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The recording of three-dimensional eye position has become the accepted standard in oculomotor 
research. In this paper we review the mathematics underlying the representation of thrcc-dimensional 
eye movements.. Rotation matrices, rotation vectors and quaternions are presented, and their relations 
described. The connection between search coils and rotation matrices is explained, as well as the 
connection between eye position and eye velocity. While examples of applications of the formulas to 
vestibulo-ocular research are given, the methods and mathematical analyses are also useful for studying 
other motor systems. 

Three-dimensional Eye movements Search coils Listing's law Rotations 

INTRODUCTION 

Research during the last two decades has highlighted the 
importance of accurate recording of horizontal, vertical 
and torsional components of eye movements for a 
complete understanding of the oculomotor system and 
the different afferent inputs contributing to its con- 
trol. The requirement to accurately measure three- 
dimensional (3D) eye movements has led to the 
development of different approaches. The search coil 
technique has been developed by Robinson (1963), 
Collewijn, Van der Steen, Ferman and Jansen (1985) and 
others, and different magnetic field coil systems (e.g. by 
Skalar Instruments, C-N-C Engineering, Remmel Labs 
etc.) have become commercially available. More recently, 
advances in digital image processing technology have led 
to large improvements in the recording of 3D eye position 
with camera-based systems (Vieville & Masse, 1987; Ott, 
Gehle & Eckmiller, 1991); Clarke, Teiwes & Scherer, 1991; 
Moore, Curthoys & McCoy, 1991). 

Together with the development of hardware for eye 
position measurement, a mathematical basis for a better 
understanding of 3D rotations has been established 
(Westheimer, 1957; Nakayama, 1974; Rooney, 1977; 
Tweed & Vilis, 1987; Hepp, Henn, Vilis & Cohen, 1989; 
Hepp, 1990; Van Opstal, 1993). More recent research has 
shown that many of these mathematical principles and 
control strategies can: be applied not only to eye 
movements, but also to head and arm movements 
(Straumann, Haslwanter, Hepp-Reymond & Hepp, 1991; 

Hore, Watts & Vilis, 1992; Miller, Theeuwen & Gielen, 
1993). 

However, only a relatively small group of people 
have become comfortable with the complex formalisms, 
and many researchers without a strong mathematical 
background have been deterred by the mathematics 
involved. Although all the pertinent formulas have 
been published somewhere, it is difficult to find a 
unified account to allow a coherent understanding of 
the mathematical and geometrical basis of 3D eye 
movements. While Van Opstal (1993) has given a concise 
overview, the present review aims to provide a more 
comprehensive account. 

In the following, the geometrical background is 
presented in such a way that the reader can develop a basic 
intuitive understanding of 3D eye movements. Although 
most relevant formulas are discussed, mathematical 
proofs which have been published elsewhere have been 
largely omitted. In the final section examples of 
applications in vestibulo-ocular research are presented. 

ROTATION MATRICES 

Conventions and basics 

Eye movements in 3D space consist of translations as 
well as rotations. The discussion here will be restricted to 
the rotational components of the total eye movement. 
Translations of the eye, which can be due to a translation 
of the eye in the orbit (Enright, 1980, 1984), as well as to 
a head movement, will not be dealt with here, and the 
terms eye movement and eye position will refer only to the 
rotational components. In this paper we will use the 
following conventions: 
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• scalars are indicated by roman characters (e.g. a); 
• vectors are indicated by bold characters (e.g. r) or in 

round brackets 

(e.g. r2 ); 
\r3/ 

• quaternions are indicated by italic characters (e.g. q); 
• matrices are indicated by outline characters (e.g. N) 

or in square brackets 

Rll R12 R13-] 
(e.g. R21 R22 R23]); 

R31 R32 R33J 

• vector and matrix elements are indicated by roman 
characters, with indices denoted by subscripts (e.g. r,, 
R12); 

• multiplications with a scalar are denoted by • [e.g. 
tan(0/2) • n]; 

• scalar vector products and matrix multiplications are 
denoted by • (e.g.p.q); 

• vector cross products are denoted by x (e.g. p x q); 
• combinations of  rotation vectors or quaternions are 

denoted by o (e.g. rp o rq). 

