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Speeded visual word naming and lexical decision performance are reported for 2,428 words for young
adults and healthy older adults. Hierarchical regression techniques were used to investigate the unique
predictive variance of phonological features in the onsets, lexical variables (e.g., measures of consistency,
frequency, familiarity, neighborhood size, and length), and semantic variables (e.g., imageability and
semantic connectivity). The influence of most variables was highly task dependent, with the results
shedding light on recent empirical controversies in the available word recognition literature. Semantic-
level variables accounted for unique variance in both speeded naming and lexical decision performance,
with the latter task producing the largest semantic-level effects. Discussion focuses on the utility of
large-scale regression studies in providing a complementary approach to the standard factorial designs to
investigate visual word recognition.

The study of the processes involved in isolated word recognition
has been central to developments in experimental psychology
since the days of Cattell (1886). Researchers have accumulated a
vast amount of information regarding the statistical properties of
words, including word frequency, subjective familiarity, meaning-
fulness, letter frequency, bigram frequency, trigram frequency,
spelling-to-sound consistency, syntactic class, and concreteness
(see Balota, 1994, and Henderson, 1982, for reviews). Word rec-
ognition research has been critical in developing computational
models (e.g., Coltheart, Curtis, Atkins, & Haller, 1993; McClel-

land & Rumelhart, 1981; Plaut, McClelland, Seidenberg, & Patter-
son, 1996), distinguishing between automatic and attentional pro-
cesses (e.g., Fodor, 1983; Neely, 1977), providing insights into
reading acquisition (e.g., Perfetti, 1994), and understanding neural
substrates of language processing (e.g., Coltheart, Patterson, &
Marshall, 1980; Petersen, Fox, Posner, Mintun, & Raichle, 1988).
One might argue that the word has been as central to developments
in cognitive psychology and psycholinguistics as the cell has been
to biology.

Given the importance of word recognition research, one might
assume that there are well-accepted methods for studying lexical
processing. For example, probably the best way to study the
integration of lexical information within reading is to analyze
people’s eye movements (e.g., eye fixation and gaze durations) as
they are reading text (see Rayner, 1998; Rayner & Pollatsek,
1989). However, during reading, there are multiple sources of
information available (e.g., syntactic information, semantic con-
straints, parafoveal visual information), and so there are limits to
this approach for models of isolated word recognition. Another
procedure is to study how subjects identify words that are visually
degraded by brief presentations and pattern masking. Unfortu-
nately, there are also limitations with this procedure. Specifically,
when subjects receive a degraded stimulus, they may rely on
general knowledge about frequency and spelling patterns of words
to make sophisticated guesses about the target stimulus (e.g.,
Broadbent, 1967; Catlin, 1973).

Because of the above concerns, researchers have continued to
rely heavily on two measures: speeded lexical decision and naming
performance. In the lexical decision task (LDT), subjects are
presented with a visual string (either a word or a nonword, e.g.,
flirp), with their task being to decide as quickly as possible

David A. Balota, Susan D. Sergent-Marshall, and Melvin J. Yap, De-
partment of Psychology, Washington University; Michael J. Cortese, De-
partment of Psychology, College of Charleston; Daniel H. Spieler, School
of Psychology, Georgia Institute of Technology.

This work was supported by Grants AGO3991 and RO1 AG17024 from
the National Institute on Aging and Grant BCS 0001801 from the National
Science Foundation.

We thank Keith Hutchison, Mark Law, Maura Pilotti, Martha Storandt,
Michael Strube, and Jeff Templeton for their assistance in various stages of
this project. In addition, we thank Brett Kessler, Rebecca Treiman, Barbara
Juhasz, and Keith Rayner for helpful comments on an earlier version of this
article. Finally, we thank Mark Steyvers for providing the connectivity
estimates, Doug Nelson for providing the semantic set size estimates, Curt
Burgess for providing the frequency estimates from the Hyperspace Ana-
logue to Language database, and Brett Kessler and Rebecca Treiman for
providing both their consistency estimates and their naming data.

All item-level data are available at http://www.artsci.wustl.edu/
�dbalota/labpub.html.

Correspondence concerning this article should be addressed to David A.
Balota, Department of Psychology, Box 1125, Washington University, One
Brookings Drive, St. Louis, MO 63130. E-mail: dbalota@artsci.wustl.edu

Journal of Experimental Psychology: General Copyright 2004 by the American Psychological Association
2004, Vol. 133, No. 2, 283–316 0096-3445/04/$12.00 DOI: 10.1037/0096-3445.133.2.283

283



whether the string is a word or nonword. In the speeded naming
task, subjects are presented with a visual word (or sometimes a
nonword) and are asked to name the word aloud as quickly and as
accurately as possible. These two tasks are clearly the major
driving force in isolated word recognition research and have been
the gold standard in developing computational models of lexical
processing (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001; Grainger & Jacobs, 1996; Seidenberg & McClelland, 1989;
Zorzi, Houghton, & Butterworth, 1998).

In speeded naming and lexical decision studies, researchers
typically have used factorial designs in which item variables (e.g.,
word frequency, spelling-to-sound regularity, neighborhood den-
sity, syntactic class) are manipulated on a relatively small set of
items (typically fewer than 20 items per cell). Mean latency and
accuracy are calculated for each subject across items (or for each
item across subjects in some studies) and then entered into an
analysis of variance (ANOVA), and the effects of factors are
measured. A reliable influence of a factor is typically interpreted as
being consistent or inconsistent with a given model. Although this
approach has been fruitful in identifying important variables that
modulate speeded lexical decision and naming performance, it has
some potential difficulties. We believe that these difficulties may
diminish the rate of accumulation of knowledge in the field and
may lead to counterproductive controversies regarding the pres-
ence or absence of an effect of a targeted variable. We now turn to
some of these difficulties.

First, it is quite difficult to select a set of items that only vary on
one categorical dimension. Cutler (1981) argued that because so
many factors have been identified in word recognition research, it
is virtually impossible to select a sufficient number of items in all
cells of a factorial design. Cutler also suggested that the literature
contains a number of such failures to control for relevant factors,
and these failures have led to a number of false starts in theoretical
developments. Consider the influence of spelling-to-sound corre-
spondences, for example, the fact that pint is not produced accord-
ing to common spelling-to-sound principles, whereas hint is con-
sistent with such principles. The influence of spelling-to-sound
correspondence depends on a number of factors, such as the
frequency of the target word, the number and frequency of words
with similar spelling-to-sound correspondences (friends), the num-
ber and frequency of words with different spelling-to-sound cor-
respondences (enemies), and probably a host of other variables
(Jared, McRae, & Seidenberg, 1990; Plaut et al., 1996; Stone,
Vanhoy, & Van Orden, 1997). Plaut et al. have argued that it is
best to consider a variable such as consistency as a continuous
factor as opposed to a categorical variable as in the standard
ANOVA design. The ultimate problem here is that it has been
difficult to reach definitive answers regarding the influence of
factors from categorical studies in word recognition with a rela-
tively small set of items without introducing potentially contami-
nating factors (e.g., consider the recent controversy regarding
backward consistency effects in studies by Peereman, Content, &
Bonin, 1998, and Ziegler & Ferrand, 1998). Hence, one might
argue that it is time to go beyond arguing about the presence or
absence of a given effect of a categorical variable on the basis of
a relatively limited sample of items that could potentially vary on
a number of continuous dimensions.

Second, Forster (2000) has recently pointed out that word rec-
ognition researchers may have implicit knowledge regarding lex-

ical variables and that this knowledge could influence the infer-
ences drawn from experiments. Forster has demonstrated this by
asking expert researchers in word recognition to make lexical
processing predictions for pairs of words. Specifically, on each
trial, these researchers were asked to predict which of two words
would produce faster lexical decision performance. The expert
word recognition researchers could make such predictions above
and beyond standard predictor variables, such as word frequency.
If researchers can make such predictions implicitly or explicitly, it
is possible that when they select items for their categorical ma-
nipulations and have a hypothesis in mind, this could influence the
results (see Rosenthal, 1995). Thus, Forster suggested that a better
approach would be to randomly select words from a much larger
set of items that have the targeted characteristics.

A third concern about the standard factorial experiments is that
list contexts (i.e., the characteristics of words within a list) often
vary across experiments reported in the literature. This is likely
due to the fact that researchers naturally load their lists with items
that have extreme values along the targeted factor dimensions; for
example, half of the words may have irregular spelling-to-sound
correspondences. Hence, subjects may become either implicitly
primed or even explicitly sensitive to the factor being manipulated.
There are many demonstrations of list-context effects in the liter-
ature. For example, Seidenberg, Waters, Sanders, and Langer
(1984) demonstrated that the influence of spelling-to-sound corre-
spondence was sensitive to the presence of other similarly spelled
words within the list (also see Lupker, Brown, & Colombo, 1997;
Monsell, Patterson, Graham, Hughes, & Milroy, 1992; Zevin &
Balota, 2000). Glanzer and Ehrenreich (1979) and Gordon (1983)
have demonstrated that simple word-frequency effects can be
modulated by the relative proportion of high-frequency and low-
frequency words within the lexical decision experiment. Andrews
(1997) has suggested that the inconsistencies across studies of
orthographic neighborhood size effects in lexical decision could be
due to differences in lexical decision strategies induced by unusual
stimulus list environments. Although list-context effects can be of
interest, unwanted list-context effects could be minimized if sub-
jects were exposed to a sample of items that were not selected on
the basis of fitting factorial designs.

A fourth potential problem with standard factorial designs in-
volves a concern about categorizing continuous variables. Con-
sider word frequency. Typically, researchers investigate high- ver-
sus low-frequency words as opposed to using frequency as a
continuous variable in a regression model. Of course, this problem
extends to virtually all variables that researchers have investigated
as categorical variables. Moreover, this concern extends to other
areas of cognitive psychology, such as memory and attention,
wherein continuous variables are treated as categorical variables.
Statisticians have historically pointed out that categorizing contin-
uous variables can lead to a decrease in statistical power and
reliability (see, e.g., Cohen, 1983; Humphreys, 1978; Maxwell &
Delaney, 1993). This work has typically focused on between-
subject variability, where researchers often categorize individual
characteristics (e.g., age might be categorized as young vs. old).
MacCallum, Zhang, Preacher, and Rucker (2002) have recently
reported a review of the literature, along with a series of simula-
tions, which nicely demonstrated that with a relatively small num-
ber of observations, such categorization can decrease reliability
and lead to the inappropriate rejection of the null hypothesis. These
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concerns naturally extend to between-items manipulations in word
recognition studies.

A fifth potential problem is that the field has emphasized the
search for significant effects for a specific set of stimuli without
taking into account the more general implications for the lexical
processing system. For example, if one obtains a reliable interac-
tion among three factors in a 2 � 2 � 2 design, does one want to
argue that this is a general reflection of lexical processing, or is it
possible that this interaction is limited to the selected set of 80
words used in such a design (assuming 10 words per each of the 8
cells)? The search for a significant effect does not typically moti-
vate researchers to report the amount of unique variance that a
given factor accounts for in a design. This latter information may
ultimately be more important than the more complex effects that
reach the magical significance level. This was demonstrated by
Spieler and Balota (1997), who found a surprisingly large influ-
ence of length in letters (4.4% unique variance, compared with
6.3% for log frequency and 2.2% for orthographic neighborhood
size) on speeded naming performance in their study of 2,870
single-syllable words. Although the theoretical interpretation of
this effect is still being discussed (see Balota & Spieler, 1998;
Seidenberg & Plaut, 1998), these results may be more supportive
of a serial analysis (see Coltheart et al., 1993) than a parallel
analysis in speeded word naming. The point here is that the driving
force in this literature should no longer be if a variable has an
impact on lexical processing: It should also include consideration
of how much of a contribution that variable makes toward lexical
processing.

There have recently been some initial examinations of speeded
naming performance on large sets of English words (e.g., Balota &
Spieler, 1998; Besner & Bourassa, 1995; Kessler, Treiman, &
Mullennix, 2002; Spieler & Balota, 1997; Trieman, Mullennix,
Bijeljac-Babic, & Richmond-Welty, 1995). For example, Spieler
and Balota had 31 subjects name all 2,820 single-syllable words
that both the Seidenberg and McClelland (1989) and the Plaut et al.
(1996) models were trained on. The results were very informative:
Although the computational models did an excellent job of accom-
modating aspects of the data obtained from standard factorial
experiments, these models appeared to have some limitations when
it came to accounting for individual item-level variance. For ex-
ample, log frequency alone accounted for 7.3% of the variance,
whereas the error scores from the Seidenberg and McClelland
(1989) model and the settling times from the Plaut et al. (1996)
model accounted for 10.1% and 3.3% of the variance, respectively.
This same general pattern of results was replicated with a group of
healthy older adults (see Balota & Spieler, 1998).

The approach taken in the present study was to compare naming
and lexical decision latencies on a large corpus of stimuli (all
monosyllabic English words in the Kučera & Francis, 1967,
norms) in order to obtain estimates of the unique variance pre-
dicted by an extended set of targeted variables. This set of items
was the focus of our study because these words have consistently
been the target of computational models of speeded word naming
and lexical decision performance (e.g., Seidenberg & McClelland,
1989). We used regression techniques to control for the influence
of contaminating variables and allowed the language, instead of
the experimenter, to define the stimulus set. We selected the
following targeted variables from the extant literature to investi-
gate: phonological onsets, length in letters, orthographic density,

objective frequency, subjective frequency, feedforward onset con-
sistency, feedforward rime consistency, feedback onset consis-
tency, feedback rime consistency, imageability, meaningfulness,
number of associates, and estimates of semantic connectivity. We
focused on these variables because of their theoretical importance
in available models and because of the controversies that these
variables have produced in the available literature.1 In addition, we
decided to consider a set of limited variables to avoid problems
associated with suppressor variables. We discuss additional vari-
ables in the General Discussion section.

We have a number of goals for the present research. First, the
large database of naming and lexical decision latencies obtained in
this study affords a comparison of the predictive power of five
different measures of word frequency (see the Comparison of
Word-Frequency Estimates section for a description of the five
measures of word frequency). An initial set of analyses will
identify the best word-frequency measure, and then this measure
will be used in subsequent regression analyses. As described
below, there is considerable difference in the predictive power of
different word-frequency measures (see also Burgess & Livesay,
1998; Zevin & Seidenberg, 2002).

A second goal of the present work is to test predictions regard-
ing the differential effects of specific variables on lexical decision
versus naming. For example, we anticipate that word frequency
should have a greater influence on lexical decision than on naming
performance. Such a prediction follows from the simple observa-
tion that the LDT places more of an emphasis on frequency-based
information in making the word–nonword discrimination (e.g.,
Balota & Chumbley, 1984; Besner & Swan, 1982), whereas the
naming task emphasizes the onset of the appropriate articulation.
However, we expect that effects of spelling-to-sound consistency
should be greater in naming than in lexical decision because
naming requires the use of phonological information, whereas the
LDT does not place the same premium on this information (e.g.,
Cortese, 1998). We also expect semantic variables to have a
greater influence on lexical decision than on naming. A number of
lexical decision studies have shown an influence of meaning-based

1 The selection of variables to enter into the regression analyses was
based on (a) a variable’s unique status in the available literature, (b) the
lack of redundancy with variables that were included, and (c) availability
of norms for a large set of items. For example, we did not include in the
regression analyses age of acquisition as a predictor variable because
age-of-acquisition norms were available for only about 25% of the items.
Moreover, there has been some recent controversy regarding the status of
this variable in predicting performance above and beyond cumulative
frequency (see Zevin & Seidenberg, 2002). We also excluded variables
such as bigram frequency and orthographic neighborhood frequency be-
cause initial analyses indicated that these variables were not related to any
of the dependent measures and, in the case of bigram frequency, there have
been repeated failures to demonstrate an influence of this variable (see,
e.g., Andrews, 1992; Treiman et al., 1995). Although the final analysis
included consistency measures that were based on token estimates (based
on frequency-weighted counts of friends and enemies) instead of type
estimates (based on simple counts of friends and enemies), it is noteworthy
that the same pattern of significant effects of consistency were observed
with type counts. Finally, as noted in the General Discussion section, to
explore alternative accounts of the consistency effects, we included the
spelling frequency of the onset and rime units in Step 2 of the regression
analyses, and the inclusion of these variables did not alter the results.

