  distorted. This effect is 
well  known in PCM. 

Suppose, on the other hand, we  wish to reduce  dimensional- 
ity, i.e., to compress  bandwidth or time or both. That is, we 
wish to send  messages of band Wl and duration Tl over a 
channel  with TW  TIWl. It has  already been indicated that 
the  effective  dimensionality D of the message space may  be 
less than 2T1W1 due to the  properties of the  source and of the 
destination.  Hence we certainly need no more than D dimen- 
sion in the  signal  space for a good  mapping. To make this 
saving it is  necessary, of course, to isolate  the  effective co- 
ordinates in  the message space, and to send  these  only.  The 
reduced  bandwidth  transmission of speech by  the  vocoder  is  a 
case of this kind. 

The question arises, however, as to whether further reduc- 
tion is  possible. In our geometrical  analogy, is it possible to 
map a  space of high  dimensionality onto one of lower  dimen- 
sionality?  The  answer is that it is possible,  with  certain  reser- 
vations. For example,  the points of a  square can be described 
by their two ceordinates which could be written in decimal 
notation 

From these  two  numbers we can  construct  one  number by 
taking  digits  alternately  from x and y :  

z = .a,b,a,b,a,b, ... . (15) 
A  knowledge of x and y determines z ,  and z determines both 
x and y .  ‘Thus there is a  one-to-one  correspondence  between 
the points of a square and the points of a  line. 

This type of mapping, due to the  mathematician Cantor, 
can easily be extended as far as we  wish in the  direction of 
reducing  dimensionality.  A  space of n dimensions  can  be 
mapped  in  a  one-to-one way into a  space of one  dimension. 
Physically, this means that the  frequency-time product can  be 
reduced as far as we  wish  when there  is no noise,  with  exact 
recovery of the  original messages. 

In a  less  exact sense, a  mapping of the type shown in Fig. 4 
maps  a square into a  line,  provided we are  not  too particular 
about recovering  exactly  the starting point, but  are  satisfied 
with  a  near-by  one.  The  sensitivity we noticed  before  when 
increasing  dimensionality now takes  a  different  form. In such 
a  mapping, to reduce TW, there will be  a certain threshold 
effect when  we perturb the  message. As we change  the  mes- 
sage  a  small  amount,  the  corresponding  signal will change a 
small  amount,  until some critical  value  is  reached.  At this 
point the  signal will undergo  a  considerable  change. In topol- 
ogy it is  shown7 that it is not possible to map  a  region of 
higher  dimension into a  region of  lower dimension continu- 
ously. It is the  necessary  discontinuity  which  produces  the 
threshold  effects we have  been  describing  for  communication 
systems. 

This discussion  is  relevant to the  well-known “Hartley 
Law,”  which  states that “. . . an  upper limit to the  amount of 
information which  may  be transmitted is  set  by  the  sum  for 
the  various  available  lines of the  product of the  line-frequency 
range of each  by  the  time during which it is avdable for 
use.”2 There is a sense in which this statement  is  true,  and 
another sense in which it is  false. It is not  possible to map  the 
message space into the  signal  space in a one-teone, continu- 
ous manner (this is known  mathematically as a topological 
mapping)  unless  the two  spaces  have  the  same  dimensionality; 
i.e.,  unless D = 2TW. Hence, if  we limit the transmitter and 
receiver to continuous one-to-one  operations,  there  is  a lower 
bound to the product TW in the  channel. This lower bound  is 
determined, not by the product WITl of  message bandwidth 
and time, but by  the  number of essential dimension D ,  as 
indicated in Section IV. There  is, however, no good  reason  for 
limiting  the transmitter and  receiver to topological  mappings. 
In fact, PCM and  similar  modulation  systems  are  highly 
discontinuous  and come  very  close to the  type of mapping 
given  by (14) and (15). It is desirable,  then, to find limits for 
what  can  be done with no restrictions on the type of trans- 
mitter and  receiver  operations.  These  limits,  which will be 
derived in the  following  sections,  depend on the  amount and 
nature of the noise in the  channel, and on the transmitter 
power, as well as on the  bandwidth-time product. 

It is  evident that any  system,  either to compress TW, or to 
expand it and make N1 use  of the additional volume,  must be 

7W. Hurewitz and H. Wallman, “Dimension Theory,” Princeton 
University  Press,  Princeton, N.J.; 1941. 
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highly  nonlinear in character  and  fairly  complex  because of by any encoding method to send at a higher rate and h e  an 
the  peculiar  nature of the  mappings  involved. arbitrmdy low frequency of errors. 

