
Optimizing Grammars for Minimum Dependency Length

Daniel Gildea
Computer Science Dept.
University of Rochester
Rochester, NY 14627

David Temperley
Eastman School of Music
University of Rochester
Rochester, NY 14604

Abstract

We examine the problem of choosing word
order for a set of dependency trees so as
to minimize total dependency length. We
present an algorithm for computing the op-
timal layout of a single tree as well as a
numerical method for optimizing a gram-
mar of orderings over a set of dependency
types. A grammar generated by minimizing
dependency length in unordered trees from
the Penn Treebank is found to agree surpris-
ingly well with English word order, suggest-
ing that dependency length minimization has
influenced the evolution of English.

1 Introduction

Dependency approaches to language assume that ev-
ery word in a sentence is the dependent of one other
word (except for one word, which is the global head
of the sentence), so that the words of a sentence form
an acyclic directed graph. An important principle of
language, supported by a wide range of evidence, is
that there is preference for dependencies to be short.
This has been offered as an explanation for numer-
ous psycholinguistic phenomena, such as the greater
processing difficulty of object relative clauses ver-
sus subject relative clauses (Gibson, 1998). Depen-
dency length minimization is also a factor in ambi-
guity resolution: listeners prefer the interpretation
with shorter dependencies. Statistical parsers make
use of features that capture dependency length (e.g.
an adjacency feature in Collins (1999), more explicit
length features in McDonald et al. (2005) and Eisner

and Smith (2005)) and thus learn to favor parses with
shorter dependencies.

In this paper we attempt to measure the extent to
which basic English word order chooses to minimize
dependency length, as compared to average depen-
dency lengths under other possible grammars. We
first present a linear-time algorithm for finding the
ordering of a single dependency tree with shortest
total dependency length. Then, given that word or-
der must also be determined by grammatical rela-
tions, we turn to the problem of specifying a gram-
mar in terms of constraints over such relations. We
wish to find the set of ordering constraints on depen-
dency types that minimizes a corpus’s total depen-
dency length. Even assuming that dependency trees
must be projective, this problem is NP-complete,1

but we find that numerical optimization techniques
work well in practice. We reorder unordered depen-
dency trees extracted from corpora and compare the
results to English in terms of both the resulting de-
pendency length and the strings that are produced.
The optimized order constraints show a high degree
of similarity to English, suggesting that dependency
length minimization has influenced the word order
choices of basic English grammar.

2 The Dependency Length Principle

This idea that dependency length minimization may
be a general principle in language has been dis-
cussed by many authors. One example concerns the

1English has crossing (non-projective) dependencies, but
they are believed to be very infrequent. McDonald et al. (2005)
report that even in Czech, commonly viewed as a non-projective
language, fewer than 2% of dependencies violate the projectiv-
ity constraint.



well-known principle that languages tend to be pre-
dominantly “head-first” (in which the head of each
dependency is on the left) or “head-last” (where it
is on the right). Frazier (1985) suggests that this
might serve the function of keeping heads and de-
pendents close together. In a situation where each
word has exactly one dependent, it can be seen that
a “head-first” arrangement achieves minimal depen-
dency length, as each link has a length of one.

We will call a head-first dependency “right-
branching” and a head-last dependency “left-
branching”; a language in which most or all de-
pendencies have the same branching direction is a
“same-branching” language.

Another example of dependency length mini-
mization concerns situations where a head has mul-
tiple dependents. In such cases, dependency length
will be minimized if the shorter dependent is placed
closer to the head. Hawkins (1994) has shown that
this principle is reflected in grammatical rules across
many languages. It is also reflected in situations of
choice; for example, in cases where a verb is fol-
lowed by a prepositional phrase and a direct object
NP, the direct object NP will usually be placed first
(closer to the verb) but if it is longer than the PP, it
is often placed second.