285SINGLE-SYLLABLE WORD RECOGNITION



variables (e.g., Chumbley & Balota, 1984; James, 1975), whereas
semantic effects appear to be restricted to the naming of low-
frequency irregular words (e.g., Cortese, Simpson, & Woolsey,
1997; Strain, Patterson, & Seidenberg, 1995). As discussed below,
an intriguing issue is whether one can detect semantic effects in a
large-sample study of speeded naming performance after other
factors have been controlled.

A third goal is to compare the performance of young and older
adults. The question here is how the lexical processing system
changes with an additional 50 years, on average, of practice with
words, along with the accompanying cognitive changes that occur
in older adults. Regarding word naming, Spieler and Balota (2000)
have shown that word frequency has more predictive power for
older adults than for young adults, whereas orthographic neigh-
borhood size has more predictive power for young adults than for
older adults. As discussed later, this pattern could be due to cohort
biases in the standard word-frequency norms. It is also possible
that semantic variables will have differential predictive power for
young and older adults. The finding of larger frequency effects for
older adults in naming suggests the possibility that connections
between orthography and semantics (i.e., a direct route to mean-
ing) may become stronger with age. However, the novel task
demands of lexical decision may shift the focus from phonological
conversion to familiarity-based information. If semantic informa-
tion is incorporated into a word’s perceived familiarity and older
adults are less likely to engage the specific task demands of the
LDT (see Balota & Faust, 2001), then young adults may be more
likely to tap into this source of information than are older adults.
This would result in stronger semantic effects for young adults
than for older adults in lexical decision performance.

Finally, the present study affords a database for researchers to
evaluate models and constrain their development. In addition,
researchers interested in areas such as memory, perception, and
neuropsychology will be able to use this database to select items
that are equated along a number of descriptive dimensions, such as
frequency, familiarity, orthographic neighborhood size, and big-
ram frequency, and also on behavioral measures of mean naming
and/or lexical decision latencies. This is the first step in making
available even larger databases (see the English Lexicon Project
[ELP] Web site at http://elexicon.wustl.edu/ for a database for over
40,000 words and nonwords).

Method

Subjects

Thirty young adults (mean age � 20.5 years, SD � 2.0) and 30 older
adults (mean age � 73.6 years, SD � 5.1) participated in the lexical
decision study. The young adults averaged 14.9 years of education (SD �
1.6) and scored an average of 34.5 (SD � 2.5) on the Shipley vocabulary
subtest (Shipley, 1940). The Shipley vocabulary subtest is a four-
alternative multiple-choice vocabulary test with a maximum score of 40.
The older adults averaged 15.1 years of education (SD � 2.4) and scored
an average of 35.8 (SD � 2.6) on the Shipley vocabulary subtest. As
described in Spieler and Balota (2000), 31 young adults (mean age � 22.6
years, SD � 5.0) and 29 older adults (mean age � 73.4 years, SD � 3.0)
performed the naming task. The young adults averaged 14.8 years of
education (SD � 2.0) and scored an average of 35.1 (SD � 2.7) on the
Shipley vocabulary subtest. Older subjects averaged 15.7 years of educa-
tion (SD � 2.8) and scored an average of 37.1 (SD � 3.0) on the Shipley

vocabulary subtest. There were no reliable age differences in education
(both ts � 1.44), but older adults did have higher vocabulary scores,
t(58) � 1.97, p � .05, and t(58) � 2.72, p � .05, in the LDT and naming
task, respectively. Young adults were recruited from the undergraduate
population of Washington University, whereas the older adults were recruited
from the Aging and Development Subject Pool at Washington University.
Subjects were paid $40 for participation in the lexical decision study and $20
for participation in the naming study. The difference in payment was due to the
fact that the LDT was nearly twice as long as the naming task.

Stimuli

The stimuli for the LDT consisted of 2,906 monosyllabic words and
2,906 length-matched pronounceable nonwords. Each nonword for the
LDT was constructed by changing from 1 to 3 letters in a corresponding
word. The words and nonwords were matched in length and ranged
between 2 and 8 letters in length. The words for the naming task consisted
of 2,870 monosyllabic words used as the training corpora for the connec-
tionist models of Seidenberg and McClelland (1989) and Plaut et al.
(1996). The words ranged in frequency from 0 to 69,971 per million
(Kučera & Francis, 1967).

Apparatus

An IBM-compatible computer was used to control the display of the
stimuli and to collect subjects’ responses. Display of all stimuli was
synchronized with the vertical retrace of the monitor to measure response
latencies to the nearest millisecond. The stimuli were displayed on a 14-in.
VGA monitor. A Gerbrands Model G1341T voice-operated relay inter-
faced with the computer served to collect naming latencies.

Procedure

LDT

Each individual participated in two sessions of equal length on separate days
within a period of 7 days. Subjects, seated in front of a computer, were told that
a single letter string would appear in the center of the computer screen and that
their task was to silently read each string, decide whether it was a word or
nonword, and indicate their decision by a keyboard button press. Subjects were
instructed to be as fast as possible while minimizing errors.

Each trial consisted of the following sequence of events: (a) A fixation
point was presented at the center of the monitor for 400 ms, (b) a blank
screen appeared for 200 ms, and (c) a stimulus was presented at the
position of the fixation point. The stimulus remained visible until a key-
board response was made. Subjects pressed the slash key for words and the
Z key for nonwords. The fixation point appeared 1,200 ms after a correct
response. After an incorrect response, a message stating that the response
was incorrect was presented slightly below the fixation point for 1,500 ms,
after which the screen was cleared. The subject pressed the space bar to
begin the 1,200-ms delay period.

Stimuli were organized in 10 blocks of trials (Blocks 1–9 � 600 stimuli
per block; Block 10 � 412 stimuli). Blocks were counterbalanced across
subjects in a Latin square design, and trials within each block were
randomly presented with the constraint that there would be an equal
number of words and nonwords of comparable length.2 Stimuli were
rerandomized and assigned to lists anew for each group of 10 subjects.
Breaks occurred after every 150 trials within a block and between blocks.
Two filler trials consisting of short two-syllable stimuli were presented at
the beginning of the experiment and after every break. Twenty practice
trials preceded the experiment.

2 The t tests between words and nonwords were performed with length
as a dependent measure for each list, and all ps � .20.
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Naming Task

The naming task was similar to the LDT with the exception that subjects
read aloud the words, and their responses triggered the computer via a
voice key. After the computer detected the response, the stimulus word was
erased from the screen, and the subject coded the response by pressing a
button on the mouse to move on to the next trial. If there was a pronun-
ciation error or if an extraneous sound triggered the voice key, subjects
pressed the right button on the mouse. If the subject believed their correct
pronunciation triggered the voice key, then they pressed the left button on
the mouse. Pressing either mouse button initiated a 1,200-ms intertrial
interval.

Results and Discussion

The present analyses included only those words (N � 2,726) for
which naming and lexical decision latencies as well as subjective
frequency values (Balota, Pilotti, & Cortese, 2001) were available.
To directly compare lexical decision and naming performance
across both age groups, we decided to ensure that there was clear
evidence that both groups were likely to know the stimulus words.
Thus, we took the conservative approach of only including words
that achieved at least a 67% level of accuracy (i.e., 20 out of 30
subjects responded correctly) in the LDT for both the young and
the older adults. These criteria preserved 2,428 words.

Any response that was coded as an error in the naming task
(0.7% for the young adults and 0.4% for the older adults) or any
trial that produced an incorrect response in the LDT (6.1% for the
young adults and 2.4% for the older adults) was excluded from the
response latency analyses. In addition, any response faster than
200 ms or slower than 3,000 ms (1,500 ms for the naming task)
was identified as an extreme score. After excluding these extreme
scores, a mean and a standard deviation were calculated for each
subject. Response latencies above or below 2.5 standard deviations
from each subject’s mean latency were removed. The percentage
of latencies removed for naming was 3.3% for the young adults
and 4.3% for the older adults, whereas the percentage of latencies

removed for lexical decision was 2.1% for the young adults and
2.4% for the older adults.

Before addressing the predictive power of the different vari-
ables, we first report some overall global analyses, which provide
information about the consistency in response latencies across
tasks and across age groups at the individual item level.

Item-Specific Consistencies Across Tasks

The first question addressed is the extent to which there is
consistency across the naming task and the LDT. Figures 1 and 2
provide the scatter plots for the same set of items across naming
and lexical decision for the young and older adults, respectively.
As shown, there is relatively little consistency across tasks, sug-
gesting that either (a) there is simply too much variability at this
level of analysis and/or (b) there are considerable task-specific
operations that are modulating performance at the item level. As
we discuss below, it is clear that the latter is more critical. Naming
and lexical decision performance are more related in the older
adults (R2 � .170) than in young adults (R2 � .079). This is
interesting because older adults are more variable than young
adults are and, as noted below, the predictive power of the targeted
variables is smaller in the older adults than in the young adults. It
is possible that this difference in cross-task correlations may
reflect that the young adults, as compared with the older adults, are
more likely to engage in task-specific operations, thereby decreas-
ing the cross-task correlations.

Age and General Slowing

Because of the large number of observations for each subject,
one question that can be powerfully addressed is whether there are
task-specific changes that are sensitive to age. According to a
simple general slowing perspective, one should be able to predict
the individual item mean reaction times (RTs) for the older adults
by multiplying the mean RTs obtained from the young adults by

Figure 1. Mean item naming latencies as a function of mean item lexical decision latencies for the young adult
subjects. LDT � lexical decision task; RT � reaction time.
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some constant, and adding some constant. A priori, one might
expect a different slowing function for older adults in lexical
decision performance, which involves a more attention-demanding
decision process than does naming performance, which one might
argue is more stimulus driven. In fact, Cerella and Fozard (1984)
even failed to find a reliable effect of age on speeded naming
performance, but others have reported age differences in this task
(e.g., Balota & Duchek, 1988). Alternatively, one might predict a
consistent general slowing function across the tasks, once one
corrects for differences in the variance associated with the two
tasks (see Faust, Balota, Spieler, & Ferraro, 1999).

One way of looking at general slowing functions is to plot the
young adults’ means for a set of conditions as a function of the
older adults’ means. This is called a Brinley plot (Brinley, 1965).

Figures 3 and 4 provide the Brinley plots for the naming and
lexical decision item-level performance, respectively. Note first
that there appears to be remarkable consistency in the size of the
between-group reliability estimates in naming (R2 � .428) and in
lexical decision (R2 � .430), even though this involved two
different groups of young and older adults. Of course, the consid-
erable increase in the amount of variance (a three- to fourfold
increase) accounted for within tasks, compared with between tasks
(see previous section), suggests that powerful task-specific oper-
ations modulate naming and lexical decision performance. More-
over, as shown in Figures 3 and 4, there appears to be relatively
little change in the slope of the Brinley functions across tasks, with
both slopes being relatively close to the identity function of 1, that
is, for lexical decision performance, older adult RT � (0.73 �

Figure 2. Mean item naming latencies as a function of mean item lexical decision latencies for the older adult
subjects. LDT � lexical decision task; RT � reaction time.

Figure 3. Mean item naming latencies for the young adults as a function of mean item naming latencies for
the older adults (Brinley plot). RT � reaction time.
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young adult RT) � 308, and for naming performance, older adult
RT � (1.08 � young adult RT) � 147. This suggests that the
underlying lexical processing system is relatively stable across the
two age groups. However, the intercepts change across these tasks,
with the Brinley function producing a larger intercept for the LDT
(308) than for the naming task (147). This may reflect the rela-
tively larger differences in input, output, and decision processes in
healthy older adults compared with young adults. For example,
Bashore (1994) has argued from evoked-response data that a large
portion of age-related slowing is due to output processes. To test
the reliability of these observations, we regressed each older adult
against the mean of the young adults for lexical decision and
naming performance and then submitted the standardized regres-
sion coefficients and intercepts to t tests to determine if there were
task-specific changes in these Brinley functions. The results of
these t tests yielded a reliable age-related difference in intercepts,
t(57) � 3.87, p � .001, but not in slopes, t(57) � 1.00. Thus, at
this global level, there is evidence of a main effect of age on
overall response latency but relatively little evidence of an age-
related change in the processes associated across items in naming
and lexical decision performance. The larger intercept in lexical
decision compared with naming in these slowing functions may be
viewed as consistent with age sensitivity to the decision processes
tied to the LDT.

RT Distribution Analyses

We also considered the data at the individual-subject level to
determine the nature of the RT distributions via the ex-Gaussian
function. The ex-Gaussian function is the convolution of an expo-
nential function and a Gaussian function (see Luce, 1986, for
details). Although there are clearly other procedures for describing
RT distributions (Van Zandt, 2000), the ex-Gaussian is useful as a
first-level description and has the nice property that the mean
response latency of an empirical distribution is approximated by
the sum of the mean of the Gaussian component and the mean of
the exponential component. Balota and Spieler (1999) have pro-

vided evidence that the influences of specific variables (e.g.,
frequency and repetition) have differential effects in naming and
lexical decision performance on the parameters of the ex-Gaussian
(also see Andrews & Heathcote, 2001). Each subject’s empirical
RT distribution was fit to the ex-Gaussian function to obtain
maximum likelihood estimates of mu, which reflects the mean of
the Gaussian component of the distribution; sigma, which reflects
the standard deviation associated with the Gaussian component;
and tau, which reflects the mean and standard deviation associated
with the exponential component of the distribution. Table 1 pre-
sents the means of each of the three parameters across subjects as
a function of task and age group.

To compare the components across subjects, we submitted each
of the parameters to a 2 (age group) � 2 (task) ANOVA. Estimates
of mu were larger for the older adults than for the young adults,
F(1, 116) � 183.78, MSE � 3,178.17, p � .001, �2 � .61. The
effect of task on mu was much smaller and only marginally
reliable, F(1, 116) � 5.42, MSE � 3,178.17, p � .05, �2 � .05.
The Group � Task interaction did not approach significance, p �
.15. Turning to sigma, there was again an effect of group, F(1,
116) � 23.22, MSE � 275.58, p � .001, �2 � .17, but no effect
of task. However, sigma produced a reliable Group � Task inter-
action, F(1, 116) � 7.63, MSE � 275.58, p � .01, �2 � .06, which
reflected the fact that older adults produced more variance in the

Figure 4. Mean item lexical decision latencies for the young adults as a function of mean item lexical decision
latencies for the older adults (Brinley plot). LDT � lexical decision task; RT � reaction time.

