Testing Linguistic Theories Using Logistic Regression

Peter Graff

MIT, Linguistics and Philosophy

Acknowledgements

Ellen Gurman Bard

T. Florian Jaeger

Emory Brown

All errors are my own!

Introduction

My furry friend and helper throughout this lecture.

Plan for today

- Part 1
 - What is Logistic Regression
 - How to fit a Logistic Regression
 - How to compare Logistic Regression models
- Part 2
 - Plural Comparison
 - How to use Logistic Regression to decide between theories of Plural Comparison

What is Logistic Regression? Limitations of Linear Models

- Assumptions of Linear Models
 - Linearity in Coefficients
 - Normally distributed outcome (or error)
- But many/most of the outcomes of interest to linguists are categorical!
 - Non-continuous outcomes are usually not normally distributed

What is Logistic Regression? Categorical outcomes

- Grammaticality
 - #kn (attested/unattested)
- Syntactic Variation:
 - Dative alternation (NP NP/NP PP)
- Phonological Variation
 - t-Deletion (t/\emptyset)
- Experimental Data:
 - Forced Choice, Eye-tracking, ...

What is Logistic Regression? Categorical outcomes

- Grammaticality
 - #kn (attested/unattested)
- Syntactic Variation:
 - Dative alternation (NP NP/NP PP)
- Phonological Variation
 - t-Deletion (t/\emptyset)
- Experimental Data:
 - Forced Choice, Eye-tracking, ...

Can you think of some more?

What is Logistic Regression? Can a linear model do the job?

 Predicting the Realization of Dative from length of theme.

What is Logistic Regression? Can a linear model do the job?

What is Logistic Regression? Can a linear model do the job?

The linear model makes impossible predictions

- Values of Y>1
- Values of Y<0</p>
- Values of Y>0 and Y<1</p>
- The linear model is meaningless if its assumptions are violated

What is Logistic Regression? Generalized Linear Models

- Transform non-normally distributed variables into a linear space.
- Fit a line in to predict the transformed variable.
- What do we do for binary outcomes?
 - The probability of outcome A over outcome B

What is Logistic Regression? Generalized Linear Models

- Transform non-normally distributed variables into a linear space.
- Fit a line in to predict the transformed variable.
- What do we do for binary outcomes?
 - The probability of outcome A over outcome B

But probabilities aren't normally distributed either!

What is Logistic Regression? Transforming Probabilities

- Probabilities have an upper and a lower bound
- Changes in probability around .5 mean something different from changes around 0 and 1.

What is Logistic Regression? Transforming Probabilities

- Probabilities range between 1 and 0
- Odds range from 0 to ∞

$$o = (p/1-p)$$

- p<.5, 0 < o < 1
- p=.5, o=1
- p>.5, o > 1

What is Logistic Regression? Transforming Probabilities

- Logged Odds range from -∞ to ∞
- Natural logarithm of the odds ratio (a.k.a. logit)
- 0 at p=.5
- Probabilities with the same distance from .5 have the same logits but different signs.

How to fit a Logistic Regression Input Data

• Irm(formula)

```
Trial/Case 0/1 IV1 IV2 ... Trial/Case 0/1 IV1 IV2 ... Trial/Case 0/1 IV1 IV2 ...
```

glm(formula, familiy = "binomial")

```
Cell #of0 #of1 IV1 IV2 ...
Cell #of0 #of1 IV1 IV2 ...
Cell #of0 #of1 IV1 IV2 ...
```

How to fit a Logistic Regression Input Data

• Irm(formula)

```
Trial/Case 0/1 IV1 IV2 ... Trial/Case 0/1 IV1 IV2 ... Trial/Case 0/1 IV1 IV2 ...
```

glm(formula, familiy = "binomial")

```
Cell #of0 #of1 TV1
Cell #of0 #of1 What about Mixed Models?
```

How to fit a Logistic Regression Input Data

Imer(formula, family = "binomial")

```
Trial/Case 0/1 IV1 IV2 ... Trial/Case 0/1 IV1 IV2 ... Trial/Case 0/1 IV1 IV2 ...
```