The basic formulas for multiplications of  matrices and 
vectors are given in the Appendix. More extensive 
introductions to vectors, matrices etc. can be found in 
most textbooks on algebra. 

In measuring 3D eye positions, the current eye position 
is defined by characterizing the 3D rotation from a 
somewhat arbitrarily chosen reference position to the 
current eye position. This reference position is usually 
defined as the position the eye assumes when the subject 
is looking straight ahead, while the head is kept upright. 
Straight ahead can be defined either as the centre of  the 
oculomotor range, or as looking at a target which is 
exactly horizontally in front of  the eye. In the latter case, 
eye position in the head is a function of  head position in 
space, when the eye is in the reference position. In the 
following we will use the latter definition of  straight 
ahead. 

To describe the 3D orientation of the eye, Euler's 
theorem can be applied: it states that for every two 
orientations of  an object, the object can always move 
from one to the other by a single rotation about a fixed axis 
(Euler, 1775). Until recently, the rotation from the 
reference position to the current eye position has not been 
described by the characteristics of  this single rotation, but 
has been decomposed into three consecutive rotations 
about  well defined, hierarchically nested axes (e.g. 
Goldstein, 1980). The following section will deal with this 
three-rotation description of  3D eye position, while 
quaternions and rotation vectors, which characterize the 
3D eye position by a single rotation, will be covered in 
later sections. 

One-dimensional movements 

In order to define one-dimensional (1D) movements, 
we first have to establish a head-fixed and an eye-fixed 

coordinate system to describe the 3D position of  the eye 
in space. Let {h,, h2, h3} be a right-handed, head-fixed 
coordinate system such that hi coincides with the line of  
sight when the eye is in the reference position, h2 with the 
interaural axis and h3 with the earth vertical [Fig. I(A)]. 
Let {el, e2, e3} denote an eye-fixed coordinate system (i.e. 
it moves with the eye) such that {e,, e2, e3} coincides with 
the head-fixed coordinate system {hi, h2, h3} when the eye 
is in the reference position. 

Any horizontal rotation of  the eye-fixed coordinate 
system (and thus of  the eye) from the reference position 
to a new position, as indicated in Fig. I(B), can be 
described by 

ei = R'hi i =  1, 2, 3. (1) 

The components of  the vectors ei are expressed relative to 
the head-fixed coordinate system {h~, h2, h3}, and the 
rotation matrix R describes a rotation about  a space-fixed 
axis, independent of  the orientation of  the eye. Since for 
a purely horizontal eye movement the rotation matrix R 
describes a rotation about h3 by an angle of  0, let us call 
it R3(0). It is given by 

-cos(0) - s in(0)  i l  
R3(0) = sin(0) cos(0) . (2) 

0 0 

In the same way, purely vertical eye movements--i.e. 
rotations about h2--by an angle of  ~b can be described by 

R2(q~) = [ c o s ( ~ b ) 0 l  sin(~b)]0 l 

[-sin(q~) 0 cos(~b)J; 
(3) 

and purely torsional eye movements--i.e, rotations about  
h~--by an angle of  ~ can be described by 

With 

[i 0 01 R1(~k) = cos(@) - sin(~k) . (4) 
sin(V) cos(~)J 

these definitions, positive 0, ~b and ~, values 
correspond to leftward, downward and clockwise (as seen 
from the subject) eye movements. 

For 1D movements no distinction has to be made 
between rotations about eye-fixed or head-fixed axes. 
Since the eye-fixed and head-fixed coordinate systems 

~ ~" h 3 = e 3 

h 1 = e I 

1 ~  T h3 = e3 

...... ~ ...... e2 

h~ 0 

FIGURE 1. Horizontal rotation of the eye about the axis h3 by an angle 
0 from (A), the reference position, to (B), a new position. 
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Passive 
A rotation 

h 3 Active T e3 (rotation of 
rotatio~ | coordinate 
(rotation of / system) 
object) . . . .  / 

FIGURE 2. In describing a combined horizontal-vertical eye 
movement, one has to distinguish clearly between (A) rotations about 
head-fixed axes, which remain fixed, and (B) rotations about eye-fixed 

axes, which move with the eye. 

position. However, its elements are no longer determined 
by the relatively simple formulas in equations (2)-(4). 