Table 1
Mean Ex-Gaussian Estimates for Young and Older Adults for
Both Naming and Lexical Decision Performance

Task Mu Sigma Tau

Lexical decision
Young adults 464 43 147
Older adults 590 50 168

Naming
Young adults 426 40 42
Older adults 579 63 76
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Gaussian component in the naming task compared with the LDT,
whereas the young adults produced similar levels in the two tasks.
Turning to the exponential component, tau, there were main effects
of group, F(1, 116) � 9.33, MSE � 2,425.82, p � .005, �2 � .07,
reflecting larger estimates of tau in older adults than in young
adults, and task, F(1, 116) � 119.26, MSE � 2,425.82, p � .001,
�2 � .51, reflecting larger estimates of tau in lexical decision
compared with naming performance. However, there was no evi-
dence of an interaction between the two factors, F � 1.00. Overall,
these results suggest that group influences all three components of
the RT distribution, with the largest influence being on the mean
of the Gaussian component. In contrast, task has a dramatic influ-
ence on the exponential component, reflecting the fact that the
lexical decision data are much more skewed than the naming data
are. It has been argued that this increased skewing in lexical
decision may, in part, reflect the binary decision component in this
task, compared with speeded naming performance (see Balota &
Spieler, 1999).

Figures 5 and 6 display the ex-Gaussian functions for the
Vincentized (grouped in percentiles across subjects) data based on
the mean maximum likelihood estimates obtained from the indi-
vidual subject analyses for both naming and lexical decision per-
formance, respectively. Consistent with the results from the
ANOVAs, there is considerably more skewing of the lexical de-
cision distributions in Figure 6 than of the naming distributions in
Figure 5. In addition, as shown within each figure, the shapes of
the RT distributions are relatively similar (although some differ-
ences are described above) for older adults and young adults, with
the major difference being a shift in the distributions for the older
adults compared with the younger adults.

Comparison of Word-Frequency Estimates

We now turn to a comparison of measures of word frequency to
determine which measure will ultimately be used in the subsequent
regression analyses. If there are differences among the word-
frequency measures and one uses a weak measure, a considerable
amount of frequency-based information could be lost in an anal-
ysis. Hence, we compared the predictive power of the following
five objective word-frequency measures. The Kučera and Francis
(1967) frequency norms are derived from a corpus of 1,014,000
words drawn from a wide variety of American English texts. The
Center for Lexical Information (CELEX) word-form frequency
norms are derived from a 17.9-million-word corpus built from a
mixture of written texts (Baayen, Piepenbrock, & van Rijn, 1993).
The Zeno frequency norms (Zeno, Ivens, Millard, & Duvvuri,
1995) are based on more than 17 million words culled from
approximately 6,300 textbooks, works of literature, and popular
works of fiction and nonfiction. The Hyperspace Analogue to
Language (HAL) frequency norms (Lund & Burgess, 1996) are
based on the HAL corpus, which consists of approximately 131
million words gathered across 3,000 Usenet newsgroups in Feb-
ruary 1995. The MetaMetrics frequency norms are a recently
developed corpus of 350 million words that span 21,000 computer
text files containing fiction, nonfiction, and kindergarten–12th-
grade textbooks (MetaMetrics, Inc., 2003). For each of the above
norms, we took the log of the sum of the frequency of the item plus
1. For comparison purposes, we also used the subjective frequency
norms (Balota et al., 2001), which are based on college students’

subjective ratings of how frequently they have encountered a word
in their lifetime.

Figure 7 displays the R2 estimates from the different frequency
counts as a function of age and task. There are three points to note
from Figure 7. First, as expected, the predictive power of word
frequency is consistently larger in lexical decision than in naming.
Second, older adults tend to produce larger word-frequency effects
in naming than do young adults, whereas the opposite pattern is
found in lexical decision; that is, young adults produce larger
word-frequency effects than do older adults. Third, and more
important, there is considerable variability in the amount of vari-
ance accounted for by the word-frequency estimates. Specifically,
in both naming and lexical decision performance, the Kučera and
Francis (1967) norms account for the least amount of variance,
followed by CELEX (Baayen et al., 1993) norms. These two

Figure 5. Ex-Gaussian functions for Vincentized young (top half) and
older (bottom half) adult naming latencies. Note that y-axis values should
be multiplied by .001.
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norms are probably most commonly used to control for and
investigate the influence of word frequency. These differences
are exaggerated in the LDT, where one finds, for example, that
a 10% difference in variance is accounted for between the Zeno
et al. (1995) norms and the Kučera and Francis norms (see
Burgess & Livesay, 1998, for further discussion of word-
frequency norms). Because of the consistently large influence
of the Zeno et al. norms across groups and tasks, we decided to
use these norms as our objective word-frequency norms in the
regression analyses described below. Zevin and Seidenberg
(2002) reached the same conclusion regarding the relative qual-
ity of the Zeno et al. norms compared with the CELEX and the
Kučera and Francis norms.

Figures 8A through 8D display the scatter plots of the item
means and the linear and quadratic functions for the log of the

Zeno et al. (1995) norms and the Balota et al. (2001) subjective
frequency norms. As shown, there is considerable scatter in
both the naming task and the LDT. More interesting is that there
is a distinct quadratic component in lexical decision that does
not occur in naming performance. Specifically, for naming
performance, the R2 for the linear and quadratic components are
virtually identical, whereas for lexical decision performance,
the quadratic component adds as much as 7% of the variance.
Clearly, even taking the log of word-frequency estimates does
not capture the nonlinear relationship between word frequency
and response latency in lexical decision performance (also see
Murray & Forster, in press, for further evidence that log fre-
quency has a nonlinear relationship to lexical decision response
latencies). To apply the same predictor variables across the
naming task and the LDT, we have used the log of the Zeno et
al. norms in the present analyses. We return to the quadratic
component in lexical decision performance in the General Dis-
cussion section.

Predictor Variables for the Regression Analyses

We now turn to regression analyses to assess the predictive
power of a set of targeted predictor variables that have been
identified from the literature. We group these variables into the
following three sets: surface level, lexical level, and semantic
level.

Surface Level

The first step in each analysis involved coding the initial pho-
neme of the words. We call this the surface-level coding because
this will, in part, capture sensitivity to voice key biases (see Rastle
& Davis, 2003). However, it is also the case that this surface-level
coding may be sensitive to the ease of the implementation of the
different phonological codes during articulation. Each word in the
data set was coded dichotomously (1 or 0) according to the
following 13 categories (see Spieler & Balota, 1997; Treiman et
al., 1995), where 1 denotes the presence of the feature and 0
denotes the absence of a feature: affricative, alveolar, bilabial,
dental, fricative, glottal, labiodental, liquid, nasal, palatal, stop,
velar, and voiced. As shown below, this first step in coding onsets
is quite powerful in predicting naming response latencies (see
Kessler, Treiman, & Mullennix, 2003, for alternative procedures
for coding onsets).

Lexical Level

At this level in the analyses, we entered variables that involve
characteristics above the individual phoneme or letter but that are
not traditionally considered semantic-level variables.

Word length. Word length refers to the number of letters in
each word.

Neighborhood size. Neighborhood size refers to the number of
orthographic neighbors that can be obtained by changing one letter
while preserving the identity and positions of the other letters (i.e.,
Coltheart’s N; Coltheart, Davelaar, Jonasson, & Besner, 1977).
These neighborhood size values were based on 40,481 words
available at the ELP Web site (http://elexicon.wustl.edu/).

Figure 6. Ex-Gaussian functions for Vincentized young (top half) and
older (bottom half) adult lexical decision performance. LDT � lexical
decision task. Note that y-axis values should be multiplied by .001.
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Objective frequency. As noted above, we have selected the log
of (frequency � 1) taken from the Zeno et al. (1995) norms as our
objective frequency index.

Subjective frequency. Subjective frequency, as described
above, was taken from Balota et al. (2001).

Consistency measures. As shown in Figure 9, we used lin-
guistic principles to decompose syllables into their onsets and
rime components. In our example, we refer to the figure to
illustrate how a word can vary along four continuous consis-
tency dimensions: feedforward onset consistency, feedforward
rime consistency, feedback onset consistency, and feedback
rime consistency. We first describe the different measures of
consistency conceptually and then explain how we operation-
alized them. These consistency measures were based on a pool
of 4,444 monosyllablic words available from the ELP (Balota et
al., 2002), which included a large set of single-syllable words
that were known to at least two out of three undergraduate
raters; see http://elexicon.wustl.edu/ for details. These estimates
are more comprehensive than those based only on the single-
syllable words in the Kučera and Francis (1967) norms and,

hence, the consistency measures that are available from Ziegler,
Stone, and Jacobs (1997).

Feedforward onset consistency of a word is computed with
reference to its spelling onset neighbors, that is, words that
share the same orthographic onset. For example, because the
orthographic onset of cad is c–, its spelling onset neighbors
include, among others, car, can, card, and cite. Cad is high on
feedforward onset consistency because most of its spelling
onset neighbors are friends, that is, they share the same pro-
nunciation (/k/) for the orthographic onset, and only a few are
enemies, that is, they have a different pronunciation (/s/) for the
onset. Conversely, cite is low on feedforward onset consistency
because most of its onset spelling neighbors are enemies. The
vast majority of c– onset words have the onset pronounced as
/k/ rather than /s/.

Feedforward rime consistency reflects the spelling rime neigh-
bors of a word, that is, words that share the same orthographic
rime. The rime neighbors of cad include sad, mad, lad, and squad.
Cad is high on feedforward rime consistency because most of its
rime neighbors are friends and have –ad pronounced as /æd/.

Figure 7. R2 estimates from the six different frequency counts as a function of age and task. Error bars represent
95% confidence intervals. K & F � Kučera and Francis (1967) frequency norms; Metrix � the MetaMetrics
frequency norms (MetaMetrics, Inc., 2003); Zeno � the Zeno et al. (1995) frequency norms; Celex � the Center for
Lexical Information word-form frequency norms (Baayen, Piepenbrock, & van Rijn, 1993); HAL � the Hyperspace
Analogue to Language (HAL) frequency norms (Lund & Burgess, 1996); Familiarity � subjective frequency norms
(Balota et al., 2001); Old Naming � performance of older adults on the naming task; Young Naming � the
performance of young adults on the naming task; Old LDT � the performance of older adults on the lexical decision
task; Young LDT � the performance of young adults on the lexical decision task.
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Figure 8. A: Scatter plots depicting the linear and quadratic trends for objective and subjective frequency
measures in young adults’ naming. B: Scatter plots depicting the linear and quadratic trends for objective and
subjective frequency measures in older adults’ naming. C: Scatter plots depicting the linear and quadratic trends
for objective and subjective frequency measures in young adults’ lexical decision. D: Scatter plots depicting the
linear and quadratic trends for objective and subjective frequency measures in older adults’ lexical decision.
Scatter plots on the left represent performance on the naming task; scatter plots on the right represent
performance on the lexical decision task. RT � reaction time; LDT � lexical decision task.
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Squad is low on feedforward rime consistency because most of its
neighbors are enemies; that is, the rime –ad is typically not
pronounced the way it is in squad.3

The feedback onset consistency of cad is computed with refer-
ence to its phonological onset neighbors, that is, words that begin
with the phonological onset /k/. Examples include cup, chord, and
keep. Cad is high on feedback onset consistency because the
majority of words beginning with /k/ are also spelled with c–.
Conversely, chord is low on feedback onset consistency because
very few /k/ onset words are spelled with ch–.

The feedback rime consistency of cad is determined by the
number of words that have rimes pronounced as /æd/, which
include bad, pad, and plaid. Cad is very feedback rime consistent
because most /æd/ neighbors are also spelled with –ad. In contrast,
plaid is very feedback rime inconsistent. It is the only word with
the /æd/ rime spelled as –aid.

Each of these consistency measures was operationalized using
the following definition (a variant of Luce’s choice axiom, see
Luce, 1977), where f is the number of friends (including the target
word itself) and e is the number of enemies. This is a token
definition, because the consistency of a word is weighted by both
the number and the log word frequencies of its neighbors, with
values ranging between 0 (least consistent) to 1.00 (most consis-
tent). An alternative way of computing consistency would be to
calculate consistency at the type level, which does not consider the
word frequencies of the friends and enemies. We used the fre-
quency of the friends and enemies because Jared et al. (1990)
demonstrated the importance of the frequency of friends and
enemies in calculating consistency.

Consistency �

�
i�1

f

lg freq�friends�

�
i�1

f

lg freq�friends� � �
i�1

e

lg freq�enemies�

. (1)

For example, to calculate the feedforward rime consistency of
branch, we need to determine the log frequencies of its friends and
enemies. Branch has two friends (blanch and ranch) and one
enemy (stanch).

Consistency�branch� �

lg freq�branch�
� lg freq�blanch� � lg freq�ranch�

lg freq�branch� � lg freq�blanch�
� lg freq�ranch� � lg freq�stanch�

.

(2)

Semantic Level

As noted earlier, there has been some debate regarding the
unique role of meaning in naming and lexical decision perfor-
mance above and beyond other confounding variables (e.g.,
Gernsbacher, 1984). The important theoretical issue here is
whether meaning provides a top-down influence during word
recognition or whether word recognition must precede access to
meaning. To explore this issue, we entered three different sets
of semantic variables in the third step of the regression analyses
after the onset (surface-level) and lexical-level predictor vari-
ables were partialed out. The first set involved standard mea-
sures of semantic information obtained for the set of items
available from the Toglia and Battig (1978) norms and the
Nelson, McEvoy, and Schreiber (1998) norms. This set of
analyses was based on 997 words. The second set of analyses
included a new set of imageability norms for all words (Cortese
& Fugett, 2003). Finally, the third set of analyses involved more
recent connectivity measures that are available on 1,625 words
(Steyvers & Tenenbaum, 2004). We entered these three sets of
semantic predictors separately, because the sets may tap differ-
ent qualities of semantic representation and, more important,
are based on different subsets of items.

Nelson’s set size. Nelson’s set size is the number of associates
produced by 2 or more subjects in free association (Nelson et al.,
1998). These norms were collected on 5,000 words across 6,000
subjects, with each subject providing free associations to a subset
of 100 to 120 words.

Imageability. These values were obtained from the Toglia and
Battig norms (1978) and are ratings of the ease with which an
image can be generated when a given word is presented. In
addition, as noted above, we also included a more recent measure
of imageability obtained by Cortese and Fugett (2003).

Meaningfulness. These values were obtained from the To-
glia and Battig norms (1978). They are ratings of how strongly
other words come to mind and the number of associates
that come to mind when subjects are presented with target
words.

3 For strange words (e.g., aisle, see Seidenberg, Waters, Barnes, &
Tanenhaus, 1984), one might expect that these consistency measures are
inappropriate, because the degree of consistency is actually complete,
that is, these words do not have any rime neighbors. We identified 44
such strange words and conducted a second set of analyses without
these items. The pattern of consistency effects did not change when
these items were excluded; therefore, these items remained in all
analyses.

Figure 9. Onset and rime organization for syllabic structure.
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The third set of semantic measures was based on recent work
by Steyvers and Tenenbaum (2004) regarding small-world se-
mantic networks. These measures tap into the degree of inter-
connectivity between words (and presumably concepts) in se-
mantic memory. Steyvers and Tenenbaum analyzed the
connectivity among words from three large-scale databases:
word association norms from Nelson et al. (1998), Miller’s
(1990) WordNet, and Roget’s Thesaurus of English Words and
Phrases (Roget, 1911). The primary metric here is how many
connections does a given word have to other words in the
network and how many words are connected to that given word,
that is, bidirectional connections. Steyvers and Tenenbaum
found that the large-scale structure of these semantic networks
follows a nonrandom structure that is found in other domains,

such as the neural networks in the worm Cænorhabditis elegans
and the power grid of the western United States (see Watts &
Strogatz, 1998). Specifically, there is sparse connectivity (given
the size of the network and number of connections, most words
are connected to relatively few other words), short average path
lengths between words (i.e., one can connect two words in an
approximately 5,000-word network via a relatively small num-
ber of paths, i.e., 5), and strong local clustering (a few words
are highly interconnected to other words). The strong local
clustering is important because these highly interconnected
hubs allow access to a considerable amount of information via
relatively few connections. Because connectivity follows a
power function, we have taken the log of both of these predictor
variables.

