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1 Introduction1

It is a standard assumption in Linguistics that all human languages are equally (and enormously) com-
plex; when looked at as a whole, no language can be called “simpler” than another. Certainly, languages
can differ in the distribution of their complexity, so that one might employ a richer inflectional system,
or entertain a more complicated gamut of syllable shapes than another, but it is generally supposed that
these differences must “even out” as one considers entire linguistic systems. Where there is atypical sim-
plicity in morphology, for instance, it is assumed that one will find compensatory complexity in possible
syntactic distinctions, or subtle lexical differences, or something else.

A number of researchers have recently begun to approach this equal complexity hypothesis as an
empirical claim to be tested under particular definitions of complexity. Perhaps the most famous re-
cent example is McWhorter’s (2001) controversial claim that “creole grammars are the world’s simplest
grammars,” but see also Juola 1998, Shosted 2006, Nichols 2007, and Pellegrino et al. 2007. The hy-
pothesis deserves formal articulation and scrutiny because it suggests some important consequences, if
confirmed:

i. Language change must be subject to a sort of “Newton’s Third Law of Motion,” whereby linguistic
complexity remains constant over time. Any complexity metric that proves consistent with the
equal complexity hypothesis could potentially bolster the predictive power of historical linguistics.

ii. Systems of grammatical representation might fruitfully be made subject to the constraint that no
grammar of a possible human language be more complex than any other, in toto.

Even should we adopt a weaker version of the equal complexity hypothesis, supposing, say, that there
is some narrow range of complexity in which all human languages fall, it remains an important task to
map the boundaries of that range according to some metric.

In this paper I argue for an information theoretic approach to defining linguistic complexity, and
offer preliminary results for a novel method of applying this approach to natural language morphology.
Section 2 gives a brief review of some existing complexity metrics and proposes one for morphology
based on the information theoretic notion of Kolmogorov complexity. Section 3 describes the results of
an exploratory application of this metric to twenty languages, and section 4 then discusses work to be
done and the problem of evaluating complexity metrics in general.

2 Defining Complexity

2.1 Existing Metrics
There is of course no generally agreed on definition of grammatical complexity in linguistics, though
a desire for one can be traced back to the evaluation metrics of early generative grammar, and even
further to Goodman (1943). A common method of quantifying complexity in recent work (McWhorter
2001, Bickel and Nichols 2005, Shosted 2006, Nichols 2007) is to count the occurrences of a variety of
hand-picked, intuitively justified properties, or complexity “indicators,” as Shosted (2006:3) calls them,
of the linguistic system in question. For example, one might relate phonological complexity to the size
of a language’s phoneme and syllable inventories, to the number of “marked” forms it permits, or to
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the number of phonological alternations known to occur. In the case of morphological complexity, the
number of possible inflection points in a “typical” sentence, the number of inflectional categories, and
the number of morpheme types are all likely candidates for complexity indicators. A metric of syntactic
complexity could conceivably be gotten from the number of parameters of variation deviating from their
presumed defaults values, or from the number of syntactic operations that must apply in an average
sentence.

Though this general approach to quantifying complexity is often useful, it does suffer from some
drawbacks. Chief among them is the question of how to decide in a principled way which of the myr-
iad linguistic properties that can be measured should be admitted into the set of complexity indicators.
Additionally, even supposing one has a good guiding principle for the selection of complexity indica-
tors, constructing a unified metric as a function of these indicators often requires answering questions
that do not have intuitively obvious answers: how many marked syllables should a given phonological
alternation be worth in terms of complexity?; and so on.