While one might suppose that a “same-
branching” language is optimal for dependency-
length minimization, this is not in fact the case. If
a word has several dependents, placing them all
on the same side causes them to get in the way of
each other, so that a more ’balanced” configuration
– with some dependents on each side – has lower
total dependency length. It is particularly desirable
for one or more one-word dependent phrases to be
“opposite-branching” (in relation to the prevailing
branching direction of the language); opposite-
branching of a long phrase tends to cause a long
dependency from the head of the phrase to the
external head.

Exactly this pattern has been observed by Dryer
(1992) in natural languages. Dryer argues that,
while most languages have a predominant branch-
ing direction, phrasal (multi-word) dependents tend
to adhere to this prevailing direction much more
consistently than one-word dependents, which fre-
quently branch opposite to the prevailing direction
of the language. English reflects this pattern quite

‖

w0 w1 w2 w3 w4 w5 w6 w7 w8

Figure 1: Separating a dependency link into two
pieces at a subtree boundary.

strongly: While almost all phrasal dependents are
right-branching (prepositional phrases, objects of
prepositions and verbs, relative clauses, etc.), some
1-word categories are left-branching, notably deter-
miners, noun modifiers, adverbs (sometimes), and
attributive adjectives.

This linguistic evidence strongly suggests that
languages have been shaped by principles of de-
pendency length minimization. One might won-
der how close natural languages are to being op-
timal in this regard. To address this question, we
extract unordered dependency graphs from English
and consider different algorithms, which we call De-
pendency Linearization Algorithms (DLAs), for or-
dering the words; our goal is to find the algorithm
that is optimal with regard to dependency length
minimization. We begin with an “unlabeled” DLA,
which simply minimizes dependency length without
requiring consistent ordering of syntactic relations.
We then consider the more realistic case of a “la-
beled” DLA, which is required to have syntactically
consistent ordering.

Once we find the optimal DLA, two questions can
be asked. First, how close is dependency length in
English to that of this optimal DLA? Secondly, how
similar is the optimal DLA to English in terms of the
actual rules that arise?

3 The Optimal Unlabeled DLA

Finding linear arrangements of graphs that minimize
total edge length is a classic problem, NP-complete
for general graphs but with anO(n1.6) algorithm for
trees (Chung, 1984). However, the traditional prob-
lem description does not take into account the pro-
jectivity constraint of dependency grammar. This
constraint simplifies the problem; in this section we
show that a simple linear-time algorithm is guaran-
teed to find an optimal result.

A natural strategy would be to apply dynamic pro-
gramming over the tree structure, observing that to-



tal dependency length of a linearization can be bro-
ken into the sum of links below any nodew in the
tree, and the sum of links outside the node, by which
we mean all links not connected to dependents of the
node. These two quantities interact only through the
position ofw relative to the rest of its descendants,
meaning that we can use this position as our dy-
namic programming state, compute the optimal lay-
out of each subtree given each position of the head
within the subtree, and combine subtrees bottom-up
to compute the optimal linearization for the entire
sentence.

This can be further improved by observing that
the total length of the outside links depends on the
position ofw only because it affects the length of
the link connectingw to its parent. All other outside
links either cross above all words underw, and de-
pend only on the total size ofw’s subtree, or are en-
tirely on one side ofw’s subtree. The link fromw to
its parent is divided into two pieces, whose lengths
add up to the total length of the link, by slicing the
link where it crosses the boundary fromw’s subtree
to the rest of the sentence. In the example in Fig-
ure 1, the dependency fromw1 to w6 has total length
five, and is divided in to two components of length
2.5 at the boundary ofw1’s subtree. The length of
the piece overw’s subtree depends onw’s position
within that subtree, while the other piece does not
depend on the internal layout ofw’s subtree. Thus
the total dependency length for the entire sentence
can be divided into:

1. the length of all links withinw’s subtree plus
the length of the first piece ofw’s link to its
parent, i.e. the piece that is above descendants
of w.