To understand the situation better, let us look at a 
simple downward eye movement from the position in 
Fig. I(B): how should we distinguish between a 
downward movement of the eye by a rotation about the 
head-fixed axis hE [as shown in Fig. 2(A)], and a downward 
movement by a rotation about the rotated, eye-fixed axis 
e2 [Fig. 2(B)]? The difference between rotations in 
head-fixed coordinates and eye-fixed coordinates lies in 
the sequence in which the rotations are executed. This is 
illustrated in Fig. 3. Figure 3(A) shows a rotation of an 
object about 113 by 0, followed by a rotation about the 
space-fixed axis h2 by ~b. Mathematically this is described 
by 

coincide when the eye is in the reference position, the axis 
about which the eye rotates is the same in the eye-fixed and 
head-fixed system. 

Three-dimensional movements 

To describe the rotation of the eye-fixed coordinate 
system from the reference position to any new position, 
equation (1) still holds. In other words, the rotation 
matrix R still completely describes the current eye 

e~ = R2(4,)'R3(0)'h~ (5) 

with 0 = ~b = 90 deg. 
Inverting the sequence of two rotations about 

space-fixed axes changes the final orientation of the 
object. This can be seen in Fig. 3(B), where a rotation is 
first performed about h2, and then about the space-fixed 
axis  h3. This sequence is mathematically described by 

ei = R3(0).R2(~b).k. (6) 

+ 

ht = et 

T h3 

n t  

[• ~ h3 ~ h3 = -et 

= e  z 

ht hi 

4> 
hz 

•] h3 ~h3 

ht = 

+ T 
I I  I 

FIGURE 3. (A) A 90 deg rotation about the vertical axis h3, followed by a 90 deg rotation about the horizontal axis I~. (B) A 
90 deg rotation about the horizontal axis h2, followed by a 90 deg rotation about the vertical axis h3. (C) A 90 deg rotation about 
the eye-fixed axis e2, followed by a 90 deg rotation about the eye-fixed axis e3. The final orientation is the same as in (A). Eye-fixed 

axes and the head-fixed axes are superposed because the size of the rotations is in this example exactly 90 deg. 
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Equations (5) and (6) both describe rotations about 
space-fixed axes. However, they can also be re-interpreted 
as rotations about eye-fixed axes in the reverse sequence: 
equation (5) can be re-interpreted as a rotation about the 
axis e2 by ~b, followed by a rotation about the eye-fixed 
axis e3 by 0; and equation (6) is equivalent to a rotation 
about e3 by 0, followed by a rotation about the eye-fixed 
axis e2 by ~b. Figure 3(A, C) demonstrates that rotations 
about head-fixed axes and rotations about eye-fixed axes 
in the reverse sequence lead to the same final orientation. 
A mathematical analysis of  this problem can be found in 
Altmann (1986). 

This also gives the answer to the problem raised by 
Fig. 2: the combination of  two rotations about the 
head-fixed axes h3 and h2, as shown in Fig. 2(A), is 
mathematically described by equation (5); while the 
combination of  two rotations about the eye-fixed axes e3 
and e2, as shown in Fig. 2(B), is described by equation (6). 
Rotations about head-fixed axes are often called active 
rotations or rotations of the object, since in successive 
rotations the axes of  the successive rotations are 
unaffected by the preceding rotations of  the object. 
Rotations about eye-fixed axes are often referred to as 
passive rotations or rotations of the coordinate system, 
since each rotation changes the coordinate axes about 
which the next rotations will be performed. 

A combination of  a horizontal and a vertical rotation 
of the eye in a well-defined sequence uniquely 
characterizes the direction of the line of  sight or gaze 
direction. However, this does not completely determine 
the 3D eye position, since the rotation about the line of  
sight, sometime referred to as cyclotorsion, is still 
unspecified. A third rotation is needed to completely 
determine the orientation of  the eye. 

Systems that use such a combination of  three rotations 
for the description of  eye position generally use passive 
rotations, or rotations of the coordinate system. Such 
rotations of  the coordinate system can easily be 
demonstrated by considering gimbal systems, in which the 
hierarchy of  passive rotations is automatically im- 
plemented. 