An alternative approach is to attempt to apply existing, independently motivated conceptions of
complexity, as studied in information theory, to linguistic systems. Information theory offers at least two
such formalisms that might be appropriated. The first is information entropy (Shannon 1948), a quantity
defined with respect to a probability model, that captures the average number of bits of information nec-
essary to specify the state of a random variable or system described by that probability model. Pellegrino
et al. (2007), del Prado Martı́n et al. (2004) and others have used this notion to measure linguistic com-
plexity, with interesting results. The second possibility is Kolmogorov complexity (Solomonoff 1964,
Kolmogorov 1965, Chaitin 1987), a more general quantity that gives an absolute and objective measure
of the information content of an object, independent of any probability model. Juola (1998, in press)
has experimented with a text-deformation method of measuring linguistic complexity based on this for-
malization; the metric I propose in this paper is also grounded in Kolmogorov complexity (and indeed
replicates some aspects of Juola’s results; see section 3.2), though it employs a very different method.

Neither entropy nor Kolmogorov complexity are without limitations if one wishes to apply them to
aspects of language. The former requires that the atomic units of the system whose complexity one is
measuring be statistically independent of each other, a constraint that is difficult to satisfy in linguistic
systems (Pellegrino et al. (2007) give a good discussion of the issues involved, and in their case settle
on the syllable as an approximately independent unit), while the latter is not directly calculable, forcing
one to depend on computable approximations of Kolmogorov complexity.

2.2 Kolmogorov Complexity
McWhorter (2001), in describing the intent of his proposed complexity metric, hits upon the intuition at
the heart of Kolmogorov complexity: “My object of inquiry is differentials between grammars in degree
of overspecification. . . to the extent that some grammars might be seen to require lengthier descriptions
in order to characterize even the basics of their grammar than others.” (pp. 134–5, emphasis mine).
This idea that one object is more complex than another insofar as it takes longer to describe is precisely
what Kolmogorov complexity aims to formalize, as a property of strings. Namely, it is the length of the
shortest description, in some agreed on description language L, of the string in question. Consider two
strings over the alphabet {0, 1}:

(1) a. 10101010101010101010
b. 11011111000101011010

String (1a) can be described in English as “10 ten times,” while (1b) has no obvious such description
in English, beyond listing the string itself. If we take English as our L, and if we measure the length
of a description in English as the number of characters it comprises in standard orthography, then it
would seem, tentatively, that (1a) is the simpler of the two. Crucially, though, to make such a claim
within the framework of Kolmogorov complexity, one would have to demonstrate that there is no shorter
description of (1a) in the chosen description language, and that there is no shorter description of (1b)
than simply listing it. One might be surprised to learn that (1b) can in fact be described rather succinctly
in English as “913754 in binary,” or if the listener is assumed to possess some relevant background
knowledge, perhaps simply as “913754 BIN,” which is a shorter description than that given for (1a).



Language Bits Language Bits
Danish 7,159,576 Dutch 8,182,264
English 6,895,608 French 8,240,232
German 8,039,792 Haitian Creole 7,298,360
Hungarian 8,163,704 Icelandic 7,953,120
Italian 9,049,912 Latin 7,887,288
Maori 7,064,968 Spanish 7,412,232
Swedish 7,597,400

Table 1: Upper bounds on the Kolmogorov complexity of the Bible, as translated into thirteen languages;
computed by the bzip2 compression algorithm.

This illustrates two important points. The first is that English is not a very good choice for a descrip-
tion language; there is simply no rigorous definition of what it means for an English string to “describe”
something, hence a certain indeterminacy as to whether something like “913754 BIN” should be consid-
ered a valid description, contingent upon shared knowledge, etc. The other is that, even supposing one
has chosen a useful description language, it might prove very difficult to ever be sure that one has truly
found the shortest possible description of a given string.

The first concern, that the description language carry a well defined sense of what it means to
describe, can be addressed by choosing a computer language as L. That is, a description of a string S is
the code C (in a chosen programming language L) of any program that outputs S. If C represents the
smallest possible such program, then the Kolmogorov complexity of S is |C|. Theorists usually avoid
wedding themselves to any particular programming language by instead using a standard encoding for
the Gödel numbers of the universal Turing machine, though the details of this theoretical convenience
are not important for what follows. One important point is that we can always assume without loss of
generality that both the string to be described, S, and the code that describes it, C, are expressed in the
binary alaphabet {0, 1}; thus the units of Kolmogorov complexity are bits, i.e., units of information.