How to fit a Logistic Regression The Formula

• Formula in R:

DV ~ IV+...+IV

- '+' crosses IV's
- ':' denoted the interaction of 2 IV's
- '*' cross and interaction
- '|' grouping operator
- '(IV+...+IV)^n' all interactions up to level n
- for glm() DV must be entered as cbind(#of0,#of1)

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f. P
                                                          R2
                                                                 Brier
                                   Dxy
                                           Gamma
                                                   Tau-a
903 2e-07
           144.52
                            0.726
                                   0.452
                                                   0.214
                                           0.486
                                                           0.201
                                                                 0.203
                                 Coef
                                           S.E.
                                                    Wald Z P
                                 0.01976 1.1435
                                                       0.02 0.9862
Intercept
AnimacyOfRec=inanimate
                                 0.49402 0.2544
                                                       1.94 0.0522
AnimacyOfTheme=inanimate 0.94931 1.1358 0.84 0.4032
                                -1.04129 0.1005 -10.36 0.0000
LengthOfTheme
```

Here is the Irm() output, summary(glm()) contains the same information.

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f.
                                                            R2
                                                                   Brier
                                     Dxy
                                            Gamma
                                                     Tau-a
903 2e-07
           144.52
                             0.726
                                     0.452
                                            0.486
                                                     0.214
                                                            0.201
                                                                   0.203
                                                      Wald Z P
                                  Coef
                                             S.E.
Intercept
                                  0.01976
                                            1.1435
                                                         0.02 0.9862
AnimacyOfRec=inanimate
                                  0.49402 0.2544
                                                         1.94 0.0522
                                                         0.84 0.4032
AnimacyOfTheme=inanimate
                                  0.94931 1.1358
                                 -1.04129 0.1005 -10.36 0.0000
LengthOfTheme
```

Base probability of outcome=1 in logged odds

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f.
                                                             R2
                                                                    Brier
                                     Dxy
                                            Gamma
                                                     Tau-a
           144.52
                             0.726
                                     0.452
                                                     0.214
903 2e-07
                                            0.486
                                                             0.201
                                                                    0.203
                                  Coef
                                             S.E.
                                                      Wald Z P
                                   0.01976 1.1435
                                                         0.02 0.9862
Intercept
                                   0.49402 0.2544
AnimacyOfRec=inanimate
                                                         1.94 0.0522
AnimacyOfTheme=inanimate
                                   0.94931
                                             1.1358
                                                         0.84 0.4032
                                  -1.04129 0.1005 -10.36 0.0000
LengthOfTheme
```

How P(outcome=1) changes depending on the setting of the independent variables in logged odds

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f.
                                                                R2
                                                                       Brier
                                       \mathbf{D}\mathbf{x}\mathbf{y}
                                               Gamma
                                                         Tau-a
903 2e-07
            144.52
                               0.726
                                       0.452
                                                         0.214
                                                                0.201
                                                                       0.203
                                               0.486
                                                S.E.
                                                          Wald Z P
                                     Coef
                                     0.01976 1.1435
                                                             0.02 0.9862
Intercept
                                    0.49402 0.2544
AnimacyOfRec=inanimate
                                                             1.94 0.0522
AnimacyOfTheme=inanimate
                                    0.94931
                                                1.1358
                                                             0.84 0.4032
                                   -1.04129
                                               0.1005
                                                          -10.36 0.0000
LengthOfTheme
```