Log of Nelson’s connectivity measure. These values were
taken from the Nelson et al. (1998) norms and reflect the number
of unique words produced by 2 or more subjects in free association
to a given word plus the number of times the given word was
produced by 2 or more subjects in the free-association norms to
other words. For example, if 2 or more subjects produced 5
different words associated with the word dog, and dog was pro-
duced in the response sets of other words 7 times, then the
connectivity measure would be log of 12.

Log of WordNet connectivity. This database was developed by
Miller (1990) and has some similarity to Roget’s Thesaurus of
English Words and Phrases (Roget, 1911), but Miller’s database
also takes into consideration aspects of psycholinguistic theory.
WordNet is based on the distinction between word forms (Word-
Net has over 120,000 word forms) and word meanings (it has over
99,000 word meanings). Words are connected if they share the
same meaning (i.e., if they are synonyms) or when the same form
is connected to multiple meanings.

Descriptive Statistics

Tables 2 (words) and 3 (nonwords) provide the means and
standard deviations for each of the predictor variables, along
with each of the dependent measures, as a function of age
group. Table 4 presents the intercorrelation matrix among the
predictor variables, as well as among the dependent measures.

Table 2
Means and Standard Deviations for the Predictor Variables and
the Dependent Variables Used in the Regression Analyses for
Words

Variable M SD

Predictor variables
Entered in Step 1

Voiced 0.46 0.50
Bilabial 0.24 0.43
Labiodental 0.08 0.26
Dental 0.02 0.14
Alveolar 0.34 0.47
Palatal 0.11 0.31
Velar 0.14 0.34
Glottal 0.05 0.22
Stop 0.39 0.49
Fricative 0.34 0.47
Affricative 0.03 0.18
Nasal 0.07 0.25
Liquid glide 0.14 0.35

Entered in Step 2
Feedback onset token 0.92 0.19
Feedforward onset token 0.97 0.12
Feedback rime token 0.74 0.30
Feedforward rime token 0.90 0.21
Objective frequency 2.44 0.88
Neighborhood count 6.92 5.16
Length 4.36 0.86
Subjective frequency 4.12 1.14

Entered in Step 3
Set size 14.10 5.10
T&B imageability 4.79 0.97
T&B meaningfulness 4.30 0.63
C&F imageability 4.33 1.37
WordNet 1.63 0.86
Connectivity 3.10 0.70

Dependent variables
Reaction time (in ms)

Lexical decision—older 757.96 69.00
Lexical decision—young 616.79 62.01
Naming—older 654.67 34.25
Naming—young 468.46 20.69

Accuracy (proportion correct)
Lexical decision—older 0.95 0.06
Lexical decision—young 0.92 0.08
Naming—older 0.95 0.05
Naming—young 0.96 0.05

Note. T&B � Toglia & Battig (1978); C&F � Cortese & Fugett (2003).
Table 3
Means and Standard Deviations for the Predictor Variables and
the Dependent Variables Used in the Regression Analyses for
Nonwords

Variable M SD

Predictor variables
Neighborhood count 5.50 4.28
Length 4.38 0.81

Dependent variables
Reaction time (in ms)

Lexical decision—older 856.84 74.53
Lexical decision—young 679.96 55.01

Accuracy (proportion correct)
Lexical decision—older 0.92 0.07
Lexical decision—young 0.92 0.07
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A few correlations in Table 4 are noteworthy. First, length and
orthographic neighborhood size are negatively correlated
(	.65), reflecting the smaller neighborhoods for longer words.
Second, as expected, there is a strong positive (.78) relationship
between the Zeno et al. (1995) objective frequency norms and
the subjective frequency estimates obtained by Balota et al.
(2001). Of course, it is also noteworthy that considerable vari-
ance (39%) is not shared across these estimates, and so the
subjective frequency estimates appear to be tapping into useful
unique frequency-based information. Finally, imageability and
meaningfulness are related, and imageability is related to both
subjective and objective frequency. This latter relationship is
precisely why we first partialed out subjective and objective
frequency before addressing the influence of semantic vari-
ables. Although a few other clusters of correlations reached
significance because of the large number of observations, this is
not surprising.4

Regression Analyses

Two classes of regression analyses were performed. First, re-
gression analyses were performed on the mean item latencies and
accuracies across subjects within each age group (young and older)
and each task (LDT and naming). These analyses are the more
standard procedure for investigating the predictive influence of
variables on naming latencies (e.g., Treiman et al., 1995). Second,

for the subject-level analyses (see Balota & Chumbley, 1984;
Lorch & Myers, 1990), regression analyses were performed on
each subject’s response latencies and accuracies, allowing us to
obtain standardized regression coefficients (betas) for each predic-
tor variable for each subject. Betas standardize predictors using
different measurement scales so that their effects can be directly
compared. Separate 2 (age group) � 2 (task) ANOVAs were then
performed for each predictor (with the standardized regression
coefficient as the dependent variable) to determine if there are
reliable changes in the influence of a predictor variable as a
function of age group and/or task.

For both the item- and subject-level regression analyses, we
used a three-step hierarchical approach. The first step included the
13 phonological onset variables, the second step included the
lexical variables, and the third step involved the semantic
variables.

4 To explore the possible influence of suppressor variables, we entered
only one of the correlated variables (e.g., either length or orthographic
neighborhood size) into the hierarchical regression analyses to determine if
such correlated variables influenced the remaining predictor variables. The
pattern of reliable effects did not change, compared with when both
variables were added into the regression equation. Hence, the combined
influence of these correlated predictor variables did not modulate the
influence of the remaining variables.

Table 4
Correlation Matrix for the Dependent Measures and the Predictor Variables From Steps 2 and 3 of the Regression Analyses

Variable

Dependent variables

1 2 3 4 5 6 7 8

1. LDT-O-Acc — .45*** .23*** .15*** 	.53*** 	.43*** 	.25*** 	.16***
2. LDT-Y-Acc — .18*** .17*** 	.56*** 	.66*** 	.24*** 	.17***
3. Name-O-Acc — .35*** 	.25*** 	.19*** 	.25*** 	.22***
4. Name-Y-Acc — 	.20*** 	.18*** 	.32*** 	.31***
5. LDT-O-RT — .66*** .41*** .29***
6. LDT-Y-RT — .35*** .28***
7. Name-O-RT — .66***
8. Name-Y-RT —
9. Length

10. Obj. freq.
11. Sub. freq.
12. Neigh. size
13. FF onset consist.
14. FB onset consist.
15. FF rime consist.
16. FB rime consist.
17. T&B meaningful.
18. T&B image.
19. C&F image.
20. Nelson set size
21. WordNet
22. Connectivity

Note. LDT-O-Acc � lexical decision task, older adults, accuracy; LDT-Y-Acc � lexical decision task, young adults, accuracy; Name-O-Acc � naming
task, older adults, accuracy; Name-Y-Acc � naming task, young adults, accuracy; LDT-O-RT � lexical decision task, older adults, reaction time;
LDT-Y-RT � lexical decision task, young adults, reaction time; Name-O-RT � naming task, older adults, reaction time; Name-Y-RT � naming task,
young adults, reaction time; Obj. freq. � objective frequency; Sub. freq. � subjective frequency; Neigh. size � neighborhood size; FF onset consist. �
feedforward onset consistency; FB onset consist. � feedback onset consistency; FF rime consist. � feedforward rime consistency; FB rime consist. �
feedback rime consistency; T&B meaningful. � Toglia & Battig (1978) meaningfulness measure; T&B image. � Toglia & Battig imageability measure;
C&F image. � Cortese & Fugett (2003) imageability measure.
* p � .05. ** p � .01. *** p � .001.
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Item-Level Regression Analyses

Response Latencies

The results of the mean item-level response latency regression
analyses are displayed in Table 5. To control for the number of
predictors, we report adjusted R2 estimates for the item-level
regressions. Adjusted R2 estimates are unbiased estimates of the
squared population correlation coefficient that take into account
the sample size and the number of predictors in the model (Cohen,
Cohen, West, & Aiken, 2003). First, consider the results from Step
1. As expected, the phonological onset variables predicted consid-
erably more variance in naming than in lexical decision for both
young adults (.35 vs. 01) and older adults (.22 vs. 04). The large
amount of variance accounted for at the onset level clearly indi-
cates that coding at the feature level is a powerful predictor of
performance and some control of this simple level is necessary in
naming studies. Interestingly, albeit to a much lesser extent, the
phonological onsets (in particular voicing) do account for a reli-
able portion of the variance in the LDT, with slightly larger effects
in older adults. Although the size of the individual regression
coefficients for the onset variables is much smaller in lexical
decision than in naming, the direction of the coefficients is iden-
tical across tasks and across young and older adults. This suggests
that the articulatory and/or phonological processes that are in-
volved in generating the onsets in naming performance also con-
tribute, albeit to a much smaller extent, to lexical decision perfor-

mance. Finally, it is noteworthy that the phonological onset
variables entered in Step 1 accounted for considerably more vari-
ance in the young adults’ naming performance (.35) than in the
older adults’ naming performance (.22). It is possible that the
articulation may be more variable in older adults, thereby decreas-
ing the predictive power of these phonological onset variables in
the older adult group.

Turning to the lexical-level variables in Step 2, there are a
number of observations. First, as expected, the LDT appears to be
more dependent on the frequency-based information than the nam-
ing task is, and subjective and objective frequency account for
comparable amounts of performance in lexical decision. Second,
the correspondence between spelling and sound (as reflected by
both the feedforward and the feedback consistency estimates for
onset and rime) appears to predict both naming and lexical deci-
sion performance. Specifically, in naming, feedforward rime con-
sistency, feedback rime consistency, and feedback onset consis-
tency predict performance for both older and young adults. In
lexical decision, the effects are somewhat smaller and localized to
feedforward onset and rime consistency. Third, the influence of
length in letters is much greater in naming than in lexical decision
for both groups of subjects. Finally, orthographic neighborhood
size is a predictor for young adult naming performance but not
lexical decision performance. Moreover, there appears to be some
tendency for an inhibitory effect of neighborhood size for older
adults in the LDT.

Predictor variables

9 10 11 12 13 14 15 16 17 18 19 20 21 22

.00 .29*** .30*** .00 .03 .04 .02 	.01 .18*** .13*** .21*** .10*** .26*** .22***

.02 .43*** .45*** .01 .05* .04 .02 .01 .32*** .16*** .30*** .12*** .32*** .27***
	.11*** .10*** .12*** .08*** .08*** .10*** .15*** .11*** .08** .03 .09*** .03 .11*** .05*
	.14*** .11*** .10*** .13*** .17*** .14*** .16*** .12*** .09** .07* .09*** .03 .12*** .10***

.12*** 	.52*** 	.49*** 	.08*** 	.01 	.02 .01 .00 	.26*** 	.09** 	.25*** 	.06* 	.38*** 	.34***

.09*** 	.59*** 	.61*** 	.09*** 	.03 	.02 .04 .00 	.37*** 	.13*** 	.28*** 	.12*** 	.41*** 	.47***

.37*** 	.34*** 	.32*** 	.31*** 	.09*** 	.07*** 	.06** 	.08*** 	.12*** 	.01 	.09*** .01 	.24*** 	.22***

.40*** 	.28*** 	.27*** 	.36*** 	.10*** 	.02 	.07** 	.10*** 	.07* .01 	.07** .02 	.18*** 	.19***
— 	.16*** 	.16*** 	.65*** .00 .02 	.03 	.01 .03 .04 	.07** .08** 	.03 	.07**

— .78*** .13*** 	.06** 	.01 	.13*** 	.07** .11*** 	.30*** .02 .10*** .46*** .59***
— .12*** 	.07*** 	.02 	.11*** 	.05* .18*** 	.30*** 	.02 .05* .41*** .59***

— .12*** .09*** .02 .13*** 	.01 .00 .06** 	.01 .12*** .10***
— .22*** .04 .07** .08** .13*** .07** .06* .06** .02

— .08*** .05** .02 .06 .04 .05* .07** .02
— .23*** .03 .10*** .04 .01 .01 	.06*

— .10*** .13*** .08*** .01 .06** 	.02
— .53*** .40*** 	.01 .25*** .50***

— .89*** 	.05 .00 .08*
— 	.06* .07** .03

— .16*** .42***
— .45***

—
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Turning to the semantic variables, one can see from the data in
the top third of Table 6 that the standard semantic predictor
variables (based on a subset of the full set of items) did in fact
produce a reliable effect at the item level, which was larger in
lexical decision than in naming. In addition, it appears that the
older adults are somewhat less influenced by the standard semantic
variables than are the young adults. The effect of imageability on
naming and lexical decision extends to the full set of items avail-
able from the Cortese and Fugett (2003) imageability norms, as
shown in the middle third of Table 6. Turning to the semantic
connectivity estimates in the bottom third of Table 6, one can see
that the WordNet (Miller, 1990) connectivity measure predicts
naming and lexical decision performance, and the connectivity
measure also predicts lexical decision. Specifically, the more con-
nectivity a given word entails, the faster the response latency. The
semantic connectivity measures are again larger in lexical decision
than in naming.

Accuracy Analyses

The accuracy measures are based on the same items that went
into the response latency measures. As noted above, to ensure that
the observed effects across tasks and across groups were due to

items that the subjects actually knew, we eliminated any items that
did not have at least 20 observations in both young and older
adults, based on lexical decision performance. Thus, these accu-
racy measures already excluded a set of items that did not reach
this threshold.

The results of the item accuracy regression analyses are dis-
played in Table 7. As shown, the predictive power of the onset
variables on accuracy in naming is dramatically reduced, com-
pared with the predictive power on response latencies (shown in
Table 5). This is expected because the coding of onsets should
primarily influence response latencies due to voice key sensitivity
and articulation instead of accuracy. There is again considerable
consistency in the sign of the regression coefficients across naming
and lexical decision, and older adults again appear to be less
influenced by onsets in naming than are the young adults. The
voicing variable again is reliable in lexical decision performance.

Turning to Steps 2 and 3, one finds a similar pattern as observed
in the response latency data. In particular, for lexical decision, the
frequency measures predict the majority of the variance, whereas
in naming, the consistency measures account for the most vari-
ance. Finally, as shown in Table 8, the semantic measures included
in Step 3 indicate that there is again evidence of semantic variables
influencing performance more in lexical decision than in naming,
and again there is a consistent influence of the Cortese and Fugett
(2003) imageability estimates.

Subject-Level Regression Analyses

Response Latencies

The mean standardized regression coefficients based on the
individual subjects’ regression analyses are displayed in Table 9.
(For simplicity, we do not include the phonological onset variables
here, although these were partialed out for each subject.) As shown
here, these regression coefficients are quite consistent with the
item-level regression analyses. To directly compare the effects of
task and/or group on each of the predictor variables, we present
below the results of 2 (age group) � 2 (task) ANOVAs for each
predictor (using the standardized regression coefficient as the
dependent variable). For each variable, the main effect of task will
be examined first, then the main effect of age, and finally the
interaction between task and age.