The second concern, that for a given string, we might never be sure we’ve found its shortest descrip-
tion in the description language, is in fact confirmed by one of the fundamental results of algorithmic
information theory: even though the Kolmogorov complexity of a string is a well defined, objective quan-
tity, one can never actually compute it directly (see, e.g., Chaitin 1987 for a proof). In practice, one must
instead employ approximation methods that establish upper bounds on Kolmogorov complexity. Juola
(1998), for instance, depends on the standard gzip compression algorithm as one such approximation;
another possibility is described in the next section.

Thus, to construct a complexity metric for some domain on the basis of Kolmogorov complexity,
one must answer three questions: (i) what exactly is the object or system whose complexity is to be
measured? (ii) how shall that object be encoded as a (binary) string? and (iii) what method shall be
used to approximate the Kolmogorov complexity of that string? Suppose, for a simple example, that
we are interested in a complexity metric for the expression, in a given human language λ, of the Bible,
suitably translated. A convenient string encoding of such an object is simply the text of the Bible in
λ, according to λ’s standard orthographic conventions (this encoding is easily reduced to a binary one).
The Kolmogorov complexity of the resulting string might then be approximated through a standard
compression algorithm. The results of such an experiment for thirteen languages are given in Table 1
(see section 3.1 for more information on the data used).

Of course, the complexity of some corpus in a given language is not necessarily a linguistically
interesting quantity. Linguistic complexity is better conceived of as the complexity of a language’s
grammar, or some component thereof (the phonological grammar, morphological grammar, etc.). The
situation is schematized in (2).

(2) D → G→ λ

G is a formal grammar devised by linguists to generate, or account for, the observed properties of some
aspect (phonological/morphological/syntactic/. . . ) of a linguistic system, λ. If D is the shortest descrip-
tion of (i.e., computer program that outputs) a suitable string encoding of G, then |D| is the Kolmogorov



complexity of the grammar for λ. In practice, D will always be an approximation of the shortest descrip-
tion, so that |D| is an upper bound on the Kolmogorov complexity. The job of constructing a complexity
metric for λ, then, consists of deciding what form its grammar G will take, and which approximation
method to use.

2.3 Minimum Description Length and Morphology
Morphology is a good domain in which to begin experimenting with proposed complexity metrics for
several reasons. As McWhorter (p.c. in Shosted 2006) notes, it displays a “usually richer and more
widespread interaction with syntax, this interaction being of note in covering the general issue of com-
plexity more widely.” Juola (1998:2) remarks that morphology is an obvious “testbed” for theories of
measuring complexity, since “it is intuitively apparent that some languages (for example, Finnish) are
‘morphologically complex’ while others are more simple. On the other hand, claims about (e.g.) seman-
tic differences [in complexity] are less intuitive and less widely accepted.”

Morphology is also a convenient place to begin applying information theoretic complexity met-
rics beacuse of recent work by Goldsmith (2001, 2006) and Hu (2007) on the application of general
complexity-based inductive methods to the automatic learning of natural language morphology; their
results have been collected into a freely available software package called Linguistica.2 The intent of
Linguistica is not to measure linguistic complexity per se, but rather to create a computer program that
emulates what a linguist does when analyzing the morphology of a language, solely on the basis of ex-
ample texts. It does so by application of a general inductive technique based on “minimum description
length,” (MDL; Rissanen 1984) a method of approximating Kolmogorov complexity that is rendered
computable by restricting the class of allowed descriptions (though in MDL theory, one usually speaks
of candidate models or hypotheses rather than descriptions). The essential method followed by Lin-
guistica is to attempt to construct as small a model of the data (in the allowed class) as possible, that
simultaneously predicts the data as well as possible.