Standard Error of the Coefficient

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f.
                                                             R2
                                                                    Brier
                                     Dxy
                                            Gamma
                                                      Tau-a
903 2e-07
           144.52
                             0.726
                                     0.452
                                             0.486
                                                      0.214
                                                             0.201
                                                                    0.203
                                                       Wald Z P
                                             S.E.
                                   Coef
                                   0.01976 1.1435
                                                          0.02 0.9862
Intercept
AnimacyOfRec=inanimate
                                   0.49402 0.2544
                                                          1.94 0.0522
AnimacyOfTheme=inanimate 0.94931 1.1358
                                                          0.84 0.4032
                                 -1.04129 0.1005
                                                       -10.36 0.0000
LengthOfTheme
```

WaldZ = Coef/SE. This is distributed as z and gives us a P value for P(Coef=0) i.e. IV has no effect

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f.
                                                            R2
                                                                   Brier
                                     Dxy
                                            Gamma
                                                     Tau-a
           144.52
                             0.726
                                     0.452
903 2e-07
                                            0.486
                                                     0.214
                                                            0.201
                                                                   0.203
                                                      Wald Z P
                                  Coef
                                             S.E.
                                  0.01976 1.1435
                                                         0.02 0.9862
Intercept
AnimacyOfRec=inanimate
                                  0.49402
                                                         1.94 0.0522
                                                            84 0.4032
AnimacyOfTheme=inanimate
                                                                0.0000
LengthOfTheme
                                    But what if I want to
                                        compare two
                                         competing
WaldZ = Coef/SE. Thi
                                                                  ves
                                          theories?
us a P value for P(Coet-
```

Model Comparison *Introduction*

- Often we want to compare two theories in terms of how well they predict our data
- We need to take into account the relative complexity of the theories as more complex theories (theories with more free parameters) will necessarily always do better.
- Logistic Regression allows us to do so in a controlled way.
- Three types of model comparison, we will cover today
 - Chi-Square likelihood test
 - Bayesian Information Criterion
 - Akaike Information Criterion

- The performance of a model is evaluated in terms of its data-likelihood.
 - **→** The likelihood of the data given the model

Model Comparison Data Likelihood and Deviance

A models data log-likelihood is defined as...

$$\hat{\ell}(\theta \mid x_1, \dots, x_n) = \frac{1}{n} \ln \mathcal{L} = \frac{1}{n} \sum_{i=1}^n \ln f(x_i \mid \theta).$$

A models deviance is defined as...

$$D(y) = -2[\log\{p(y|\hat{\theta}_0)\} - \log\{p(y|\hat{\theta}_s)\}].$$

 For nested models, differences in deviance are distributed as chi-square with

$$d.f. = d.f._{superset} - d.f._{subset}$$

 For nested models, differences in deviance are distributed as chi-square with
 d.f. = d.f._{superset} - d.f._{subset}

 For nested models, differences in deviance are distributed as chi-square with d.f. = d.f._{superset} - d.f._{subset}

• If the result of this test is significant we can say that the superset model explains significantly more variance than the subset model considering the additional complexity (degrees of freedom).

```
> lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme+LengthOfTheme,data=verbs)
Logistic Regression Model
lrm(formula = RealizationOfRec ~ AnimacyOfRec + AnimacyOfTheme + LengthOfTheme, data = verbs)
Frequencies of Responses
NP PP
555 348
Obs Max Deriv Model L.R. d.f.
                                                      Dxy
                                                                                           Brier
                                                               Gamma
                                                                          Tau-a
                                                                                   R2
903 2e-07
                                           0.726
                                                    0.452
                                                             0.486
                                                                        0.214
                                                                                         0.203
                                                                                 0.201
                          Coef
                                  S.E.
                                         Wald Z P
                          0.01976 1.1435
                                           0.02 0.9862
Intercept
AnimacyOfRec=inanimate
                          0.49402 0.2544
                                           1.94 0.0522
AnimacyOfTheme=inanimate 0.94931 1.1358
                                           0.84 0.4032
                         -1.04129 0.1005 -10.36 0.0000
LengthOfTheme
```

Model L.R. is the likelihood ratio of the model compared to a null-model with no parameters (intercept only).

Because our model has three parameters, degrees of freedom of the model is 3.

Model Comparison Calculating Model L.R.

 deviance(lrm(...)) returns a vector consisting of the null-models deviance...

-2*In(likelihood of a model that guesses the majority value for all cases)

- ...and the deviance of your model from the null-model.
- If we put deviance(Irm(DV~1)) the two numbers are identical.

Model Comparison Calculating Model L.R.

 deviance(Irm(...)) returns a vector consisting of the null-models deviance...

-2*In(likelihood of a model that guesses the majority value for all cases)

- ...and the deviance of your model from the null-model.
- If we put deviance(Irm(DV~1)) the two numbers are identical.