This shows  that  the  rate Wlog( P + N ) / N  measures in a 

WI. THE CAPACITY OF A CHANNEL IN THE 
PRESENCE OF WHITE THERMAL NOISE 

It is  not  difficult  to  set  up  certain  quantitative  relations 
that must  hold  when we change the product TW. Let us 
assume,  for  the  present, that the noise in the system is a  white 
thermal-noise band limited to the  band W ,  and that it is 
added to the  transmitted  signal to produce  the  received  signal. 
A white  thermal noise has the  property that each  sample is 
perturbed  independently of all  the  others,  and  the  distribution 
of each  amplitude is Gaussian  with standard deviation u = fi 
where N is the  average noise power.  How  many  different 
signals can be  distinguished at the  receiving  point in spite of 
the perturbations due to noise? A crude  estimate can be 
obtained as follows. If the  signal  has  a  power P ,  then  the 
perturbed  signal will have  a  power P + N .  The  number of 
amplitudes that can be  reasonably  well  distinguished is 

where K is a  small  constant in the ne@mrhood of unity 
dependmg on how the phrase  “reasonably  well” is interpreted. 
If we require  very  good  separation, K will be small, while 
toleration of occasional mors allows K to be  larger.  Since in 
time T there  are 2TW independent  amplitudes,  the total 
number of reasonably  distinct signals is 

M = [ K \ / F ] 2 T W .  (17) 

The  number of bits that can be  sent in this time is log, M, and 
the rate of transmission  is 

P + N  -- log:” - Wlog, K2;-(bits per second). 

sharply  defined way the  capacity of the  channel  for  transmit- 
ting  information. It is a rather surprising result,  since  one 
would expect that reducing  the  frequency of errors would 
require  reducing  the rate of transmission,  and that the rate 
must  approach zero as the  error  frequency  does.  Actually, we 
can send at the rate C but reduce  errors  by using more 
involved  encoding  and  longer  delays at the  transmitter  and 
receiver.  The  transmitter will take  long sequenca of binary 
digits  and  represent this entire  sequence  by  a  particular  signal 
function of long duration. The  delay is required  because  the 
transmitter  must  wait for the full sequence  before  the  signal is 
determined.  Similarly, the receiver  must  wait  for  the full signal 
function before  decoding into binary  digits. 

We  now prove lheorem 2. In the  geometrical  representation 
each  signal point is surrounded  by  a  small region of uncer- 
tainty due to noise. With  white  thermal noise, the  perturba- 
tions of the  different  samples  (or cuordinates) are all Gaus- 
sian  and  independent.  Thus  the  probability of a  perturbation 
having mordinates xl, x,;  . , x ,  (these  are  the  differences 
between the on@ and  received  signal  co-ordinates) is the 
product of the  individual  probabilities  for  the  different co- 
ordinates: 

1 -1 2 T w  - - 
( 2 s 2 T w N )  2TW 1 

Twexp- x,’. 

Since this depends  only on 
2 T w  c x:, 

1 
1. 

the probability of a given perturbation depends  only on the 

approximate  character,  lies in the  tacit  assumption  that for other words, the region of uncertainty is in nature. two signals  to  be  distinguishable  they  must  differ  at  some Although the limits of this region are not sharply dehned for a 

ment  presupposes  that EM, or some-  very similar to definite as the dimensionality increases. This is PCM, is the  best  method of encoding  binary  digits into the  square of the distance a signal is perturbed is signals.  Actually, two signals can be  reliably  distinguished if equal to 2TW times the average noise power during the time they  differ  by  only  a  small  amount,  provided this difference  is T, As increases, this average noise power must approach N ,  sustained  over  a  long  period of time.  Each  sample of the Thus, for large T, the perturbation will almost certainl be to received  signal  then  gives  a  small  amount of statistical infor- SOme point near the surface of a sphere of radius 2TwN 
mation  concerning the transmitted  signal; in combination, 
these  statistical  indications  result in near  certainty. This possi- suffi~ently large we can insure (with probability as near to 

centered at the original  signal  point.  More  precisely, by taking 

with  a  reasonable  definition of reliable  resolution of signals, as where is small. The noise 
representation  to  determine  the  exact  capacity of a  noisy billiard balls, when 2w is very large. The received signals 
channel. 