At the risk of simplifying for our present purposes (see Goldsmith 2001 for more details), the models
(descriptions) that Linguistica constructs are lexica consisting of stems, affixes, and what Goldsmith calls
“signatures,” which describe the possible distributions of affixes upon stems. Here are some example
entries in a lexicon induced by Linguistica from a corpus of Standard French:

(3)

Stem Suffixal Signature
a. accompli ∅.e.t.r.s.ssent.ssez
b. académi cien.e.es.que
c. académicien ∅.s

Entry (3a) indicates that the stem accompli- can take the suffixes -∅ (masculine past participle), -e
(feminine past participle), -t (third person singular), -r (infinitive), -s (second person singular), -ssent
(third person plural), -ssez (second person plural). Thus the signature ∅.e.t.r.s.ssent.ssez
corresponds to something like the inflectional category “verbs in -ir” in French. Similarly, (3b) indicates
that académi- is the stem of words like académicien “academician,” académie “academy,” académies
“academies,” académique “academic.” Furthermore, académicien is itself a stem which can take singular
-∅ and plural -s, as shown in (3c).

Linguistica reads in a corpus of text in the target language and iteratively applies a series of heuristics
to find the simplest model (i.e., lexicon as in (3)) that best describes the corpus. That is, for each stem,
affix, and signature a description length is calculated and tracked, and the “simplest” model in this case is
that with the smallest total description length over all stems, affixes, and signatures.3 These description
lengths are approximations, or indices, of complexity (in the Kolmogorov sense), so that a lexicon’s total
description length is an approximation of its complexity.

2Available at http://linguistica.uchicago.edu.
3More properly, Linguistica attempts to minimize the complexity (description length) of the model summed with the complexity

of the corpus given the model as a probabilistic generator of it.



2.4 A Metric
How then might we go from the complexity of the lexicon generated for a particular language to the
complexity of that language’s morphology? The total complexity of a lexicon is distributed between
(i) its stems, (ii) its affixes, and (iii) its signatures. For a language with few and simple inflections, most of
the total information (hence, complexity) encoded by the lexicon will reside in the list of stems, whereas
for a morphologically more complex language, Linguistica will apportion more of that information to
the lists of affixes and signatures. Thus we can measure a language’s morphological complexity as the
proportion of the lexicon’s total description length that is due to the description lengths of the affixes and
signatures. That is, if DL(x) is the description length of x,

(4) Morphological complexity = DL(Affixes)+DL(Signatures)
DL(Affixes)+DL(Signatures)+DL(Stems)

In principle, we might also take morphological complexity to be the sum description length of
affixes and signatures (the numerator in (4)) — it would then be a directly expressed upper bound on the
Kolmogorov complexity of the relevant parts of the lexicon, expressed in bits. The reason for expressing
it as a unitless ratio of description lengths as in (4) is to insulate the metric from the incidental deficiencies
of available corpora, which will not generally exhibit the full range of morphological combinations
possible in a language.

Such a metric is not without its limitations, of course. The greatest of these is that it relies entirely
on Linguistica’s inductive technique for its notion of what morphology is. Linguistica is currently poorly
suited to analyzing languages that make heavy use of infixal, templatic, or reduplicative morphology, and
so the proposed metric will not generally be applicable to such languages. Even in the case of mostly
prefixing and suffixing languages, Linguistica’s automatically discovered analyses will not always cor-
respond to what a trained linguist might conclude. Ideally, we would cut Linguistica out of the picture
entirely, and compute the metric on the basis of morphological lexica created by hand in consultation
with native speakers, but this would obviously severely limit the speed at which one could survey large
numbers of languages.

3 Preliminary Measurements

3.1 Corpora
To begin exploring the empirical behavior of the metric proposed above, a total of twenty languages
were selected for preliminary measurements. Since Linguistica must derive its morphological analyses
from samples of text, the choice of languages was largely determined by the size and quality of available
corpora. Additionally, an effort was made to include a number of creole languages (seven total), in order
to test whether the proposed metric reflects the often (intuitively) claimed relative simplicity of their
morphology.