Model Comparison Stepwise Regression

• anova(lrm(...)) removes every predictor in the model one by one and lists the difference in deviances of the model with and without that factor.

```
Factor Chi-Square d.f. P
AnimacyOfRec 3.77 1 0.0522
AnimacyOfTheme 0.70 1 0.4032
LengthOfTheme 107.35 1 <.0001
TOTAL 118.51 3 <.0001
```

Model Comparison Nested Model Comparison

 The following R-code tests whether there is a significant difference in data-likelihood between a subset model A and a superset model B

 dchisq(deviance(A)[2]deviance(B)[2],
 B\$stat[4]-A\$stat[4])

Model Comparison Nested Model Comparison

The following R-code to the there is a significant difference Can you between a subset of explain this erset model B
 The following R-code to the there is a significant difference Can you between a subset of explain this erset formula?

dchisq(deviance(A)[2]-deviance(B)[2],
 B\$stat[4]-A\$stat[4])

Model Comparison Nested Model Comparison

Model Comparison Non-Nested Model Comparison

- Only differences in deviance between nested models are distributed as chi-square.
- When we want to compare non-nested models, we first need to fit a superset model including all parameters and compare it to each subset model in turn.
- If only one of the tests comes out significant we can say that the model that does not significantly differ from the superset model is significantly better than the other model.

Model Comparison Non-Nested Model Comparison

```
> 1rm =
lrm(RealizationOfRec~AnimacyOfRec+AnimacyOfTheme
+LengthOfTheme ,data=verbs)
> lrm.length =
lrm(RealizationOfRec~LengthOfTheme,data=verbs)
>lrm.animac = lrm(RealizationOfRec~AnimacyOfRec+
AnimacyOfTheme, data=verbs)
> dchisq(deviance(lrm.length)[2]-
deviance(lrm)[2],lrm$stat[4]-lrm.length$stat[4])
[1] 0.04972017
> dchisq(deviance(lrm.animac)[2]-
deviance(lrm)[2],lrm$stat[4]-lrm.animac$stat[4])
[1] 3.274109e-30
```

Model Comparison What if superset models don't converge?

The Bayesian Information Criterion is defined as...

$$-2 \cdot \ln p(x|k) \approx \text{BIC} = -2 \cdot \ln L + k \ln(n)$$
.

The Akaike Information Criterion is defined as...

$$AIC = 2k - 2\ln(L)$$

Model L.R. is penalized relative to d.f.

Model Comparison What if superset models don't converge?

The Bayesian Information Criterion is defined as...

$$-2 \cdot \ln p(x|k) \approx \text{BIC} = -2 \cdot \ln L + k \ln(n)$$
.

The Akaike Information Criterion is defined as...

$$AIC = 2k - 2\ln(L)$$

Model L.R. is penaliated Are lower or higher values better?

Plural Comparison Introduction

- Are the red circles bigger than the blue circles?
- The intuitions people have about the truth of sentences involving comparison of pluralities does not follow straightforwardly from the semantics of plural and the semantics of comparison.

Plural Comparison Experiment

- Five red dots and five blue dots differing in size.
- xy-coordinates for the dots chosen at random.
- No blue dot ever appeared to the left of a red dot.
- 32 scenarios where model predictions differed maximally.
- Online questionnaire
- Stimuli presented in 1 of 4 random orders.
- Forced choice task.
- Subjects recruited through Amazon's Mechanical Turk (N=42).

Plural Comparison Three Models

MatuRuys:

X>Y iff each member of X is bigger than some member of Y and each member of Y is smaller than at least one member of X.

CatMean:

X > Y iff mean(X) > mean(Y)

ProbMean:

½*[1+erf(mean(X)-mean(Y)]

Plural Comparison Three Models

MatuRuys:

X>Y iff each member of X is bigger than some member of Y and each member of Y is smaller than at least one member of X.

CatMean:

X > Y iff mean(X) > mean(Y)

ProbMean:

½*[1+erf(mean(X)-mean(

I'm bored, can we please talk about statistics?

Try to figure out which model best explains the human judgments using Chi-Square Likelihood Test, AIC and BIC!