2. the length of the remaining piece ofw’s link to
its parent plus the length of all links outsidew.

where the second quantity can be optimized in-
dependently of the internal layout ofw’s subtree.
While the link fromw to its parent may point either
to the right or left, the optimal layout forw’s subtree
given thatw attaches to its left must be the mirror
image of the optimal layout given thatw attaches to
its right. Thus, only one case need be considered,
and the optimal layout for the entire sentence can

be computed from the bottom up using just one dy-
namic programming state for each node in the tree.

We now go on to show that, in computing the or-
dering of thedi children of a given node, not alldi!
possibilities need be considered. In fact, one can
simply order the children by adding them in increas-
ing order of size, going from the head outwards,
and alternating between adding to the left and right
edges of the constituent.

The first part of this proof is the observation that,
as we progress from the head outward, to either the
left or the right, the head’s child subtrees must be
placed in increasing order of size. If any two ad-
jacent children appear with the smaller one further
from the head, we can swap the positions of these
two children, reducing the total dependency length
of the tree. No links crossing over the two chil-
dren will change in length, and no links within ei-
ther child will change. Thus only the length of the
links from the two children will change, and as the
link connecting the outside child now crosses over a
shorter intermediate constituent, the total length will
decrease.

Next, we show that the two longest children must
appear on opposite sides of the head in the optimal
linearization. To see this, consider the case where
both childi (the longest child) and childi − 1 (the
second longest child) appear on the same side of the
head. From the previous result, we know thati − 1
andi must be the outermost children on their side.
If there are no children on the other side of the head,
the tree can be improved by moving eitheri or i −
1 to the other side. If there is a child on the other
side of the head, it must be smaller than bothi and
i− 1, and the tree can be improved by swapping the
position of the child from the other side and child
i − 1.

Given that the two largest children are outermost
and on opposite sides of the head, we observe that
the sum of the two links connecting these children
to the head does not depend on the arrangement of
the firsti − 2 children. Any rearrangement that de-
creases the length of the link to the left of the head
must increase the length of the link to the right of
the head by the same amount. Thus, the optimal lay-
out of all i children can be found by placing the two
largest children outermost and on opposite sides, the
next two largest children next outermost and on op-



Figure 2: Placing dependents on alternating sides
from inside out in order of increasing length.

posite sides, and so on until only one or zero chil-
dren are left. If there are an odd number of children,
the side of the final (smallest) child makes no differ-
ence, because the other children are evenly balanced
on the two sides so the last child will have the same
dependency-lengthening effect whichever side it is
on.

Our pairwise approach implies that there are
many optimal linearizations,2⌊i/2⌋ in fact, but one
simple and optimal approach is to alternate sides as
in Figure 2, putting the smallest child next to the
head, the next smallest next to the head on the op-
posite side, the next outside the first on the first side,
and so on.

So far we have not considered the piece of the link
from the head to its parent that is over the head’s
subtree. The argument above can be generalized by
considering this link as a special child, longer than
the longest real child. By making the special child
the longest child, we will be guaranteed that it will
be placed on the outside, as is necessary for a projec-
tive tree. As before, the special child and the longest
real child must be placed outermost and on oppo-
site sides, the next two longest children immediately
within the first two, and so on.

Using the algorithm from the previous section, it
is possible to efficiently compute the optimal de-
pendency length from English sentences. We take
sentences from the Wall Street Journal section of
the Penn Treebank, extract the dependency trees us-
ing the head-word rules of Collins (1999), consider
them to be unordered dependency trees, and lin-
earize them to minimize dependency length. Au-
tomatically extracting dependencies from the Tree-
bank can lead to some errors, in particular with
complex compound nouns. Fortunately, compound
nouns tend to occur at the leaves of the tree, and the
head rules are reliable for the vast majority of struc-
tures.