Looking at the effects of task, we observed that there were larger
effects of objective frequency, F(1, 116) � 118.54, MSE � 0.002,
�2 � .505; subjective frequency, F(1, 116) � 97.09, MSE �
0.001, �2 � .456; and feedforward onset consistency, F(1, 116) �
9.16, MSE � 0.0007, �2 � .073, in lexical decision than in
naming. In contrast, there were larger effects of feedback onset
consistency, F(1, 116) � 30.74, MSE � 0.0006, �2 � .209;
feedback rime consistency, F(1, 116) � 18.34, MSE � 0.0004,
�2 � .137; neighborhood size, F(1, 116) � 57.73, MSE � 0.001,
�2 � .332; and length, F(1, 116) � 25.07, MSE � 0.002, �2 �
.178, in naming than in lexical decision. Thus, nearly every vari-
able produced a main effect of task, emphasizing the different
constellation of processes engaged by the two tasks.

Turning to the effects of age, compared with young adults, older
adults produced a smaller effect of orthographic neighborhood,
F(1, 116) � 8.31, MSE � 0.001, �2 � .067. Furthermore, older
adults (compared with young adults) produced larger influences of

Table 5
Standardized Reaction Time Regression Coefficients From Steps
1 and 2 of the Item-Level Regression Analyses for Young and
Older Adult Lexical Decision Task (LDT) and Naming
Performance

Predictor variable

Young Older

LDT Naming LDT Naming

Step 1
Affricative 	0.18 	0.39*** 	0.24† 	0.27*
Alveolar 0.44 1.18*** 0.43 1.06***
Bilabial 0.39 1.03*** 0.38 0.90**
Dental 0.13 0.37*** 0.10 0.31**
Fricative 	0.26 	0.76** 	0.29 	0.41
Glottal 0.18 0.27* 0.10 0.18
Labiodental 0.25 0.63*** 0.23 0.49**
Liquid 	0.32 	0.89*** 	0.44† 	0.64**
Nasal 	0.20 	0.72*** 	0.21 	0.44**
Palatal 0.35 0.57** 0.35 0.56**
Stop 	0.36 	1.12*** 	0.52 	0.82**
Velar 0.39 1.03*** 0.45† 0.92***
Voiced 0.10*** 	0.12*** 0.13*** 	0.01

R2 .01 .35 .04 .22
Step 2

Length 	0.00 0.16*** 0.07** 0.18***
Objective frequency 	0.32*** 	0.13*** 	0.37*** 	0.20***
Subjective frequency 	0.38*** 	0.13*** 	0.21*** 	0.13***
Neighborhood size 0.02 	0.10*** 0.08*** 	0.05*
Feedforward onset

consistency 	0.07*** 	0.03† 	0.04† 	0.03†
Feedback onset

consistency 0.00 	0.08*** 	0.02 	0.10***
Feedforward rime

consistency 	0.05** 	0.08*** 	0.05** 	0.08***
Feedback rime

consistency 	0.02 	0.08*** 	0.03† 	0.07***
R2 .42 .49 .34 .39

† p � .10. * p � .05. ** p � .01. *** p � .001.

298 BALOTA, CORTESE, SERGENT-MARSHALL, SPIELER, AND YAP



objective frequency, F(1, 116) � 10.20, MSE � 0.002, �2 � .081,
but smaller influences of subjective frequency, F(1, 116) � 23.98,
MSE � 0.001, �2 � .171.

There was a reliable Age � Task interaction for the subjec-
tive frequency variable, F(1, 116) � 19.15, MSE � 0.001, �2 �
.142, such that young adults produced larger effects of subjec-
tive frequency than did older adults, but this was localized in
lexical decision ( p � .001) and did not occur in naming ( p �
.05).

Turning to the semantic variables, all three standard variables
(Nelson’s set size, imageability, and meaningfulness) produced
larger coefficients in lexical decision than in naming (all ps � .02).
However, it is interesting that there was no main effect of age for
any of these three variables. There was an Age � Task interaction
for the Toglia and Battig (1978) meaningfulness measure, F(1,
116) � 8.03, MSE � 0.001, �2 � .065, which reflected the larger
influence of task for young adults relative to older adults. The
Cortese and Fugett (2003) imageability measure produced a main
effect of task, F(1, 116) � 276.34, MSE � 0.0008, �2 � .704, with
larger influences of this variable in lexical decision than in naming.
Finally, for the semantic connectivity measures, the Nelson et al.
(1998) connectivity estimates resulted in main effects of task, F(1,
116) � 39.39, MSE � 0.001, �2 � .253; age, F(1, 116) � 9.54,
MSE � 0.001, �2 � .076; and a Task � Age interaction, F(1,
116) � 7.75, MSE � 0.001, �2 � .063. The interaction reflected
the relatively large effect of connectivity for the young adult
lexical decision performance. For the WordNet (Miller, 1990)
connectivity estimates, there was a significant main effect of age

(larger effects for older adults), F(1, 116) � 4.14, MSE � 0.0008,
�2 � .034.

Accuracy

Because Step 1 of the regression analyses involved a dichoto-
mous dependent measure at the subject level, we used logistic
regression for these analyses. The mean standardized regression
coefficients for the subject-level accuracy analyses are displayed
in Table 10. The coefficient used in Table 10 was the odds ratio.
An odds ratio of 1.0 is associated with no relationship between the
predictor and the dependent variable, whereas odds ratios greater
than 1.0 correspond to positive regression coefficients and odds
ratios less than 1.0 correspond to negative regression coefficients.
The results indicated that lexical decision is more influenced than
naming by objective frequency, F(1, 116) � 40.21, MSE � 0.06,
�2 � .257; subjective frequency, F(1, 116) � 38.73, MSE � 0.05,
�2 � .250; and orthographic neighborhood, F(1, 116) � 4.73,
MSE � 0.001, �2 � .039. In contrast, naming is more influenced
than lexical decision by length, F(1, 116) � 16.59, MSE � 0.05,
�2 � .125; feedback onset consistency, F(1, 116) � 9.48, MSE �
0.919, �2 � .076; feedforward rime consistency, F(1, 116) �
17.25, MSE � 1.16, �2 � .129; and feedback rime consistency,
F(1, 116) � 19.68, MSE � 0.288, �2 � .145.

Turning to the effects of age, there was a Task � Age interac-
tion, F(1, 116) � 10.63, MSE � 0.05, �2 � .084, for the subjective
frequency measure, which indicated that the age difference
(young � old) was primarily localized in the LDT. Compared with

Table 6
Results From Step 3 Item-Level Reaction Time Regression Analyses With Standard Predictor
Variables and Connectivity Measures

Order of entry into regression model

Young Older

LDT Naming LDT Naming

Standard semantic variables (n � 997)

Step 1: Phonological onsets, R2 .022** .394*** .081*** .251***
Step 2: Lexical characteristics, R2 .176*** .496*** .200*** .356***
Step 3: Semantic variables, R2 .238*** .496*** .219*** .356***

Nelson set size, � 	0.08** 	0.01 	0.01 0.00
T&B imageability, � 	0.16*** 	0.06* 	0.13*** 	0.05
T&B meaningfulness, � 	0.13*** 0.03 	0.04 	0.01

Cortese & Fugett (2003) imageability (n � 2,342)

Step 1: Phonological onsets,
R2

.011*** .348*** .047*** .221***

Step 2: Lexical characteristics, R2 .414*** .495*** .337*** .390***
Step 3: Semantic variables, R2 .486*** .500*** .390*** .392***

Imageability, � 	0.27*** 	0.04* 	0.23*** 	0.05**

Semantic connectivity measures (n � 1,625)

Step 1: Phonological onsets,
R2

.012** .370*** .053*** .245***

Step 2: Lexical characteristics, R2 .278*** .477*** .244*** .365***
Step 3: Semantic variables, R2 .310*** .479*** .254*** .371***

WordNet, � 	0.07** 	0.04† 	0.09*** 	0.09***
Connectivity, � 	0.21*** 	0.04 	0.08* 	0.04

Note. LDT � lexical decision task; T&B � Toglia & Battig (1978).
† p � .10. * p � .05. ** p � .01. *** p � .001.
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young adults, older adults produced smaller effects of length and
orthographic neighborhood size, F(1, 116) � 6.75, MSE � 0.05,
�2 � .055, and F(1, 116) � 14.94, MSE � 0.001, �2 � .114,
respectively. Generally, the pattern mirrors the analyses of re-
sponse latencies, with the most salient finding being that the
frequency measures better predict lexical decision, whereas the
consistency measures better predict naming.

Turning to the analyses of the semantic variables, the only
effects that emerged were a main effect of task for the Cortese and
Fugett (2003) imageability estimates, F(1, 116) � 58.44, MSE �
0.020, �2 � .335, and Nelson et al.’s (1998) estimate of connec-
tivity, F(1, 116) � 15.56, MSE � 0.113, �2 � .118. Both of these
reflect larger effects in lexical decision than in naming.

Nonword Performance

Table 11 displays the regression coefficients for the item-level
analyses (top half) and subject-level analyses (bottom half) for
both accuracy and response latencies. (Nonwords were only in-
cluded in the LDT.) The nonwords were only coded for length and
neighborhood density. The results from both the item-level regres-
sion analyses and the subject-level regression analyses indicated

that both predictor variables were highly reliable in these analyses.
Thus, in contrast to lexical decision for words, both length and
neighborhood density are strong predictors of nonword perfor-
mance. Specifically, nonwords that are long and nonwords that
have many orthographic neighbors produce relatively slow and
less accurate lexical decision performance. The effects of these
variables are slightly smaller in older adults than in young adults,
but these differences did not reach significance in the subject-level
analyses.

General Discussion

The present study provides evidence regarding the predictive
power of standard lexical processing variables for virtually all
single-syllable monomorphemic words in both naming and lexical
decision performance and in both young adults and older adults.
Although there are a number of intriguing aspects of these results
concerning the standard predictor variables (discussed in detail
below), we first discuss some concerns about the utility of large-
scale studies of isolated word processing (for additional discus-
sions of these issues, see Balota & Spieler, 1998; Seidenberg &
Plaut, 1998). For example, one might argue that naming (or mak-
ing lexical decisions to) nearly 3,000 words may produce variabil-
ity due to fatigue or boredom. Hence, such data sets might be too
noisy to usefully constrain word recognition models. However, we
were able to account for, on average, 50% of the young adult
variance and 40% of the older adult variance in these two lexical
processing tasks via the regression equation on the full data set.
Given the fact that there was considerable overlap in the response
latencies for some of the words (as shown in Figures 1 and 2) and
hence little variance to predict for these items, one might consider
these to be relatively large amounts of variance accounted for by
the predictor variables. In fact, the parameter estimates from the
Seidenberg and McClelland (1989) and Plaut et al. (1996) models
account for only 10.1% and 3.3% of the item-level variance for the
present young adult naming data, respectively. We also found
considerable consistency across subjects in the pattern of regres-
sion coefficients as reflected by the subject-level regression anal-
yses. A third way of assessing the utility of such large databases is
to select a subset of items from a published study to determine if
one can replicate the obtained results at the mean level. Thus, we
(Balota & Spieler, 1998) selected a subset of items from the
present young adult naming data set that was used in the factorial
study conducted by Taraban and McClelland (1987, Experiment
1A). Taraban and McClelland found a Frequency � Regularity
interaction such that spelling-to-sound regularity produced a larger
effect for low-frequency words compared with high-frequency
words. This pattern was replicated in the same set of items taken
from the present naming data set.

Although the above approaches provide support for the utility of
large-scale databases, there is now a data set that affords a repli-
cation for both the lexical decision and the naming data. In
particular, we were able to access lexical decision and naming data
for the single-syllable words from a large data set of over 40,481
words from the ELP (Balota et al., 2002). The ELP involves a
collaborative effort among six universities to provide behavioral
and descriptive lexical processing information along with a search
engine available on the Web. The lexical decision data are based
on 30 to 35 observations per item and the naming data are based

Table 7
Standardized Accuracy Regression Coefficients From Steps 1
and 2 of the Item-Level Regression Analyses for Young and
Older Adult Lexical Decision Task (LDT) and Naming
Performance

Predictor variable

Young Older

LDT Naming LDT Naming

Step 1
Affricative 0.21 0.95*** 0.21 0.12
Alveolar 	0.37 	2.57*** 	0.38 	0.34
Bilabial 	0.32 	2.30*** 	0.33 	0.27
Dental 	0.13 	0.77*** 	0.08 	0.16
Fricative 0.40 2.38*** 0.40 0.28
Glottal 	0.17 	1.10*** 	0.13 	0.10
Labiodental 	0.21 	1.32*** 	0.24 	0.12
Liquid 0.37 1.88*** 0.38 0.26
Nasal 0.22 1.28*** 0.22 0.14
Palatal 	0.31 	1.68*** 	0.24 	0.17
Stop 0.43 2.58*** 0.50 0.36
Velar 	0.35 	1.90*** 	0.34 	0.30
Voiced 	0.09** 0.00 	0.08** 	0.01

R2 .01 .04 .01 .01
Step 2

Length 0.08** 	0.08** 0.00 	0.12***
Objective frequency 0.21*** 0.08** 0.19*** 0.04
Subjective frequency 0.32*** 0.05 0.17*** 0.11***
Neighborhood size 	0.02 0.01 	0.07** 	0.07*
Feedforward onset

consistency 0.07** 0.16*** 0.06* 0.04†
Feedback onset

consistency 0.02 0.09*** 0.03 0.10***
Feedforward rime

consistency 0.08*** 0.15*** 0.06** 0.14***
Feedback rime

consistency 0.02 0.09*** 0.00 0.08***
R2 .25 .13 .12 .08

† p � .10. * p � .05. ** p � .01. *** p � .001.
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on 25 to 30 observations per item (details of the methods are
available at the ELP Web site, http://elexicon.wustl.edu/). Cur-
rently, 816 individuals have provided data for the LDT and 423
have provided data for the naming task. Each subject provides data

for a subset of approximately 3,000 of the 40,481 tested words. To
take into consideration overall differences across individuals in
response latencies and the fact that each subject did not contribute
to the data for all single-syllable words, we used the mean z score

Table 8
Results From Step 3 Item-Level Accuracy Regression Analyses With Standard Predictor
Variables and Connectivity Measures

Order of entry into regression model

Young Old

LDT Naming LDT Naming

Standard semantic variables (n � 997)

Step 1: Phonological onsets, R2 .011* .138*** .021** .036***
Step 2: Lexical characteristics, R2 .043*** .217*** .053*** .081***
Step 3: Semantic variables, R2 .079*** .220*** .078*** .078***

Nelson set size, � 0.07* 0.05† 0.08** 0.02
T&B imageability, � 0.12** 0.04 0.17*** 	0.01
T&B meaningfulness, � 0.10** 0.03 	0.03 0.02

Cortese & Fugett (2003) imageability (n � 2,342)

Step 1: Phonological onsets, R2 .010** .043*** .013*** .013***
Step 2: Lexical characteristics, R2 .238*** .135*** .113*** .079***
Step 3: Semantic variables, R2 .331*** .138*** .152*** .083***

Imageability, � 0.31*** 0.06** 0.20*** 0.07**

Semantic connectivity measures (n � 1,625)

Step 1: Phonological onsets, R2 .006* .064*** .012** .010**
Step 2: Lexical characteristics, R2 .109*** .127*** .060*** .057***
Step 3: Semantic variables, R2 .118*** .134*** .073*** .057***

WordNet, � 0.05† 0.07** 0.04 0.04
Connectivity, � 0.11*** 0.06† 0.15*** 0.00

Note. LDT � lexical decision task; T&B � Toglia & Battig (1978).
† p � .10. * p � .05. ** p � .01. *** p � .001.