Fourteen of the languages are represented by corpora consisting of translations of the Bible, as made
freely available on the internet.4 These languages are listed in (5) together with the word-token counts
of their copora.

(5) Danish (653,036), Dutch (727,489), English (737,241), French (728,191), German (729,853),
Haitian Creole (920,332), Hungarian (597,084), Icelandic (667,363), Italian (774,946), Latin
(604,305), Maori (977,565), Spanish (664,108), Swedish (675,315), Vietnamese (837,733).

The remaining six languages are creoles or pidgins for which biblical translations are not readily avail-
able, and whose corpora were gathered from the web by Scannell’s (2007) automatic, language-targeting
web-crawler. They are listed in (6) with token counts.

(6) Bislama (62,451), Kituba (45,275), Nigerian Pidgin (281,639), Papiementu (730,189), Solomon
Pijin (19,986), Tok Pisin (1,027,044).

Each corpus was normalized for capitalization, extraneous punctuation, etc.
4Available at http://www.biblegateway.com/versions/ as of June, 2007.



Language Metric Language Metric
Latin 35.51% English 16.88%
Hungarian 33.98% Maori 13.62%
Italian 28.34% Papiementu 10.16%
Spanish 27.50% Nigerian Pidgin 9.80%
Icelandic 26.54% Tok Pisin 8.93 %
French 23.05% Bislama 5.38%
Danish 22.86% Kituba 3.40%
Swedish 21.85% Solomon Pijin 2.91%
German 20.40% Haitian Creole 2.58%
Dutch 19.58% Vietnamese 0.05%

Table 2: Computed values of the proposed ratio metric (4) for all twenty languages surveyed.

3.2 Results
From each corpus, Linguistica induced a morphological lexicon of stems, prefixes, suffixes, and signa-
tures describing their possible combinations. These were output together with their computed description
lengths, yielding sufficient information to calculate the ratio in (4). Table 2 gives the results for all cor-
pora. One can see that all of the creoles and pidgins receive comparatively low values of morphological
complexity according to the metric, together with Vietnamese. The remaining languages appear to be
ranked plausibly, with Latin and Hungarian topping the list as most complex. Additionally, the relative
ranking of Maori, English, Dutch, and French — the four languages shared by my survey and that of
Juola (1998) — agrees with that yielded by Juola’s metric.

Table 3 gives the complexity values for the fourteen languages represented by Bible corpora, to-
gether with the type and token counts of the corpora. There is an apparent trend: as the complexity
metric increases, so does the type count, while the token count decreases. That is, languages that score
highly according to the metric employ many word types, but fewer tokens thereof, while lower scoring
languages use more tokens of fewer types. These relations are highly significant according to Spear-
man’s rank test (Metric-Types: ρ = 0.96, p < 2.2× 10−16 ; Metric-Tokens: ρ = −0.76, p = 0.002) and
Kendall’s T-test (Metric-Types: τ = 0.89, p = 1.81× 10−7 ; Metric-Tokens: τ = −0.60, p = 0.002).

Juola (1998) finds a similar relation between his text-deformational metric of morphological com-
plexity and the type and token counts of his corpora. This is a plausible result that one might expect to
see if the metric is indeed measuring something like morphological complexity, given that the corpora
involved are all purported translations of each other. Distinctions or constructions that are expressed in
languages like Latin or Hungarian by morphologically altering the shapes of words (each different shape
corresponding to a different word-type), are often expressed in morphologically simpler languages by the
presence of function words or particular syntactic arrangements, each instance of which corresponds to
new tokens of already existing types. Hence a rising token count as morphological complexity decreases,
and a rising type count as morphological complexity increases.