THEOREM 2: Let P be the average transmitter power, and almost all lie on the surface of a sphere of radius have  an  average  power P + N ,  and in the  same sense must 

suppose  the  noise is white thermal  noise ofpower N in the band 2 w ( p  + N )  . How many different transmitted signals can 
W. By sufficiently complicated encoding system it is possible to 
transmit binary digits at a rate 

The with this from its general distance from the  signal and not on the  &=tion. In 

-piing point more than the expected The argu-  small  number of ( 2 w ) ,  the limits become  more 

$- 
bility  allows an improvement of about 8 db in power  over (18) perturbation will lie within a sphere of as 
will appear later’ We will ‘Ow make use Of the geometrical  regions a therefore be thought of roughly as sharply  defined 

be  found which will be 
than  the  volume of the  sphere of radius 

P + N  c = Wlog, - (19) divided by  the volume  of a  sphere of 
N overlap of the noise  spheres  results in confusion as to the 

with as small a frequency of errors as desired It is not possible message  at  the  receiving  point.  The  volume of an n-dimen- 
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sional sphere* of radius r is 

Hence,  an  upper  limit  for  the  number M of distinguishable 
signals is 

M ( /FrTw 
Consequently,  the  channel  capacity is bounded  by: 

log, 5 Wlog2- P + N  c=- 
T -  N 

This proves  the last statement in the  theorem. 
To prove  the first part of the  theorem, we must 

there  exists  a  system of encoding  which  transmits 
+ N)/N binary digits per  second  with  a  frequency of errors 
less than E when c is arbitranly small.  The  system to be 
considered  Dperates as follows. A long  sequence  of,  say, m 
binary digits is taken in at the  transmitter.  There  are 2" such 
sequences, and each  corresponds  to  a  particular  signal  func- 
tion of duration T. Thus there  are M = 2" different signal 
functions.  When  the sequence of m is completed,  the  trans- 
mitter starts sending  the  corresponding  signal.  At  the  receiver 
a perturbed signal is received.  The  receiver  compares this 
signal  with  each of the M possible  transmitted  signals  and 
selects  the  one  which is nearest  the  perturbed  signal  (in  the 
sense of rms error) as the  one  actually  sent.  The  receiver  then 
constructs, as its output, the  corresponding  sequence of binary 
digits. There will be,  therefore,  an  over-all  delay of 2T sec- 
onds. 

To insure  a  frequency of errors  less than c, the M signal 
functions  must  be  reasonably well separated  from  each  other. 
In fact, we  must  choose  them in such a way that, when a 
perturbed  signal is received, the  nearest  signal  point  (in  the 
geometrical  representation) is, with probability  greater  than 
1 - E, the  actual origmal signal. 

It turns  out,  rather surprisingly, that it is possible to choose 
our M signal functions at random  from  the  points  inside  the 
sphere of radius d m ,  and  achieve  the  most  that is possi- 
ble.  Physically, this corresponds  very  nearly to using M differ- 
ent samples of band-limited  whlte  noise  with  power P as 

A particular  selection of M points in the  sphere  corre- 
sponds to a particular encoding  system.  The  general  scheme of 
the  proof is to consider all such  selections,  and to show that 
the  frequency of errors  averaged  over  all  the  particular  selec- 
tions is less  than E. This will show that  there  are  particular 
selections in the  set  with  frequency of errors less than c. Of 
course, there will be other particular  selections  with  a  high 
frequency of errors. 

The  geometry  is shown in Fig. 5.  This is a  plane  cross 
section  through the  hgh-dimensional  sphere  defined  by  a 
typical  transmitted  signal B ,  received  signal A ,  and  the origin 
0. The  transmitted  signal will lie  very  close to the  surface o f  
the  sphere of radius d%WF, since in a  high-dimensional 
sphere  nearly all the  volume is very  close to the  surface.  The 

will lie on the  surface of the  sphere of 
The  high-dimensional  lens-shaped  re- 

signal  functions. 

gion L is the  region of possible  signals  that  might  have  caused 

'D. M. Y. Sommenille, ''An Introduction to the  Geometry of N 
Dimensions," E. P. Dutton, Inc., New Yo&, N. Y., 1929; p. 135. 