Results in Table 1 show that observed depen-
dency lengths in English are between the minimum

DLA Length
Optimal 33.7
Random 76.1
Observed 47.9

Table 1: Dependency lengths for unlabeled DLAs.

achievable given the unordered dependencies and
the length we would find given a random order-
ing, and are much closer to the minimum. This al-
ready suggests that minimizing dependency length
has been a factor in the development of English.
However, the optimal “language” to which English
is being compared has little connection to linguis-
tic reality. Essentially, this model represents a free
word-order language: Head-modifier relations are
oriented without regard to the grammatical relation
between the two words. In fact, however, word order
in English is relatively rigid, and a more realistic ex-
periment would be to find the optimal algorithm that
reflects consistent syntactic word order rules. We
call this a “labeled” DLA, as opposed to the “unla-
beled” DLA presented above.

4 Labeled DLAs

In this section, we consider linearization algorithms
that assume fixed word order for a given grammat-
ical relation, but choose the order such as to mini-
mize dependency length over a large number of sen-
tences. We represent grammatical relations simply
by using the syntactic categories of the highest con-
stituent headed by (maximal projection of) the two
words in the dependency relation. Due to sparse
data concerns, we removed all function tags such as
TMP (temporal), LOC (locative), and CLR (closely
related) from the treebank. We made an exception
for the SBJ (subject) tag, as we thought it important
to distinguish a verb’s subject and object for the pur-
poses of choosing word order. Looking at a head and
its set of dependents, the complete ordering of all de-
pendents can be modeled as a context-free grammar
rule over a nonterminal alphabet of maximal projec-
tion categories. A fixed word-order language will
have only one rule for each set of nonterminals ap-
pearing in the right-hand side.

Searching over all such DLAs would be exponen-
tially expensive, but a simple approximation of the



Dep. len. /
DLA % correct order
random 76.1 / 40.5
extracted from optimal 61.6 / 55.4
weights from English 50.9 / 82.2
optimized weights 42.5 / 64.9

Table 2: Results for different methods of lineariz-
ing unordered trees from section 0 of the Wall Street
Journal corpus. Each result is given as average de-
pendency length in words, followed by the percent-
age of heads (with at least one dependent) having all
dependents correctly ordered.

optimal labeled DLA can found using the following
procedure:

1. Compute the optimal layout of all sentences in
the corpus using the unlabeled DLA.

2. For each combination of a head type and a set
of child types, count the occurrences of each
ordering.

3. Take the most frequent ordering for each set as
the order in the new DLA.

In the first step we used the alternating procedure
from the previous section, with a modification for
the fixed word-order scenario. In order to make
the order of a subtree independent of the direction
in which it attaches to its parent, dependents were
placed in order of length on alternating sides of the
head from the inside out, always starting with the
shortest dependent immediately to the left of the
head.

Results in Table 2 (first two lines) show that a
DLA using rules extracted from the optimal layout
matches English significantly better than a random
DLA, indicating that dependency length can be used
as a general principle to predict word order.

4.1 An Optimized Labeled DLA

While the DLA presented above is a good deal bet-
ter than random (in terms of minimizing dependency
length), there is no reason to suppose that it is opti-
mal. In this section we address the issue of finding
the optimal labeled DLA.

If we model a DLA as a set of context-free gram-
mar rules over dependency types, specifying a fixed
ordering for any set of dependency types attaching
to a given head, the space of DLAs is enormous, and
the problem of finding the optimal DLA is a diffi-
cult one. One way to break the problem down is
to model the DLA as a set of weights for each type
of dependency relation. Under this model the word
order is determined by placing all dependents of a
word in order of increasing weight from left to right.
This reduces the number of parameters of the model
to T , if there areT dependency types, fromT k if
a word may have up tok dependents. It also al-
lows us to naturally capture statements such as “a
noun phrase consists of a determiner, then (possi-
bly) some adjectives, the head noun, and then (pos-
sibly) some prepositional phrases”, by, for example,
setting the weight for NP→DT to -2, NP→JJ to -
1, and NP→PP to 1. We assume the head itself
has a weight of zero, meaning negatively weighted
dependents appear to the head’s left, and positively
weighted dependents to the head’s right.