Table 9
Mean Standardized Reaction Time Regression Coefficients From Steps 2 and 3 of the Subject-
Level Regression Analyses for Young and Older Adult Lexical Decision Task (LDT) and Naming
Performance

Predictor variable

Young Older

LDT Naming LDT Naming

Step 2
Length 0.001 0.059*** 0.030* 0.063***
Objective frequency 	0.125*** 	0.048*** 	0.149*** 	0.070***
Subjective frequency 	0.149*** 	0.049*** 	0.084*** 	0.045***
Neighborhood size 0.009 	0.040*** 0.030*** 	0.023**
Feedforward onset consistency 	0.026*** 	0.007 	0.020*** 	0.010†
Feedback onset consistency 0.001 	0.027*** 	0.007† 	0.033***
Feedforward rime consistency 	0.017** 	0.025*** 	0.023*** 	0.026***
Feedback rime consistency 	0.010** 	0.027*** 	0.010* 	0.025***

Step 3
T&B meaningfulnessa 	0.038*** 0.007 	0.012 	0.006
T&B imageabilitya 	0.051*** 	0.021** 	0.051*** 	0.012
Nelson set sizea 	0.022** 	0.001 	0.009 0.000
C&F imageabilityb 	0.109*** 	0.012** 	0.095*** 	0.016***
WordNetc 	0.027*** 	0.013** 	0.031*** 	0.030***
Connectivityc 	0.070*** 	0.014* 	0.033*** 	0.012†

Note. T&B � Toglia & Battig (1978); C&F � Cortese & Fugett (2003).
a n � 997. b n � 2,342. c n � 1,625.
† p � .10. * p � .05. ** p � .01. *** p � .001.
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(based on each subject’s overall response latency and standard
deviation) as the dependent measure in the regression analyses for
this set of items.

The results of this replication are quite clear. First consider the
R2 values from the three steps of the regression models. For the
current lexical decision study, the R2 estimates from Steps 1, 2, and
3 (including all words and the Cortese & Fugett, 2003, imageabil-
ity norms in Step 3) were .01, .41, and .49, respectively, whereas
the R2 estimates from the words selected from the ELP were .01,
.44, and .52. For the naming data, the R2 estimates from Steps 1,
2, and 3 were .35, .50, and .50, respectively, and for the ELP, the
estimates were .38, .57, and .58. More important, as shown in
Figures 10 and 11, the lexical decision and naming results from the
ELP provide a remarkable replication of not only the reliability of
the regression coefficients but also on the size of the coefficients.
Hence, even though these results were taken from a much more
diverse subject pool from six different universities and the tested
words were embedded within mostly multisyllabic words using
different screening procedures, there was clear convergence in the
regression coefficients. It is also noteworthy that the naming
results from the ELP included data collected with a different voice
key especially constructed for this project, and, on average, the
subjects in the ELP produced response latencies that were on the
order of 100 ms slower than those in the current naming study.

Given that these data provide relatively stable estimates of
performance at the item level, we are now in a position to discuss
the relative contributions of the targeted variables in speeded
naming and lexical decision performance in the context of the
word recognition literature. We discuss the predictive effects of
each of these variables in turn.

Length

The effect of orthographic length has been central in recent
models of speeded word naming. An important theoretical obser-
vation by Weekes (1997) indicated that length in letters influenced
nonword-naming performance but did not influence word-naming
performance after other variables were controlled for. This is in
contrast to the earlier observation of an effect of length in speeded
word naming by Frederiksen and Kroll (1976). However, Weekes
pointed out that Frederiksen and Kroll did not control for poten-
tially contaminating variables. Coltheart et al. (2001) recently
highlighted this finding as being supportive of a dual-route model,
in which the more serial, sublexical pathway is necessary for
nonword naming, whereas a more parallel pathway contributes to
word naming. Furthermore, Coltheart et al. argued that only the
dual-route model can explicitly capture the Lexicality � Length
interaction that Weekes observed.

The present study provides unequivocal evidence that longer
words take more time to name than shorter words do. In fact, this
variable accounted for nearly as much variance as objective fre-
quency did. Hence, our data are inconsistent with the strong
conclusion from the Weekes (1997) study that length does not
produce a unique effect on word naming. Of course, the important
question is why we found a pattern of results different than that
reported by Weekes. There are at least three possibilities. First, it
is possible that we obtained an effect of length because the range
of lengths in the present study was larger (2 to 8 letters) than that
in the Weekes study (3 to 6 letters). However, this does not appear
to account for the difference in results, because the vast majority
of stimuli in the present study were 3 to 6 letters in length, that is,
2,403 words out of the 2,428. There were only 25 words at the
extremes, and an items-level regression excluding these items
yielded highly reliable effects of length for both young ( p �
.0001) and older adults ( p � .0001). Thus, restriction of range is
not the answer.

A second possible reason for the differing patterns of results is
that Weekes (1997) randomly intermixed words and nonwords
within the same list. We intentionally did not intermix words and

Table 10
Mean Standardized Accuracy Regression Coefficients From
Steps 2 and 3 of the Subject-Level Regression Analyses for
Young and Older Adult Lexical Decision Task (LDT) and
Naming Performance

Predictor variable

Young Older

LDT Naming LDT Naming

Step 2
Length 2.87** 1.84* 1.44 2.31*
Objective frequency 7.14*** 1.15 4.49** 0.91
Subjective frequency 14.59*** 0.91 4.30** 1.42
Neighborhood size 2.04* 1.40 1.73† 0.98
Feedforward onset consistency 1.95* 3.85** 1.27 1.55
Feedback onset consistency 1.26 2.01* 1.05 2.29*
Feedforward rime consistency 2.91* 5.00** 1.31 3.34**
Feedback rime consistency 1.18 2.44* 0.78 2.20*

Step 3
T&B meaningfulnessa 1.43 0.51 1.16 0.94
T&B imageabilitya 1.21 0.73 2.57** 1.64
Nelson set sizea 0.95 0.94 1.24 1.13
C&F imageabilityb 18.47*** 1.61 7.74** 2.33*
WordNetc 1.27 1.13 1.40 0.61
Connectivityc 1.83 0.99 1.78* 1.25

Note. T&B � Toglia & Battig (1978); C&F � Cortese & Fugett (2003).
a n � 997. b n � 2,342. c n � 1,625.
† p � .10. * p � .05. ** p � .01. *** p � .001.

Table 11
Mean Standardized Regression Coefficients for Nonwords for
Both the Item-Level and Subject-Level Response Latency and
Accuracy Analyses as a Function of Group

Predictor variable

Young Older

RT Accuracy RT Accuracy

Item level
Neighborhood size .45*** 	.31*** .40*** 	.25***
Length .53*** 	.27*** .41*** 	.14***

R2 .21 .07 .13 .04
Subject level

Neighborhood size .16*** .93*** .15*** .95***
Length .19*** .73*** .16*** .87**

Note. RT � reaction time.
** p � .01. *** p � .001.
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nonwords because this might encourage more nonlexical process-
ing (e.g., Monsell et al., 1992; Zevin & Balota, 2000). If this
intermixing were the case, then one would actually expect more of
a length effect for words in the Weekes study compared with the
present study. However, this was not what occurred.

Another possible reason for the difference is that Weekes (1997)
covaried out length in phonemes. Because phoneme length and
letter length are highly correlated, it is possible that there was no
unique variance to be accounted for by letter length after phoneme
length was partialed out. To address this possibility, we deter-
mined each word’s length in phonemes and entered this variable,
along with the remaining lexical predictor variables, into the

regression equation in Step 2 of the model. The results again
yielded highly reliable predictive power of length in letters in
speeded naming performance, above and beyond length in pho-
nemes for both young adults ( p � .001) and older adults ( p �
.001). Moreover, the same pattern held when we entered length in
letters after entering length in phonemes precisely as in the
Weekes study. Hence, the present letter-length effect cannot be
dismissed as a phoneme-length effect.

It is possible that length would have less of an effect for very
familiar stimuli (i.e., for common words, the input may be more
likely to be processed in parallel), as one might expect from the
Coltheart et al. (2001) dual-route model described above. If this

Figure 10. Replication of lexical decision task (LDT) results from items taken from the English Lexicon
Project database (Balota et al., 2002). Error bars represent 95% confidence intervals. CF Image. � the Cortese
and Fugett (2003) imageability measure; TB Meaning. � the Toglia and Battig (1978) meaningfulness measure;
TB Image. � the Toglia and Battig imageability measure; FB Rime � feedback rime consistency; FF Rime �
feedforward rime consistency; FB Onset � feedback onset consistency; FF Onset � feedforward onset
consistency; Ortho. N. � orthographic neighborhood; Object. Freq. � objective frequency.
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were the case, then one might expect a larger length effect for
low-frequency words, where there may be a decreased likelihood
of parallel lexical processing. Weekes (1997) did in fact find
evidence of larger length effects for low-frequency words than for
high-frequency words. However, Weekes did not find a unique
effect after remaining variables were controlled for, even for
low-frequency words.

To further explore the Length � Word Frequency interaction,
we adopted the strategy advocated by Cohen et al. (2003). Al-
though other techniques are available for testing interaction effects

in regression, these methods reduce continuous variables to cate-
gories and diminish statistical power (Jaccard, Turrisi, & Wan,
1990). The Length � Word Frequency interaction was represented
by a predictor variable created from the product of length and log
Zeno frequency. The R2 change between two regression models
(one with the interaction term and one without) is measured, and
the extent of the change is evaluated. This method uses the full
regression model, that is, after all the additional variables have
been partialed out in Steps 1 and 2, and hence does not discard any
information. One way of conceptualizing this is that it is a test of

Figure 11. Replication of the naming results from items taken from the English Lexicon Project database
(Balota et al., 2002). Error bars represent 95% confidence intervals. CF Image. � the Cortese and Fugett (2003)
imageability measure; TB Meaning. � the Toglia and Battig (1978) meaningfulness measure; TB Image. � the
Toglia and Battig imageability measure; FB Rime � feedback rime consistency; FF Rime � feedforward rime
consistency; FB Onset � feedback onset consistency; FF Onset � feedforward onset consistency; Ortho. N. �
orthographic neighborhood; Object. Freq. � objective frequency.
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the interaction while controlling for the potentially confounding
influence of the remaining variables.

The results indicated that there was indeed a Length � Word
Frequency interaction in naming performance for both young and
older adults (both ps � .01). Because the full regression model is
being used, Cohen et al. (2003) argued that the most appropriate
procedure to interpret the interaction is to compare the slope of one
variable at different levels of the other variable in the interaction.
Hence, we present the slopes of word length at low, medium, and
high levels of word frequency. As shown in the two leftmost
sections of Figure 12), the effect of length is inhibitory for both
high- and low-frequency words (as indicated by positive regres-
sion coefficients); however, the effect is larger for low-frequency
words than for high-frequency words. This latter pattern is con-
sistent with Weekes’s (1997) initial observation that length ap-
pears to exert a stronger influence on low-frequency words.

Turning to lexical decision performance, length accounted for
less variance than it did in the naming task, as reflected by the
reliable effect of task in the subject-level regression analyses. The
main effect of length was in fact eliminated for the young adult
response latencies, although the effect did appear in the accuracy
data. This null effect of length is qualified by a significant
Length � Word Frequency interaction, entered in Step 3 of the
regression analyses. This interaction term was highly reliable for
both young ( p � .001) and older adults ( p � .01) and is captured
in the two rightmost sections of Figure 12, where we show how the
standardized regression coefficient of length varies as a function of
age and objective frequency. As shown, length becomes less

inhibitory as word frequency increases for both young and older
adults, mimicking the effects in naming.

In sum, length is a powerful predictor of naming performance
and is a less powerful predictor of lexical decision performance.
There is also evidence of a Length � Word Frequency interaction
in both naming and lexical decision performance. The length of a
word slows response latency primarily for lower frequency words.
Clearly, current models of lexical processing must take into con-
sideration the influence of stimulus length and its interactive
effects with word frequency.

Orthographic Neighborhood Size

A second variable that has received considerable attention in the
lexical processing literature is orthographic neighborhood size. As
Andrews (1997) pointed out, the theoretical importance of ortho-
graphic neighborhood size is that two of the major models of
lexical processing, the serial search models (Forster, 1976; Paap &
Johansen, 1994) and the interactive activation models (e.g., Mc-
Clelland & Rumelhart, 1981), appear to predict that increasing
orthographic neighborhood size should increase response latencies
in lexical processing tasks. For example, according to serial search
models, search sets are defined by orthographic similarity, and
hence one would expect that either words with many neighbors
would have larger search sets, or, if search set is held constant,
subjects would have more difficulty searching through search sets
with highly similar orthographically related neighbors (see, how-
ever, Forster & Shen, 1996, for an alternative account). Turning to

Figure 12. Word Frequency � Word Length interaction as a function of age and task. LF � low frequency;
Mean Freq � mean frequency; HF � high frequency; Old Naming � older adults in the naming task; Young
Naming � young adults in the naming task; Old LDT � older adults in the lexical decision task; Young LDT �
young adults in the lexical decision task.
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the interactive activation framework, there are inhibitory connec-
tions between lexical candidates, and so there should be more
within-level inhibition from words that have more orthographic
overlap, that is, orthographic neighbors. The empirical problem
that arose in this literature is that there is typically a facilitatory
influence of orthographic neighbors instead of the inhibitory in-
fluence predicted by the models. However, as Andrews noted, it is
critical to consider the specific characteristics of the task to better
understand the nature of orthographic neighborhood size effects.

First, consider the literature concerning orthographic neighbor-
hood size and lexical decision performance. The results here have
been complex to say the least. For example, in the initial study of
neighborhood density, Coltheart et al. (1977) found no effect of
neighborhood size for words but a strong inhibitory effect for
nonwords. Grainger (1990, 1992), Grainger and Jacobs (1996),
and Carreiras, Perea, and Grainger (1997) found evidence for
inhibitory influences of neighborhood frequency, that is, words
with higher frequency neighbors produced slower lexical decision
latencies, consistent with the extant theoretical perspectives. In
contrast, Andrews (1989, 1992) and Forster and Shen (1996) found
facilitatory effects of neighborhood density. Sears, Hino, and Lup-
ker (1995) also found facilitatory effects of neighborhood density;
however, in four of the five studies reported, the effect of neigh-
borhood density did not reach significance by items, suggesting
that the effects may not generalize beyond a specific set of items.
Johnson and Pugh (1994) found facilitatory effects when illegal
nonwords were used and inhibitory effects when legal nonwords
were used. Interestingly, Forster and Shen were concerned about

possible item-selection problems in this literature and suggested
that a multiple regression approach may be a better way of tackling
this issue.

The results of the present regression analyses of lexical decision
performance are clear. With young adults, there is a replication of
the original Coltheart et al. (1977) observation. Specifically, there
is no evidence of a unique neighborhood size main effect across a
large set of single-syllable words, but there is evidence of a large
inhibitory effect for nonwords that are based on these words.
However, the null neighborhood size effect in young adults is
qualified by a significant interaction between neighborhood size
and log frequency ( p � .01), which we tested by entering the
product of the two predictor variables in a third step, as described
above. As shown in Figure 13, this interaction reflected the finding
that neighborhood size facilitated response latencies for low-
frequency words but actually produced some inhibition for high-
frequency words. These results are remarkably compatible with
Andrews’s (1989) and Forster and Shen’s (1996) finding that
neighbor size facilitated lexical decision performance only for
low-frequency words and that neighborhood size effects were
either unreliable or inhibitory for high-frequency words (Andrews,
1989, Experiment 2). Within the dual-route model, high-frequency
words should be more likely to be influenced by lexical processes
than low-frequency words would be. If lexical access involves
competition among neighbors (McClelland & Rumelhart, 1981), it
is possible that high-frequency words would show greater inhibi-
tory effects of neighborhood size. As described below, there is
evidence that neighborhood size consistently helps naming perfor-

Figure 13. Word Frequency � Orthographic Neighborhood interaction in lexical decision performance as a
function of age. LF � low frequency; Mean Freq � mean frequency; HF � high frequency; Old LDT � older
adults in the lexical decision task; Young LDT � young adults in the lexical decision task.
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mance (Andrews, 1989), supporting the idea that neighborhood
size facilitates the nonlexical mappings between spelling and
sound. Because low-frequency words are more likely to be influ-
enced by nonlexical processes, one would predict facilitatory
neighborhood size effects for such words, which is what we
obtained.