Figure 4(B) shows a gimbal which corresponds to 
the Fick-sequence of rotations. This sequence of  
rotations--first  a horizontal, then a vertical and then a 
torsional rotation, has first been used by Fick (1854), 
and the angles 0, ~b and ¢ for this sequence are often 
referred to as Fick-angles. In the following we will 
denote Fick-angles by the subscript F (0F, ~bv, ~bF). The 
rotation matrix corresponding to the Fick-sequence of 
rotations is 

Rwc~ = R3C Ov).Rz( c#v).ff~,C~kv). (7) 

Note the order of  the rotation matrices: our discussion of  
equations (5) and (6) above has shown that with passive 
rotations, the first rotation matrix on the left describes the 
first rotation [here this is R3(0F)], the second matrix from 
the left the second rotation [R2(~bv)], and the rotation 
matrix to the right the last rotation [R,(~kF)]. 

This sequence of  rotations--first  horizontal, then 
vertical and then torsional--is arbitrary, and can be 

F-ffl 

D Te+ 

Fick-gimbal Helmholtz-gimbal 

FIGURE 4. In gimbal systems rotations are executed from the outside 
in. (A) Eye-fixed coordinate system, with the eye in the reference 
position. (B) In a Fick-gimbal, the eye position is completely 
characterized by a rotation about the vertical axis e3 by 0, followed by 
a rotation about the horizontal axis e2 by ~b, and a rotation about the 
line-of-sight e, by ~. (C) In a Helmholtz gimbal, eye positions are 
characterized by a rotation first about the horizontal axis e~ by q~, 
followed by a rotation about the e3 axis by 0, and then a rotation about 

the line-of-sight e~ by ~b. 

replaced by a different sequence, von Helmholtz (1866) 
thought it would be better to start with a rotation about 
a horizontal axis: while variations in head-pitch make the 
definition of  horizontal eye movements difficult, a vertical 
eye movement can easily be defined as an eye movement 
about the inter-aural axis. Thus Helmholtz characterized 
eye positions by a vertical rotation, followed by a 
horizontal and then by a torsional rotation as shown in 
Fig. 4(C): 

+~..,Im.,+o,,~ = R~(4 ' . ) '~+C0. ) 'R,+(~ , . ) .  (8 )  

The subscript H indicates that the angles refer to the 
Helmholtz-sequence of rotations. The explicit forms of  
~Fick and RHo~ho,~ are given in the Appendix. One should 
keep in mind that the eye position is characterized by the 
values of  the rotation matrix R, and RFick and RHe~hottz only 
give different parametrizations for the same rotation 
matrix. 

Interpretations 

An interpretation of  the values of  the rotation matrix 
can be found by looking at equation (1): the columns of  
the rotation matrix R are equivalent to the vectors of  the 
eye-fixed coordinate system {el, e2, e3} expressed in the 
head-fixed coordinate system {h,, h:, h3}. Thus, different 
values in the rotation matrix R indicate a different 
orientation of  the eye-fixed coordinate system, i.e. a 
different orientation of  the eye-ball. For  example, let us 
put an artificial eye-ball on a Fick-gimbal [Fig. 4(B)], and 
turn the gimbal first 15 deg to the left and then (about the 
rotated axis e2) 25 deg down, i.e. (0r, ~bF, ~kF) = (15, 25, 0). 
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The orientation of the eye-ball will then be given by the 
matrix 

0.88 --0.26 0.41\ 
~Fiek -~" 0.23 0.97 0.11|. (9) 

-0.42 0 0.91/ 

Putting an eye on a Helmholtz-gimbal [Fig. 4(C)], and 
turning it first 25 deg down, and then 15 deg to the left 
(about the rotated axis e0, i.e. (0,, q~., ~H) = (15, 25, 0), 
leads to a different orientation of the eye: 

( / Nno~ol~ = 0 .26  0 . 9 7  . ( 10 )  

-'9.41 0.11 0.91] 

The orientation of the eye is in both cases clearly 
different: e.g. on the Fick-gimbal e3 is given by (0.41, 0.1 l, 
0.91), whereas on the I-][elmholtz-gimbal it points in a 
different direction, (0.42, 0, 0.91). 