4.1.1 A DLA Extracted from English

As a test of whether this model is adequate to
represent English word order, we extracted weights
for the Wall Street Journal corpus, used them to re-
order the same set of sentences, and tested how often
words with at least one dependent were assigned the
correct order. We extracted the weights by assign-
ing, for each dependency relation in the corpus, an
integer according to its position relative to the head,
-1 for the first dependent to the left, -2 for the sec-
ond to the left, and so on. We averaged these num-
bers across all occurrences of each dependency type.
The dependency types consisted of the syntactic cat-
egories of the maximal projections of the two words
in the dependency relation.

Reconstructing the word order of each sentence
from this weighted DLA, we find that 82% of all
words with at least one dependent have all depen-
dents ordered correctly (third line of Table 2). This
is significantly higher than the heuristic discussed in
the previous section, and probably as good as can be
expected from such a simple model, particularly in
light of the fact that there is some choice in the word
order for most sentences (among adjuncts for exam-
ple) and that this model does not take the lengths of



the individual constituents into account at all.
We now wish to find the set of weights that min-

imize the dependency length of the corpus. While
the size of the search space is still too large to search
exhaustively, numerical optimization techniques can
be applied to find an approximate solution.

4.1.2 NP-Completeness

The problem of finding the optimum weighted
DLA for a set of input trees can be shown to be NP-
complete by reducing from the problem of finding a
graph’s minimum Feedback Arc Set, one of the 21
classic problems of Karp (1972). The input to the
Feedback Arc Set problem is a directed graph, for
which we wish to find an ordering of vertices such
that the smallest number of edges point from later to
earlier vertices in the ordering. Given an instance of
this problem, we can create a set of dependency trees
such that each feedback arc in the original graph
causes total dependency length to increase by one,
if we identify each dependency type with a vertex
in the original problem, and choose weights for the
dependency types according to the vertex order.2

4.1.3 Local Search

Our search procedure is to optimize one weight at
a time, holding all others fixed, and iterating through
the set of weights to be set. The objective function
describing the total dependency length of the corpus
is piecewise constant, as the dependency length will
not change until one weight crosses another, caus-
ing two dependents to reverse order, at which point
the total length will discontinuously jump. Non-
differentiability implies that methods based on gra-
dient ascent will not apply. This setting is reminis-
cent of the problem of optimizing feature weights
for reranking of candidate machine translation out-
puts, and we employ an optimization technique sim-
ilar to that used by Och (2003) for machine trans-
lation. Because the objective function only changes
at points where one weight crosses another’s value,
the set of segments of weight values with different
values of the objective function can be exhaustively
enumerated. In fact, the only significant points are
the values of other weights for dependency types
which occur in the corpus attached to the same head

2We omit details due to space.

Test Data
Training Data WSJ Swbd
WSJ 42.5 / 64.9 12.5 / 63.6
Swbd 43.9 / 59.8 12.2 / 58.7

Table 3: Domain effects on dependency length min-
imization: each result is formatted as in Table 2.

as the dependency being optimized. We build a ta-
ble of interacting dependencies as a preprocessing
step on the data, and then when optimizing a weight,
consider the sequence of values between consecu-
tive interacting weights. When computing the total
corpus dependency length at a new weight value, we
can further speed up computation by reordering only
those sentences in which a dependency type is used,
by building an index of where dependency types oc-
cur as another preprocessing step.

This optimization process is not guaranteed to
find the global maximum (for this reason we call
the resulting DLA “optimized” rather than “opti-
mal”). The procedure is guaranteed to converge sim-
ply from the fact that there are a finite number of
objective function values, and the objective function
must increase at each step at which weights are ad-
justed.