4 Discussion

4.1 Evaluating Complexity Metrics
The approach taken in this paper has been to begin with an a priori, mathematical notion of complexity,
which is essentially an elaborated statement of our intuitive grasp of the difference between “complex”
and “simple” objects in the most general sense (“an object is more complex insofar as it takes longer to
describe”), and to examine how it might be applied to linguistic systems like the morphological com-
ponent of a grammar. A related, but separate question that I have not considered so far is: given two
competing, proposed metrics of linguistic complexity, on what basis does one choose between them?
How should we evaluate our complexity metrics?



Language Metric Types Tokens
Latin 35.51% 46,722 604,305
Hungarian 33.98% 63,046 597,084
Italian 28.34% 35,232 774,946
Spanish 27.50% 29,021 664,108
Icelandic 26.54% 34,911 667,363
French 23.05% 31,684 728,191
Danish 22.86% 24,280 653,036
Swedish 21.85% 23,964 675,315
German 20.40% 24,692 729,853
Dutch 19.58% 21,242 727,489
English 16.88% 15,570 737,241
Maori 13.62% 8,271 977,565
Haitian Creole 2.58% 7,307 920,332
Vietnamese 0.05% 7,144 837,733

Table 3: Computed metric values and type/token counts for the fourteen biblical corpora.

This is a difficult question to answer without some objective notion of what properties “complex”
linguistic systems should have, beyond simply requiring lengthier descriptions. One possibility is to
adopt a processing perspective, and demand that a proposed complexity metric correlate with the sorts
of things one might reasonably expect it to under a particular processing model; e.g., rates of speech
errors and disfluencies, childhood and L2 acquisition properties, etc. Rigorously elucidating the expected
effects of complexity according to a given metric in a particular processing model may not always prove
easy, though. A second possible stance is essentially pragmatic: in a sense, it doesn’t really matter
whether a metric truly corresponds to whatever we mean by “complexity,” as long as it is useful; for
example, if one finds a metric that empirically turns out to be invariant across languages, that might
prove to be a very powerful predictive tool, regardless of whether it’s actually “complexity,” and would
furthermore motivate much research into the reasons for its invariance.

The question will have to be left open for now.

4.2 Future Work
The method outlined here for basing a metric of morphological complexity on the information theoretic
notion of Kolmogorov complexity is only one possibility. Juola (1998, in press) offers an alternative,
somewhat simpler, method of applying Kolmogorov complexity to morphology. His approach is to
deform a corpus in such a way as to efface any morphological information from the text, and to approx-
imate the Kolmogorov complexity of the corpus before and after this effacement, so that the ratio of
these “before” and “after” measurements gives an indication of the language’s morphological complex-
ity. The effacement is accomplished by replacing each word-type with a random integer, thus obscuring
any original linguistic information internal to the word, while retaining external (presumably syntactic)
information about the ordering and collocations of the word’s tokens. One problem with this method
is that the phonological content of each word is effaced along with any morphological information, so
that one ends up measuring, in effect, some mixture of phonological and morphological complexity. The
Linguistica-based method described in this paper also conflates phonolgical and morphological complex-
ity to a certain extent, since the phonological content of each affix counts towards its description length;
however, since the actual morphemes have been identified, it should be possible to separate the purely
phonological information from that needed to track the existence and distribution of each morpheme.
This indicates a possible line of future research into refining the metric.

Additional directions for future work might include investigating the potential for correlations be-
tween proposed complexity metrics and the kinds of processing phenomena mentioned above (speech
error rates, etc.), and experimenting with how metrics based on Kolmogorov complexity might be ex-
tended to grammatical domains other than morphology, with an eye toward establishing an information



theoretic typology of linguistic complexity.

References
BICKEL, BALTHASAR, and JOHANNA NICHOLS. 2005. Inflectional synthesis of the verb. In The World

Atlas of Language Structures, ed. by Martin Haspelmath, Matthew S. Dryer, David Gil, and Bernard
Comrie, 94–97. Oxford: Oxford University Press.

CHAITIN, J. G. 1987. Algorithmic Information Theory. Cambridge: Cambridge University Press.
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