In contrast, the older adults produced a consistent inhibitory
influence of neighborhood size in lexical decision performance.
The larger inhibitory effects of orthographic neighborhood in older
adults, compared with those found with young adults, may reflect
speed-of-processing differences between older adults and young
adults. If neighborhood size effects are modulated by processing
speed, one would expect slow young adults to behave more like
older adults than fast young. We conducted a median split on the
young adults on the basis of their response latencies, and for each
speed group, we tested the interaction between neighborhood size
and log frequency after partialing out the standard variables in
Steps 1 and 2. The interaction was reliable for the fast young adults
( p � .01) but not for the slow young adults. As shown in Fig-
ure 14, as predicted, the interactions indicated that the slow young
adults mirrored the pattern obtained for the older adults. Because
slow young adults take a longer time to respond, one might argue
that lexical activation and competition have more time to build up
and exert an effect.

In sum, neighborhood size is inhibitory in older adults’ and in
slow young adults’ lexical decision performance. However, for
young adults’ low-frequency word performance, the effect of
neighborhood size is facilitatory. (This interaction was also repli-
cated, p � .01, in the lexical decision data obtained from the ELP.)
Orthographic neighborhood size effects in lexical decision appear
to vary as a function of word frequency (Andrews, 1989) and

processing speed of the subjects. Possibly some of the controver-
sies in the past literature may reflect differences in item and
subject samples. Turning to the nonwords, consistent with the
available literature, both the young adults and the older adults
produced large inhibitory effects of neighborhood density.

Andrews (1997) noted that the influence of neighborhood size,
in contrast to its role in lexical decision performance, has been
consistently facilitatory in speeded naming performance. Specifi-
cally, studies by Andrews (1989, 1992), Grainger (1990), and
Laxon, Coltheart, and Keating (1988) have all found facilitatory
effects of neighborhood size on speeded naming performance. In
the present naming results, neighborhood size produced a highly
reliable and unique predictive effect in both young adults and older
adults. It is interesting to note that this pattern was found above
and beyond the orthographic and phonological consistency of the
rime unit. As Andrews pointed out, one interesting question is the
extent to which orthographic neighborhood size is simply a sur-
rogate for orthographic rime consistency. The present study clearly
indicates that this effect is independent of feedforward and feed-
back rime consistency.

We also tested whether any additional variance was accounted
for by the interactive effects of neighborhood size and word length
or neighborhood size and log frequency when these interactions
were entered in the third step of the regression analyses. The latter
test was based on the results by Andrews (1989, 1992), who found
a larger effect of neighborhood size for low-frequency words as
compared with high-frequency words. There was reliable addi-
tional unique variance picked up by the Neighborhood Size � Log
Frequency interaction in both the young adults ( p � .001) and the
older adults ( p � .001). As shown in Figure 15, both age groups
exhibited larger facilitatory effects of neighborhood size for low-

Figure 14. Word Frequency � Orthographic Neighborhood interaction in lexical decision as a function of
processing speed in young adults. LF � low frequency; Mean Freq � mean frequency; HF � high frequency;
Slow LDT � slow young adults in the lexical decision task; Fast LDT � fast young adults in the lexical decision
task.
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frequency words than for high-frequency words. (This interaction
was replicated, p � .01, in the ELP naming data set.) Thus,
neighborhood size plays an especially large and facilitatory role
for low-frequency words in the speeded naming task for both

young and older adults. Interestingly, as shown in Figure 16, this
pattern is complemented by a significant Neighborhood Size �
Length interaction ( p � .05 for older adults and p � .001 for
young adults) in speeded naming performance, which did not

Figure 15. Word Frequency � Orthographic Neighborhood interaction in naming for both young and older
adults. LF � low frequency; Mean Freq � mean frequency; HF � high frequency; Old Naming � older adults
in the naming task; Young Naming � young adults in the naming task.

Figure 16. Orthographic neighborhood by length interaction as a function of age and task. Med � medium;
Old Naming � older adults in the naming task; Young Naming � young adults in the naming task; Old LDT
� older adults in the lexical decision task; Young LTD � young adults in the lexical decision task.
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appear in lexical decision performance. Hence, it appears that
neighborhood size facilitates naming latencies more for longer
low-frequency words than for shorter high-frequency words. How-
ever, these appear to be additive effects, because the three-way
interaction did not approach significance.

It is possible that the large orthographic neighborhood effects in
naming reflect the mapping of letters, graphemes, and even higher
level units onto phonological codes and that greater neighborhood
density accelerates nonlexical recoding processes. The Word Fre-
quency � Neighborhood Size interaction suggests that low-
frequency words, which are more susceptible to nonlexical proce-
dures, especially benefit from having many neighbors. This benefit
carries over somewhat to lexical decision performance for fast
young adults. High-frequency words, in contrast, are more likely to
experience lexical influences in lexical decision. Competition
among activated lexical candidates, as suggested in the original
McClelland and Rumelhart (1981) framework, would slow down
responses to words with many neighbors. Finally, one might argue
that the consistent inhibitory effect for nonwords in lexical deci-
sion is due to an increase in familiarity that slows the nonword
response in this task.

Feedforward and Feedback Consistency

Our measures of consistency were motivated by the empirical
work of Jared et al. (1990), who found that the frequency of the
stimulus word and the relative frequency of friends to enemies
modulate naming performance. We focused on measures of con-
sistency, as opposed to regularity, in the present study because
Cortese and Simpson (2000) have demonstrated that consistency is
a more powerful predictor variable than regularity is when the two
factors are factorially crossed. As described earlier, in computing
the consistency measures, we computed a token frequency mea-
sure that was based on the log frequency of the friends for a given
unit (i.e., rime or onset in the feedforward or feedback direction)
divided by the log frequency of the friends and enemies for that
unit. Although we used token-based estimates of consistency in the
present analyses, it should be noted that one finds the same pattern
of reliable consistency effects when one considers a type consis-
tency measure, which does not weight each friend and enemy by
the log frequency of that item.

Before we discuss these results, note that the measures of
consistency depend on the vocabulary set that one defines consis-
tency against. In the present study, we used 4,444 single-syllable
words from the item set used in the ELP that had Zeno et al. (1995)
frequency estimates available. To ensure that our consistency
measures were representative, we also included analyses that were
based on consistency measures independently derived by Kessler
et al. (2003) on a set of 3,690 single-syllable words. The correla-
tions between the two sets of token consistency measures were
quite high (onset feedforward � .95, onset feedback � .98, rime
feedforward � .95, rime feedback � .94). As expected, when we
entered the Kessler et al. token consistency estimates in our anal-
yses, we found an identical pattern of reliable effects. Hence, the
effects found in the present study do not appear to be biased by the
sample of stimuli we used to define consistency.

A second issue that should be noted here is the possibility of
correlated variables with our consistency measures. We attempted
to address this by entering four additional variables in item-level

analyses in Step 2 to determine if such potentially correlated
variables modulate the obtained consistency effects. In particular,
we obtained estimates from Kessler et al. (2003) to test the
influence of the length in letters of the onset unit, length in letters
of the rime unit, spelling frequency of the onset unit, and spelling
frequency of the rime unit. It is possible that longer and less
frequent units are more likely to produce lower consistency values,
independent of the feedforward or feedback consistency of these
values. In only one instance (feedback onset consistency for the
young adult naming latencies) did the addition of these potentially
correlated variables influence the pattern of reliable effects of
consistency obtained from the present regression analyses.

Onset Consistency

Although the influence of onset consistency did not reach sig-
nificance in the current naming latencies, the effect was in the
predicted direction and there was a reliable effect in the accuracy
data. Consistent with predictions made by the dual-route model,
previous studies have found effects of onset consistency on nam-
ing latencies (e.g., Cortese, 1998; Kawamoto & Kello, 1999;
Kessler et al., 2003; Treiman et al., 1995). Moreover, as shown in
Figure 11, there was a reliable effect of onset consistency in the
ELP naming data set.

Interestingly, feedforward onset consistency was related to lex-
ical decision latencies and accuracy for both young and older
adults. This is somewhat inconsistent with the traditional view that
lexical decision is relatively impervious to feedforward consis-
tency effects. However, as noted below, further inspection indeed
indicates that there is a feedforward consistency effect in the
available lexical decision literature.

Turning to feedback onset consistency, there was an effect of
this variable in naming but not in lexical decision performance.
This pattern was replicated across the two different data sets.
However, as noted above, the effect of feedback onset consistency
was eliminated in the young adult naming data but not the older
adult data when spelling frequency of the onset unit was included
as a control variable. Given these results, these data do not provide
strong support concerning a unique effect of feedback onset con-
sistency in young adult naming performance.

Rime Consistency

On the basis of the extant literature, at least two predictions can
be made. First, feedforward rime consistency should predict nam-
ing performance (Jared et al., 1990; Treiman et al., 1995) more
strongly than lexical decision performance (Jared et al., 1990).
Second, feedback rime consistency should predict lexical decision
performance (Stone et al., 1997) more strongly than naming per-
formance (Ziegler, Montant, & Jacobs, 1997).

First, consider the influence of feedforward rime consistency.
This variable consistently predicted naming performance more
than lexical decision performance. This pattern is consistent with
the results by Andrews (1982) and Jared et al. (1990), among
others. The simplest interpretation of this pattern is that the con-
sistency of the orthographic rime to phonological rime mapping
modulates onset latencies in naming performance, because this is
one of the primary codes that subjects use to drive pronunciation.
It is interesting that Ziegler, Montant, & Jacobs (1997) and Inhoff
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and Topolski (1994) have reported that feedforward rime consis-
tency effects persist in delayed naming tasks, suggesting that there
may be an influence of this variable in output processes after
lexical access. In a recent positron-emission tomography neuroim-
aging study of speeded naming, Fiez, Balota, Raichle, and Petersen
(1999) reported that spelling-to-sound rime consistency modulates
motor areas bilaterally. Thus, it appears that feedforward consis-
tency effects may have multiple loci in speeded naming perfor-
mance (also see Kinoshita & Woollams, 2002).

Although the effect was smaller, feedforward rime consistency
also reliably facilitated lexical decision performance in both data
sets. This would appear to conflict with the observation that
feedforward rime consistency effects are not produced in lexical
decision performance. However, a closer inspection of this litera-
ture reveals that a relationship indeed exists between feedforward
rime consistency and lexical decision performance. First, although
Jared et al. (1990) failed to find a consistency effect for lexical
decision latencies, there was a significant consistency effect for
errors (7.9% for inconsistent words and 4.3% for consistent
words). Second, in Stone et al. (1997), when one collapses across
feedback-inconsistent and -consistent words, there is a feedfor-
ward consistency effect, with faster latencies (755 ms vs. 775 ms)
and fewer errors (5.5% vs. 12.4%) for consistent words. Also,
Andrews (1982) clearly showed facilitatory effects of feedforward
rime consistency in lexical decision. Although it is not yet clear
how feedforward rime consistency operates in lexical decision,
these findings are compatible with Frost’s (1998) argument that
phonology is a mandatory process in processing visual words (also
see Yates, Locker, & Simpson, in press).

Turning to feedback rime consistency, the present results are
intriguing on a number of levels. First, the feedback rime consis-
tency effect was initially found in lexical decision (Stone et al.,
1997; also see Pexman, Lupker, & Jared, 2001) and appeared to be
stronger in lexical decision than in naming performance (Ziegler,
Montant, & Jacobs, 1997). This initial observation was particularly
important because it suggested a role for feedback from phonology
to orthography and hence was interpreted to support a lexical
resonance model. Specifically, the correspondence between pho-
nological codes and orthographic codes in visual word processing
may support a feedback process that might facilitate the pattern of
activation’s settling into a consistent pattern (also see Edwards,
Pexman, & Hudson, in press; Pexman et al., 2001). However,
when Peereman et al. (1998) attempted to replicate the Ziegler,
Montant, and Jacobs finding of a feedback consistency effect in
French, Peereman et al. found that they could replicate the effect
but that this pattern was likely due to the confounding of famil-
iarity with feedback consistency (also see Kessler et al., 2003).

The present results yielded reliable effects of feedback rime
consistency in naming performance after controlling for objective
and subjective frequency estimates, along with other related vari-
ables. The effects were replicated in both young and older adults,
as well as in the ELP database. We also found an effect of
feedback rime consistency in lexical decision performance, but this
effect was relatively small and only occurred for older adults in the
item analyses. (This effect was reliable in the subjects-level anal-
yses for both young and older adults.) The larger effect in the older
adults may indicate that slower response latencies may afford more
time for feedback rime consistency to play a role. To test this
speed-of-processing explanation, we again conducted a median

split on just the younger adults, based on their overall mean word
response latencies. We then entered the same set of standard
variables into the items-level regression equation for both Step 1
and Step 2 for lexical decision performance. The feedback rime
consistency was somewhat larger for the slow young adults
(	.024) than for the fast young adults (	.007), suggesting that
speed of processing may modulate the presence of a feedback
consistency effect. We tested the same variable with subject-level
regression analyses. Feedback rime consistency is significant only
for the slow young adults ( p � .03) in lexical decision perfor-
mance, confirming the idea that the feedback rime consistency
effect becomes more salient in slow subjects.

In summary, the present results provide evidence of feedback
rime consistency effects in naming and in lexical decision perfor-
mance, particularly for the slow subjects. In light of these results
and given the controversy that this area has generated, we are
inclined to believe that the relationship between feedback rime
consistency and word recognition deserves further study. Feedback
rime consistency effects are theoretically quite intriguing in sup-
porting a highly interactive system in which the consistency of the
mapping of the phonological information onto spelling patterns
contributes to the naming response as it unfolds across time.

Objective and Subjective Word Frequency

The present results were intriguing on a number of dimensions
with respect to the influence of objective and subjective word
frequency. First, consider the between-task comparisons. The re-
gression analyses clearly indicated that the predictive power of
both frequency estimates was much larger in lexical decision than
in naming performance. There are two major accounts of this task
difference in the size of frequency effects. One account is based on
the dual-route perspective of speeded word naming, in which there
is a lexical route that is frequency modulated and a sublexical route
that is relatively independent of word frequency (see, e.g., Colt-
heart et al., 2001). The notion is that subjects can rely on the
frequency-independent spelling-to-sound route in naming but not
lexical decision performance. This sublexical route may be more
influential for lower frequency words, where the lexical route is
slower to generate an output, thereby facilitating naming perfor-
mance for low-frequency words. In support of this position, Mon-
sell, Doyle, and Haggard (1989) provided evidence that the word
frequency effect is comparable in naming and lexical decision
when one considers orthographic patterns that have irregular map-
pings onto phonology. The notion is that for irregular words, the
lexical route must drive the response in both naming and lexical
decision performance, because the sublexical route would produce
an error for these items, that is, pronouncing the word pint such
that it rhymes with hint. An alternative account of the smaller
word-frequency effect in naming than in lexical decision is simply
that the word-frequency effect becomes exaggerated in lexical
decision because the constraints of the task emphasize frequency-
based information in order for subjects to make the discrimination
between familiar words and unfamiliar nonwords. Specifically,
high-frequency words are more discriminable from the zero-
frequency nonword stimuli than are low-frequency words.