We ran this optimization procedure on section 2
through 21 of the Wall Street Journal portion of the
Penn Treebank, initializing all weights to random
numbers between zero and one. This initialization
makes all phrases head-initial to begin with, and has
the effect of imposing a directional bias on the re-
sulting grammar. When optimization converges, we
obtain a set of weights which achieves an average
dependency length of 40.4 on the training data, and
42.5 on held-out data from section 0 (fourth line
of Table 2). While the procedure is unsupervised
with respect to the English word order (other than
the head-initial bias), it is supervised with respect to
dependency length minimization; for this reason we
report all subsequent results on held-out data. While
random initializations lead to an initial average de-
pendency length varying from 60 to 73 with an aver-
age of 66 over ten runs, all runs were within±.5 of
one another upon convergence. When the order of
words’ dependents was compared to the real word
order on held-out data, we find that 64.9% of words



Training Sents Dep. len. / % correct order
100 13.70 / 54.38
500 12.81 / 57.75

1000 12.59 / 58.01
5000 12.34 / 55.33

10000 12.27 / 55.92
50000 12.17 / 58.73

Table 4: Average dependency length and rule accu-
racy as a function of training data size, on Switch-
board data.

with at least one dependent have the correct order.

4.2 Domain Variation

Written and spoken language differ significantly in
their structure, and one of the most striking differ-
ences is the much greater average sentence length
of formal written language. The Wall Street Journal
is not representative of typical language use. Lan-
guage was not written until relatively recently in its
development, and the Wall Street Journal in particu-
lar represents a formal style with much longer sen-
tences than are used in conversational speech. The
change in the lengths of sentences and their con-
stituents could make the optimized DLA in terms of
dependency length very different for the two genres.

In order to test this effect, we performed exper-
iments using both the Wall Street Journal (written)
and Switchboard (conversational speech) portions of
the Penn Treebank, and compared results with dif-
ferent training and test data. For Switchboard, we
used the first 50,000 sentences of sections 2 and 3 as
the training data, and all of section 4 as the test data.

We find relatively little difference in dependency
length as we vary training data between written and
spoken English, as shown in Table 3. For the ac-
curacy of the resulting word order, however, train-
ing on Wall Street Journal outperforms Switchboard
even when testing on Switchboard, perhaps because
the longer sentences in WSJ provide more informa-
tion for the optimization procedure to work with.

4.3 Learning Curve

How many sentences are necessary to learn a good
set of dependency weights? Table 4 shows results
for Switchboard as we increase the number of sen-
tences provided as input to the weight optimization
procedure. While the average dependency length on

Label Interpretation Weight
S→NP verb - object NP 0.037
S→NP-SBJ verb - subject NP -0.022
S→PP verb - PP 0.193
NP→DT object noun - determiner -0.070
NP-SBJ→DT subject noun - determiner -0.052
NP→PP obj noun - PP 0.625
NP-SBJ→PP subj noun - PP 0.254
NP→SBAR obj noun - rel. clause 0.858
NP-SBJ→SBAR subject noun - rel. clause -0.110
NP→JJ obj noun - adjective 0.198
NP-SBJ→JJ subj noun - adjective -0.052

Table 5: Sample weights from optimized DLA. Neg-
atively weighted dependents appear to the left of
their head.

held-out test data slowly decreases with more data,
the percentage of correctly ordered dependents is
less well-behaved. It turns out that even 100 sen-
tences are enough to learn a DLA that is nearly as
good as one derived from a much larger dataset.

4.4 Comparing the Optimized DLA to English

We have seen that the optimized DLA matches En-
glish text much better than a random DLA and that
it achieves only a slightly lower dependency length
than English. It is also of interest to compare the
optimized DLA to English in more detail. First
we examine the DLA’s tendency towards “opposite-
branching 1-word phrases”. English reflects this
principle to a striking degree: on the WSJ test set,
79.4 percent of left-branching phrases are 1-word,
compared to only 19.4 percent of right-branching
phrases. The optimized DLA also reflects this pat-
tern, though somewhat less strongly: 75.5 percent of
left-branching phrases are 1-word, versus 36.7 per-
cent of right-branching phrases.