A ,  since 
signal is 

Fig. 5-The  geometry involved in Theorem 2. 

the  distance  between  the  transmitted  and  received 
h o s t  certainly  very  close to $PiEV'. L is of 

smaller  volume  than  a  sphere d radius h. We can determine h 
by  equating  the  area of the  triangle OAB, calculated two 
different ways: 

4h42TW(P + N)  = f . d m d m  
h =  /x. 2TW- 

The  probability of any  particular  signal  point  (other  than 
the  actual cause of A )  lying in L is, therefore,  less  than  the 
ratio of the  volumes of spheres of radii  1/2TWPN/P + N and 
d m ,  since in OUT ensemble of coding  systems we chose 

from  the  points  in  the  sphere of 

We  have M signal  points.  Hence  the  probability p that  all 
except  the  actual cause of A are outside L is greater  than 

When  these  points  are  outside L ,  the  signal is interpreted 
correctly.  Therefore, if we make P greater  than 1 - E,  the 
frequency of errors will be  less  than c. This will be  true if 

Now  (1 - x)"  is always  greater  than 1 - nx when n is 
positive.  Consequently,  (25) will be  true if 

l - ( M - l ) ( = )  N TW > l - - E  
(26) 

or if 

( M  - 1) < E (  y)'" (27) 

or 

log(M - 1) < Wlog- P + N + l o g r  - 
T N T '  (28) 

For any  fixed c, we can  satisfy this by  taking T sufficiently 
large,  and also have log( M - 1)/T or  log M / T  as close as 
desired  to W logP + N/N. This shows that, with a  random 
selection of points for  signals, we can obtain an arbitrarily 
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small  frequency of errors and transmit at a rate arbitrarily 
close to the rate C. We can  also  send at the rate C with 
arbitrarily small c ,  since  the  extra  binary dgits need not be 
sent at all, but can  be  filled in at random at the  receiver. This 
only adds another arbitrarily small quantity to c.  This com- 
pletes  the proof. 

VIII. DISCUSSION 
We will call  a  system that transmits  without errors at  the 

rate C an  ideal  system. Such a system cannot be acheved with 
any  finite  encoding  process but can  be  approximated as 
closely as desired. As we approximate  more closely to the 
ideal,  the  following  effects occur: (1)  The rate of transmission 
of binary digits  approaches C = W log, (1 + P / N ) .  (2) The 
frequency of errors  approaches  zero.  (3)  The transmitted sig- 
nal approaches  a  white  noise  in statistical properties. This is 
true, roughly  speaking,  because  the  various  signal  functions 
used  must be distributed at random in the  sphere of radius 
i m .  (4) The  threshold  effect  becomes very sharp. If the 
noise  is  increased  over  the  value  for  which  the  system  was 
designed,  the  frequency of errors  increases very rapidly. ( 5 )  
The  required  delays at transmitter and receiver  increase  indefi- 
nitely. Of course, in a  wide-band system a &second  may  be 
substantially an  infinite  delay. 

In Fig. 6 the  function C/W = log(1 + P / N )  is  plotted 
with P / N  in db horizontal and C/W the  number of bits  per 

Fig. 6-Comparison of PCM and  PPM  with  ideal  performance. 

cycle of band vertical.  The  circles  represent PCM systems of 
the  binary, ternary, etc., types, using  positive and negative 
pulses  and  adjusted to give one error in about lo5  binary 
digits.  The dots are  for  a PPM system  with  two,  three,  etc., 
discrete  positions for the pulse.' 'The difference  between  the 
series of points and the  ideal  curve  corresponds to the  gain 

9The PCM points are  calculated  from  formulas given in "The 
philosophy of FCM," by B. M. Oliver, J. R. Pierce, and C. E. 
Shannon, PROC. I.R.E, vol.  36,  pp.  1324-1332;  November,  1948.  The 
PPM points are from unpublished  calculations of B. McMillan,  who 
points out that, for very  small P / N ,  the points approach to within 3 
db of the  ideal  curve. 

that could  be  obtained  by  more  involved  coding  systems. It 
amounts to about 8 db in power  over  most of the  practical 
range.  The  series of points and  circles  is about the  best that 
can be done without  delay.  Whether it is  worth  while to use 
more  complex  types of modulation to obtain some of this 
possible  saving  is, of course, a  question of relative  costs  and 
valuations. 

The quantity TW log (1 + P / N )  is, for  large T ,  the  number 
of bits that can be transmitted in  time T. It can be regarded as 
an exchange  relation  between  the  different  parameters.  The 
individual quantities T ,  W, P ,  and N can be altered at will 
without  changing  the amount of information we can transmit, 
provided TWlog(1 + P / N )  is  held constant. If TW  is  re- 
duced, P / N  must be increased,  etc. 