To discriminate between these two accounts, we identified 120
words (approximately 5% of the total data set) that were the most
feedforward rime inconsistent. The prediction from the dual-route
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perspective is that these items would be most likely to drive the
lexical route for a correct pronunciation, and so the frequency
effects in naming and lexical decision performance should be
comparable. To directly compare the two tasks, we conducted
hierarchical regression analyses on each subject with the same two
steps as in the standard regression analyses and then entered the
standardized regression coefficients into an ANOVA to determine
if there is a reliable effect of task. There was still a larger effect of
subjective word frequency in lexical decision than in naming, p �
.01, even for these highly inconsistent words. Hence, it is not the
case that naming and lexical decision performance produce com-
parable word-frequency effects for the words with the most incon-
sistent spelling-to-sound correspondences in the database.

It is also noteworthy that there was a significant nonlinear
relation between log frequency and response latency in lexical
decision performance, and this nonlinear component did not occur
in naming performance (see Figures 8A–8D). This suggests that a
log transformation does not capture the additional increase in
response latency for very low-frequency words in lexical decision
performance. This finding is at least compatible with the notion
that low-frequency words are disproportionately more disrupted by
their similarity to the nonword targets than are high-frequency
words (see Murray & Forster, in press, for an alternative interpre-
tation). Of course, there has been some speculation in the literature
that low-frequency words may be more likely to be engaged in
qualitatively different processes, such as retrieving the meaning or
spelling of the stimulus word (e.g., Balota & Chumbley, 1985;
Besner & Swan, 1982). This framework is also compatible with
the fact that the LDT produced a much more skewed RT distribu-
tion than the naming task did (see the discussion of the ex-
Gaussian analyses in the RT Distribution Analyses section).

Finally, there is an intriguing age dissociation involving the
objective and subjective frequency estimates. Older adults were
influenced more than young adults by objective word frequency,
whereas young adults were more influenced than older adults by
subjective word frequency. Both of these effects were highly
reliable in the subject-level analyses. This may reflect cohort
differences. The subjective frequency estimates were based on
estimates from young adults, and these estimates may be less
appropriate for older adult subjects. Fortunately, we have available
subjective frequency estimates using the same procedure from 90
healthy older adults on a randomly selected subset of 480 words.
There was still a larger influence of subjective frequency for young
adults (	.48) than for older adults (	.40). Hence, this difference
does not appear to be due to simple cohort effects.

Of course, one may make the same cohort argument regarding
the larger objective frequency effects in older adults compared
with young adults. In the present study, we used the objective
frequency estimates based on the Zeno et al. (1995) norms. Be-
cause this corpus was based on printed material from a variety of
sources, it is likely that these frequency estimates may be more
tuned to the older adult lexicon than the young adult lexicon. To
address this possibility, we used more recent frequency-based
information provided by Burgess (see Burgess & Livesay, 1998),
which consists of approximately 131 million observations based
on all Usenet newsgroups during the month of February in 1995.
These should be more tuned to the young adult lexicon than are the
Zeno et al. norms. It is interesting that the HAL estimates of
objective word frequency (Lund & Burgess, 1996) were more

highly correlated with lexical decision performance for young
adults (.31) than for older adults (.22), with little difference for
naming performance (.09 vs. 12 for young and older adults, re-
spectively). The pattern for lexical decision performance is, of
course, opposite of what one finds for the Zeno et al. norms.
Hence, although measures from the HAL corpus and the Zeno et
al. corpus are highly correlated (e.g., r � .86), there may be subtle
cohort effects that make between-age-group comparisons difficult.
To our knowledge, this is the first demonstration of such cohort
effects of word frequency. It is quite possible that with a smaller
scale study, we would not be able to detect such cohort effects.

In sum, the present analyses of subjective and objective word
frequency have yielded a number of intriguing findings for mono-
syllabic words. First, there are powerful effects of subjective
word-frequency estimates for both naming and lexical decision
performance, which for young adults are actually larger than
objective word-frequency estimates. Hence, it appears that sub-
jects (especially young adults) have good metacognitive insights
into their frequency of exposure to words. Second, the effects of
word frequency are much stronger in lexical decision than in
naming, even for highly inconsistent words. Third, in the LDT, the
nature of the word-frequency effect is nonlinear even when log
transform is used as a predictor, possibly suggesting a qualitatively
distinct process for very low-frequency words. Fourth, one can
detect subtle cohort effects when using different objective word-
frequency estimates across different age groups. This is particu-
larly noteworthy for studies of age-related changes in lexical
processing.

Semantic Variables

The present study included three sets of analyses on semantic
variables. In the first set of analyses, we used a restricted set of 996
words (the items are available in both the Toglia and Battig, 1978,
and the Nelson et al., 1998, norms) and addressed the predictive
power of some of the standard semantic variables explored in the
literature. We took a relatively conservative approach and added
these variables in the third step, after both subjective and objective
frequency were partialed out. This was done because previous
researchers suggested that the initial evidence for semantic effects
was most likely due to uncontrolled influences of other variables,
such as familiarity (see Gernsbacher, 1984). The present results
provided some evidence of an influence of Toglia and Battig’s
(1978) imageability estimates on lexical decision performance for
both young and older adults and, to a lesser extent, on young
adults’ naming performance. Toglia and Battig’s meaningfulness
estimates and Nelson et al.’s (1998) semantic set size estimates
consistently predicted only young adults’ lexical decision perfor-
mance. The larger effects of these semantic variables in lexical
decision performance were expected because this task places a
greater emphasis on the meaningfulness of the stimulus as a useful
dimension to make the word–nonword discriminations. Of course,
we are not the first to provide evidence of an influence of meaning
variables in lexical decision performance (e.g., Hino & Lupker,
1996; James, 1975; Jastrzembski, 1981; Locker, Simpson, &
Yates, 2003; see Balota, Ferraro, & Conner, 1991, for a review).

As noted, the researchers making the original observations of
meaning influences in lexical decision performance were criticized
for not controlling for familiarity of the stimulus (see Gernsbacher,
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1984). However, subjects may also rely on meaning information
when making untimed global familiarity estimates, and so by
controlling for familiarity, one may be throwing out the baby with
the bathwater. In fact, Balota et al. (2001) have shown that tradi-
tional familiarity estimates are strongly related to meaning vari-
ables. This is precisely why we developed the subjective frequency
estimates, which are less strongly related to meaning variables than
are standard familiarity estimates (see Balota et al., 2001, for a
discussion). The important observation is that subjective frequency
estimates were indeed a powerful predictor of performance above
and beyond objective frequency, and yet meaning-level variables
still accounted for a reliable amount of variance in the third step of
the hierarchical regression analyses. Hence, lexical decision per-
formance does not appear to provide a window into the magic
moment of word recognition, that is, the point in time where the
word is recognized before meaning has been accessed.

Interestingly, there was also a consistent effect of imageability
on speeded naming performance. This was highlighted by the
imageability norms developed by Cortese and Fugett (2003) on the
full set of items. This effect occurred in both the item- and
subject-level analyses. The reliable effect of imageability in nam-
ing performance was replicated in the item-level analyses from the
ELP naming database. Hence, even in a task that does not empha-
size the discrimination between meaningful word stimuli and
nonmeaningful nonword stimuli, one can still obtain an influence
of meaning. Again, this effect is above and beyond the influence of
a host of variables that influence speeded naming performance. We
believe these results are most consistent with a view in which
meaning becomes activated very early on, in a cascadic manner,
during lexical processing and contributes to the processes involved
in reaching a sufficient level of information to drive a lexical
decision or a naming response.

In addition to using more standard measures of semantic infor-
mation, we also conducted a set of semantic analyses motivated by
recent work by Steyvers and Tenenbaum (2004). As noted, these
researchers analyzed three large databases (Roget’s Thesaurus of
English Words and Phrases [Roget, 1911], WordNet norms
[Miller, 1990], and the Nelson et al., 1998, norms) to determine if
these networks had what they referred to as small-world structure.
Thus, they calculated the degree of connectivity among the words
in each of the norms, as reflected by overlap in meaning in the
Roget’s Thesaurus and WordNet source material and number of
connections in the Nelson et al. production norms. Small-world
structure is reflected by sparse connectivity between nodes, rela-
tively short average distance between any two nodes, a large
degree of local clustering, and the finding that connectivity across
words follows a power function. As noted, Steyvers and Tenen-
baum found evidence of such small-world structure in each of the
three large databases that they measured. Moreover, they demon-
strated that other recent ways of attempting to ground semantics,
such as semantic latent analysis (e.g., Landauer & Dumais, 1997),
do not produce such power functions. Steyvers and Tenenbaum
suggested that such structure may naturally develop out of emerg-
ing semantic networks, wherein a relatively small set of concepts
is central in the network (i.e., produces a large degree of cluster-
ing), and these concepts serve as the hubs of communication for
the rest of the network.

In the present study, we investigated the influence of sheer
connectivity based on the databases from WordNet (Miller, 1990)

and the Nelson et al. (1998) connectivity measures. Again, we
entered the semantic connectivity measures after all the lexical
variables were entered into the regression equation. Both measures
of connectivity accounted for a reliable amount of variance in both
young’ and older adults’ naming and lexical decision in the sub-
jects analyses, although the latter task, as predicted, produced the
larger effects of connectivity. Steyvers and Tenenbaum (2004) also
reported evidence in support of this general pattern in the present
lexical decision data and also in a smaller set of naming data;
however, they did not partial out the variance attributable to the
phonological onsets and all of the lexical variables that were
entered in the present study. We believe that the small-world
structure identified by Steyvers and Tenenbaum in semantic mem-
ory may be useful in understanding the organization and develop-
ment of lexical meaning (see Buchanan, Westbury, & Burgess,
2001, for a similar approach).

Finally, we explored interactions (both two-way and three-way)
among the meaning level variables and other variables, such as
word frequency and feedforward and feedback consistency. This
was motivated by the work of Strain et al. (1995) suggesting that
imageability plays more of a role in speeded word naming for
items that are rather difficult to name because of their low fre-
quency and inconsistent spelling-to-sound correspondence (also
see Hino & Lupker, 1996). Although our regression coefficients
were in the same direction as that predicted by Strain et al., they
did not reach significance ( ps � .20). Hence, the unique interac-
tive effect of meaning-level variables and other variables is rela-
tively modest across the full set of single-syllable words.

Future Directions

Although the present results yielded a number of important
observations regarding lexical processing via regression analyses,
there are a number of further issues that need to be addressed.
Before concluding, we believe it is important to acknowledge these
issues and suggest some possible directions for future work.

First, how does one settle on the critical set of predictor vari-
ables in the regression equation? On the basis of the available
lexical processing literature, one could easily double the number of
predictor variables to explore in multiple regression analyses. For
example, one might be interested in the number of higher fre-
quency orthographic neighbors or some relative index of ortho-
graphic neighborhood that takes into account the frequency of the
word and the frequencies of the orthographic neighbors. There are
also additional ways to measure consistency. For example, one
might argue that a type consistency measure (which is the ratio of
friends to total friends plus enemies) as opposed to a token con-
sistency measure (which weights each friend and enemy on the
basis of its log-frequency value) may be more appropriate (see
Kessler et al., 2003). Although we explored other variables in our
initial analyses, we eventually settled on a set of theoretically
motivated variables. Our goals were to identify commonly studied
variables in the literature, attempt to minimize overlap with the
predictor variables, and investigate variables that have produced
some controversy in the available literature. This list of predictor
variables clearly is not all inclusive and is driven by the goals of
the given project. As in the case of factorial designs, one must
interpret the unique effect of a given variable in the context of the
other variables that are accounted for.
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A second issue is the order of entry of the variables into the
regression model. We entered the onset variables in the first step,
lexical variables in the second step, and semantic variables in the
third step. This was motivated by the possibility that the phono-
logical onset variables may capture voice key sensitivity, and we
wanted to explore the influence of lexical variables on naming
performance after this potentially contaminating effect was re-
moved. We investigated the influence of the semantic variables in
the third step because, as noted above, there has been some
controversy regarding the unique influence of these variables
above and beyond correlated variables, such as familiarity. How-
ever, one could argue that the semantic variables should have been
entered earlier in the regression model. In fact, one might argue
that semantic information is indeed strongly tied to the role of
frequency-based information (see, e.g., Plaut et al., 1996, for such
an instantiation).

Third, one might argue that regression analyses are relatively
difficult to interpret when one is interested in interactive effects of
variables. This is a fair criticism if one is more accustomed to the
factorial designs that dominate the word recognition literature.
However, it is also the case that it is difficult to control for all
potentially extraneous variables in each of the cells of a factorial
design. We have approached this issue via the examination of
interactive effects after we partialed out a series of main effects,
that is, controlling for the potentially contaminating variables.
Although the results from the analyses of interactions were broadly
consistent with the available literature, these results also indicate a
need for further exploration.

Fourth, the present analyses relied primarily on linear regres-
sion, and it is quite likely that nonlinear regression models may
ultimately account for more variance and will be more compatible
with predictions from computational models. An example of this in
the present results is the influence of word frequency, in which
there is a substantial nonlinear component in lexical decision
performance after one transforms the word-frequency measure into
a log scale. This nonlinear component did not occur in naming
performance. We used the simplifying linear analyses because
these are the most common approaches to speeded lexical process-
ing and we were interested in directly comparing naming and
lexical decision performance. However, it is likely that the next
wave of understanding the influence of variables on lexical pro-
cessing tasks will involve nonlinear influences and, importantly,
the manner in which computational models of word recognition
can capture such nonlinear influences.

Conclusions

The present study provides an analysis of the monomorphemic
single-syllable words from the Kučera and Francis (1967) norms
that have been critical in developing the current computational
models of word recognition. We have studied these items across
the two standard lexical processing tasks (naming and lexical
decision) and across two different age groups. We have explored
standard predictor variables that have been theoretically motivated
by the literature and have been shown to produce stable influences
on at least one of the tasks in the literature. The results highlight
the differences between naming and lexical decision, suggesting
that each task brings online a distinct set of processes. In fact,
virtually every variable identified produced a highly reliable effect

of task in the subject-level analyses. Because of the importance of
task analyses, it will be particularly important to extend these
observations to other measures of lexical processing, such as eye
fixation durations (see Juhasz & Rayner, 2003; Schilling, Rayner,
& Chumbley, 1998, for similar multiple regression approaches
with online reading measures).

We also believe that some inconsistencies in the available
literature may have arisen from item-selection effects. Allowing
the language to define the stimulus set has some advantages over
selecting items for specific cells of complex designs. Clearly,
multiple regression techniques will not replace well-controlled
factorial designs that are theoretically driven. It is likely that the
two approaches will provide complementary constraints on theory
development. Ultimately, however, we believe that large data sets
will be particularly useful for progress in this field so that research-
ers can access a common set of items, which could provide
preliminary tests of experimental hypotheses via either large-scale
regression approaches or more specific tests on selected items
taking a factorial approach. Our data are available for such tests,
and, in the near future, larger, more comprehensive data sets will
become available for researchers to access (see the ELP Web site
at http://elexicon.wustl.edu/). This should lead to a more cumula-
tive development of knowledge in the word recognition literature.
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