We can also compare the optimized DLA to En-
glish with regard to specific rules. As explained ear-
lier, the optimal DLA’s rules are expressed in the
form of weights assigned to each relation, with pos-
itive weights indicating right-branching placement.
Table 5 shows some important rules. The middle
column shows the syntactic situation in which the
relation normally occurs. We see, first of all, that
object NPs are to the right of the verb and subject
NPs are to the left, just like in English. PPs are also
the right of verbs; the fact that the weight is greater
than for NPs indicates that they are placed further to
the right, as they normally are in English. Turning



to the internal structure of noun phrases, we see that
determiners are to the left of both object and sub-
ject nouns; PPs are to the right of both object and
subject nouns. We also find some differences with
English, however. Clause modifiers of nouns (these
are mostly relative clauses) are to the right of object
nouns, as in English, but to the left of subject nouns;
adjectives are to the left of subject nouns, as in En-
glish, but to the right of object nouns. Of course,
these differences partly arise from the fact that we
treat NP and NP-SBJ as distinct whereas English
does not (with regard to their internal structure).

5 Conclusion

In this paper we have presented a dependency lin-
earization algorithm which is optimized for mini-
mizing dependency length, while still maintaining
consistent positioning for each grammatical relation.
The fact that English is so much lower than the
random DLAs in dependency length gives suggests
that dependency length minimization is an important
general preference in language. The output of the
optimized DLA also proves to be much more similar
to English than a random DLA in word order. An in-
formal comparison of some important rules between
English and the optimal DLA reveals a number of
striking similarities, though also some differences.

The fact that the optimized DLA’s ordering
matches English on only 65% of words shows, not
surprisingly, that English word order is determined
by other factors in addition to dependency length
minimization. In some cases, ordering choices in
English are underdetermined by syntactic rules. For
example, a manner adverb may be placed either be-
fore the verb or after (“He ran quickly / he quickly
ran”). Here the optimized DLA requires a consistent
ordering while English does not. One might suppose
that such syntactic choices in English are guided at
least partly by dependency length minimization, and
indeed there is evidence for this; for example, people
tend to put the shorter of two PPs closer to the verb
(Hawkins, 1994). But there are also other factors in-
volved – for example, the tendency to put “given”
discourse elements before “new” ones, which has
been shown to play a role independent of length
(Arnold et al., 2000).

In other cases, the optimized DLA allows more

fine-grained choices than English. For example, the
optimized DLA treats NP and NP-SBJ as different;
this allows it to have different syntactic rules for the
two cases – a possibility that it sometimes exploits,
as seen above. No doubt this partly explains why the
optimized DLA achieves lower dependency length
than English.

Acknowledgments This work was supported by
NSF grants IIS-0546554 and IIS-0325646.

References
J. E. Arnold, T. Wasow, T. Losongco, and R. Ginstrom.

2000. Heaviness vs. newness: the effects of structural
complexity and discourse status on constituent order-
ing. Language, 76:28–55.

F. R. K. Chung. 1984. On optimal linear arrangements of
trees.Computers and Mathematics with Applications,
10:43–60.

Michael John Collins. 1999.Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Matthew Dryer. 1992. The Greenbergian word order cor-
relations.Language, 68:81–138.

Jason Eisner and Noah A. Smith. 2005. Parsing with
soft and hard constraints on dependency length. In
Proceedings of the International Workshop on Parsing
Technologies (IWPT), pages 30–41.

Lyn Frazier. 1985. Syntactic complexity. In D. Dowty,
L. Karttunen, and A. Zwicky, editors,Natural Lan-
guage Parsing: Psychological, Computational, and
Theoretical Perspectives, pages 129–189. Cambridge
University Press, Cambridge.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies.Cognition, 68:1–76.

John Hawkins. 1994.A Performance Theory of Order
and Constituency. Cambridge University Press, Cam-
bridge, UK.

Richard M. Karp. 1972. Reducibility among combina-
torial problems. In R. E. Miller and J. W. Thatcher,
editors,Complexity of Computer Computations, pages
85–103.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajǐc. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. InProceedings
of HLT/EMNLP.

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. InProceedings of ACL-
03.