Ordinarily, as we increase W,  the  noise  power N in  the 
band will increase  proportionally; N = NOW where No is  the 
noise  power  per  cycle. In this case,  we have 

c =  Wlog 1 + -  i NRW). 
If we let Wo = P / N o ,  i.e., Wo is  the  band  for  which  the  noise 
power is equal to the  signal  power, this can be written 

- = - log(1 + 9). c w  
wo wo 

In Fig. 7, C/Wo is plotted as a  function of W/Wo.  As  we 
increase  the band, the capacity  increases  rapidly  until  the  total 

Fig. 7-Channel  capacity as a function of bandwidth. 

noise  power  accepted is about equal to the  signal  power; after 
this, the  increase is slow, and it approaches an asymptotic 
value  log, e times  the  capacity  for W = Wo. 

IX. ARBITRARY GAUSSIAN NOISE 
If a  white  thermal noise is passed through a  filter whose 

transfer function is Y ( f ) ,  the  resulting noise has  a power 
spectrum N ( f )  = KIY(f)I2 and is known as Gaussian  noise. 
We can calculate  the  capacity of a  channel  perturbed by any 
Gaussian noise from  the  white-noise  result.  Suppose our total 
transmitter power is P and it is distributed among  the  various 
frequencies  according to P(f). Then 

p f )  4- p *  (31) 

We can  divide  the band into a  large  number of small  bands, 
with N(f) approximately constant in each.  The total capacity 
for  a given distribution P(f) will then be given  by 

c, = /wlog 0 (1 + "") N ( f  1 df, 
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since,  for each elementary  band,  the  white-noise  result  applies. 
The  maximum rate of transmission will be  found  by  maximiz- 
ing C, subject to condition  (31). This requires  that we maxi- 
mize 

The  condition for this is,  by  the  calculus of variations, or 
merely  from  the  convex  nature of the  curve  log (1 + x ) ,  

(34) 

or N ( f )  + P ( f )  must be constant.  The  constant is adjusted to 
make  the total signal  power  equal to P .  For frequencies  where 
the noise power is low,  the  signal  power  should  be  high,  and 
vice  versa, as we would  expect. 

The situation is shown  graphically in Fig. 8. The  curve  is  the 
assumed  noise  spectrum,  and  the three lines  correspond  to 

f W 

Fig. &-Best  distribution of transmitter power. 

different  choices of P .  If P is  small, we cannot  make P ( f )  + 
N ( f )  constant,  since h s  would  require  negative  power  at 
some  frequencies. It is easily  shown,  however,  that in t h i s  case 
the best P ( f )  is  obtained  by  making P ( f )  + N ( f )  constant 
whenever  possible, and making P ( f )  zero  at  other  frequen- 
cies.  With  low  values of P ,  some of the  frequencies will not be 
used at all. 

If we  now  vary the noise spectrum N ( f ) ,  keeping  the total 
noise  power  constant  and  always  adjusting  the  signal  spectrum 
P (  f) to give the  maximum  transmission, we can determine  the 
worst  spectrum  for  the  noise. This turns  out to be  the  white- 
noise case. Although this only  shows it to be worst  among  the 
Gaussian noises, it will be shown later to be the  worst  among 
all  possible noises with  the  given  power N in the  band. 

X. THE CHANNEL CAPACITY WITH AN 
ARBITRARY  TYPE OF NOISE 

Of course, there  are  many kinds of noise  which are  not 
Gaussian; for example, impulse noise, or white noise that  has 
passed through a  nonlinear  device. If the  signal  is  perturbed 
by  one of these types of noise,  there will still be a  definite 
channel  capacity C,  the  maximum  rate of transmission of 
binary  digits. We will merely  outline  the  general  theory  here.l0 

Let xl, x 2 ,  * . * ,  x ,  be the  amplitudes of the  noise  at  succes- 
sive  sample  points,  and  let 

loC. E. Shannon, “A mathematical  theory of communication,” Bell 
Sysr. Tech. Juow., vol. 21, pp. 379-424 and 623-657; July and 
October, 1948. 

be the  probability that these  amplitudes  lie between x1 and 
x1 + dx, ,   x2 and x 2  + dx, ,  etc.  Then  the  function p de- 
scribes the  statistical structure of the  noise,  insofar as n 
successive  samples are concerned.  The entropy, H ,  of the 
noise  is  defined as follows.  Let 

H =  lim H,. (37) 
n+ m 

This limit  exists  in  all cases of practical  interest,  and  can be 
determined in many of  them. H is a  measure of the  random- 
ness of the noise. In the case of white  Gaussian noise of  power 
N ,  the  entropy is 

H = l o g e m .  (38) 

It is convenient  to  measure  the  randomness of an arbitrary 
type of noise  not  directly  by its entropy,  but  by  comparison 
with whte Gaussian noise. We can calculate  the  power in a 
white noise having  the  same  entropy as the  given  noise. This 
power,  namely, 

R =  - exp2H 1 
2 r e  (39) 

where H is the  entropy of the  given  noise, will be  called  the 
entropy power of the  noise. 

A noise  of entropy  power F acts very  much  like  a  white 
noise of power X, insofar as perturbing  the  message is con- 
cerned. It can be  shown that the  region  of uncertainty  about 
each  signal  point will have  the  same  volume as the  region 
associated  with  the  white  noise. Of course, it will no longer  be 
a  spherical  region. In proving  Theorem 1 this volume  of 
uncertainty was  the  chief property of the  noise  used. Essen- 
tially  the  same  argument  may be applied  for  any  kind of noise 
with minor modifications.  The  result  is  summarized  in  the 

THEOREM 3:  Let a noise limited to rhe band W have power N 
following: 

and entropy power Nl.  The capacity C is then  bounded by 

where P is the average signal power and W the bandwidth. 
If the  noise  is  a  white  Gaussian  noise, Nl = N ,  and  the two 

limits  are  equal.  The  result  then  reduces to the  theorem in 
Section W. 

For any  noise, Nl < N .  This is why  white Gaussian  noise is 
the  worst  among  all  possible noises. If the  noise is Gaussian 
with  spectrum N ( f ) ,  then 

Nl = Wexp -1 log N (  f) df .  1 w  
W O  

The  upper  limit  in  Theorem 3 is then  reached  when we are 
above  the  highest  noise  power in Fig. 8. This is  easily  verified 
by substitution. 

In the cases of most  interest, P / N  is  fairly  large.  The two 
limits  are  then  nearly  the  same,  and we can use W log ( P  + 
N ) / N l  as the  capacity.  The  upper  limit  is  the best choice, 
since it can be shown  that as P / N  increases, C approaches 
the  upper  limit. 

1200 PROCEEDINGS OF THE  IEEE, VOL. 72, NO. 9, SEPTEMBER 1% 



XI. DISCRETE SOURCES OF INFORMATION 

Up to now  we have  been  chiefly  concerned  with  the 
channel. The  capacity C measures  the  maximum rate at which 
a random series of binary digits  can be transmitted when  they 
are encoded in the  best  possible way. In general,  the informa- 
tion to be transmitted will not be in this form. It may,  for 
example,  be  a  sequence of letters as in telegraphy,  a speech 
wave, or a  television  signal.  Can we find  an  equivalent  number 
of bits per  second  for information sources of this type? 
Consider  first  the  discrete  case;  i.e.,  the message consists of a 
sequence of discrete  symbols. In general,  there may  be  correla- 
tion of various sorts between  the  different  symbols. If the 
message  is  Engllsh text, the letter E is the  most  frequent, T is 
often followed  by H ,  etc.  These  correlations allow a  certain 
compression of  the text by proper  encoding. We  may define 
the  entropy of a  discrete  source in a way analogous to that for 
a  noise;  namely,  let 

H, = - -  p(i,j;.-,s)log,p(i,j;..,s) (42)  1 
n . .  

I , J , . " , S  

where p (  i, j ,  . . . , s) is  the  probability of the  sequence of 
symbols i ,  j ;  . .,s, and the  sum  is  over  all  sequences of n 
symbols.  Then  the entropy is 

H =  lim H,.  (43) 

It turns out that H is  the  number of bits produced by the 
source  for  each  symbol of  message. In fact,  the  following 
result is proved in the  Appendix. 
THEOREM 4. It is possible  to encode  all  sequences of n message 

symbols  into  sequences of binary  digits in  such a  way  that  the 
average  number of binary  digits per message  symbol  is ap- 
proximately H, the  approximation  approaching  equality as n 
increases. 

It follows that, if we have  a  channel of capacity C and  a 
discrete  source of entropy H ,  it is  possible to encode  the 
messages  via binary  digits into signals  and  transmit  at  the rate 
C/H of the  original message  symbols  per  second. 

For example, if the  source  produces  a  sequence of letters A ,  
B ,  or C with  probabilities pA = 0.6, p B  = 0.3, pc = 0.1, and 
successive letters are  chosen  independently,  then H, = H,  = 
-[0.610g20.6 + 0.3 10g20.3 + 0.1 log,O.l] = 1.294 and  the 
information produced  is  equivalent to 1.294 bits  for  each letter 
of the message. A  channel with a  capacity of 100 bits  per 
second  could  transmit  with  best  encodmg 100/1.294 = 77.3 
message letters per  second. 

11-33 

XII. CONTINUOUS SOURCES 
If the  source  is  producing  a  continuous  function of time, 

then  without further data we must  ascribe it an  infinite  rate of 
generating information. In fact, merely to specify  exactly  one 
quantity which  has  a continuous range of possibilities  requires 
an infinite  number  of  binary  digits. We cannot  send  continu- 
ous information exactly over  a  channel of finite  capacity. 

Fortunately, we do not need to send  continuous messages 
exactly.  A certain amount of discrepancy  between  the  original 
and the recovered  messages can always  be tolerated. If a 
certain tolerance  is  allowed,  then  a  definite  finite rate in 
binary  digits  per  second  can  be  assigned to a  continuous 
source. It must  be  remembered  that this rate depends on the 
nature and  magnitude of the  allowed error between  original 
and final messages. The rate may  be  described as the rate of 
generating information relative to the  criterion of fidelity. 

Suppose  the  criterion of fidelity  is the rms dmrepancy 
between  the  original  and  recovered  signals,  and that we can 
tolerate a  value f i .  Then  each  point in the  message  space  is 
surrounded by a  small  sphere of radius ,/m. If the 
system  is  such that the  recovered  message  lies wih h s  
sphere, the transmission will be satisfactory.  Hence,  the  num- 
ber of different messages  which  must  be capable of distinct 
transmission is  of the  order of the  volume V, of the  region of 
possible messages  divided  by  the  volume of the  small  spheres. 
Carrying out this argument in detail along  lines  similar to 
those  used in Sections VI1 and IX leads to the  following 
result: 

THEOREM 5 :  If  the  message  source  has power entropy 
power a and  bandwidth W,, the rate R of generating  informa- 
tion  in bits per second  is  bounded  by 

where N, is the  maximum  tolerable  mean  square  error in repro- 
duction. If we have  a  channel  with  capacity C and  a  source 
whose  rate of generating  information R is less  than  or  equal to C, 
it is possible to  encode  the  source in such  a  way as to transmit 
over this channel  with  the fidelity measured  by N,. If R C, 
this is impossible. 

In the  case  where  the  message  source  is  producing  white 
thermal  noise, = Q. Hence  the  two bounds  are  equal  and 
R = W, log Q / N l .  We can,  therefore,  transmit  white noise  of 
power Q and  band W, over a  channel of band W perturbed 
by  a  white  noise of power N and  recover  the  original  message 
with  mean  square error Nl if, and  only if, 

w, log - 5 Wlog - Q P + N  
Nl - N '  (45) 

APPENDIX 
Consider  the  possible  sequences of n symbols.  Let  them  be 

arranged in order of decreasing  probability, p 1  2 p 2  2 p 3  . . . 
2 ps .  Let Pi = Ci-'pj. The i th  message is encoded by ex- 
pandmg PJ as a  binary  fraction  and using  only  the  first ti  
places  where t ,  is  determined  from 

1  1 
Pi - Pi 

log, - 5 t ,  < 1 + log, -.  (4) 

Probable  sequences  have  short  codes  and  improbable  ones 
long  codes. We  have 

(47) 

The  codes  for  different  sequences will all  be  different. PI+' ,  
for  example, differs by p ,  from Pi,  and  therefore its binary 
expansion will differ  in  one or more  of the  first ti places,  and 
similarly  for  all  others.  The  average  length of the  encoded 
message will be Cpi t i .  Using (a), 

or 

nH, 4 C p i t i  < 1 + nH,. (49) 

The  average  number of binary  digits used  per  message  symbol 
is l / n C p i t ,  and 

As n + w ,  H, + H and l / n  + 0, so the  average  number of 
bits per message  symbol  approaches H.  
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