Experimentally, the 3[) orientation of the eye in space 
can be measured for example with scleral search coils. 
When a search coil is put i(nto an oscillating magnetic field 
B, a voltage is induced in the coil (Robinson, 1963). If the 
coil is characterized by a coil vector e, which is 
perpendicular to the coil and has a length proportional to 
the surface surrounded by the coil, the voltage is 
proportional to the cosine of the angle between B and e. 
As pointed out by Tweed, Cadera and Vilis (1990), this 
leads to a simple correspondence between the values of the 
rotation matrix and the voltages induced in search coils. 
This connection can be demonstrated with the 
experimental setup shown in Fig. 5. 

Let 

Bi = k * bi * sin(co~ • t) i = 1, 2, 3 (11) 

be three homogeneous orthogonal magnetic fields. They 
are parallel to the axes of the head-fixed coordinate 
system {ht, hE, h3}, have amplitudes bi, and oscillate at 
frequencies toi. Further, let (e~, e2, e~} denote three 

)k  B 3 

FIGURE 5. An idealized experimental setup with three orthogonal 
magnetic fields and three orthogonally mounted search coils. The search 
coils are rigidly attached to the eye, and the coil vectors {cl, e2, e3} are 
parallel to the axes of the eye-fixed coordinate system {el, e2, e3}. The 
magnetic fields {B~, 112, B3} are parallel to the head-fixed coordinate 

system {hi, h2, h3}. 

orthogonal coils which are parallel to the eye-fixed 
coordinate system {el, e2, e3} and firmly attached to the 
eye. Then the voltage induced by the magnetic field Bi in 
coil ej, Vii, is given by 

V l j -  Rij * bi * o~i • COS((D i • t) * q i, j = 1, 2, 3 (12) 

where q = [ej[ indicates the length of the vector ej. This 
gives a direct interpretation of the elements of the rotation 
matrix R: the voltage induced by the magnetic field B~ in 
the coil ej is proportional to the element R~j of the rotation 
matrix R, which describes the rotation from the reference 
position, where the coils {e~, e2, e3} line up with the 
magnetic fields {B~, B2, B3}, to the current position. Tweed 
et al. (1990) and Hess, Van Opstal, Straumann, Hepp and 
Henn (1992) give algorithms for the general case, where 
the coils {el, e2, e3} do not line up with the magnetic fields 
{B~, B2, B3} when the eye is in the reference position. 

In many laboratories the ideal configuration shown in 
Fig. 5 is replaced by a configuration where only two 
magnetic fields are available; one is usually vertical (i.e. 
parallel to h3), and the other parallel to the inter-aural axis 
h2. The coils commonly used for recording 3D eye position 
are the dual search coils produced by Skalar Instruments 
(Delft, The Netherlands), which are oriented in such a 
way that they are approximately parallel to the axes el and 
e2 of the eye-fixed coordinate system. With these two eye 
coils and two magnetic fields, only the following elements 
of the rotation matrix are available: 

R=(Hv  T:T ~)"  
(13) 

H, V, and T indicate that these signals approximately 
represent the horizontal, vertical and torsional eye 
position. However, they are only a rough estimate, and 
the explicit forms of the Fick- and Helmholtz-matrices 
(given in the Appendix) have to be used to derive the exact 
Fick- or Helmholtz-angles from the search coil signals. T2 
is the second signal from the coil aligned with e2, and is 
less sensitive to horizontal, vertical and torsional eye 
position. 

Other problems, like the determination of offsets which 
are frequently superimposed on the induced voltages, are 
not discussed here, but have been investigated in detail by 
Hess et al. (1992). 

Determination of Fick- or Helmholtz-angles from 
measured search coil voltages quickly leads to the much 
discussed problem of  false torsion. Let us, for example, 
take the case where a person looks left and down, and the 
measured search coil voltages give the following elements 
of the rotation matrix R 

( - :) R =  0.416 0.908 . (14) 
-0.247 0.055 

From the elements R21 , R31 and R32 and the explicit 
form of the Fick-rotation matrix given in the Appendix, 
the Fick-angles corresponding to this eye position 
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can be calculated as 0F = 25.4 deg, ~ F  ~- 14.3 deg and 
~kF= 3.3deg. The same matrix elements and the 
Helmholtz-rotation matrix yield the corresponding 
Helmholtz-angles, 0n = 24.6 deg, t~H = 15.8 deg and 
~n = - 3.4 deg. The values for ~kF and ~H depend on 
the particular Fick- and Helmholtz-sequence of the 
rotations. These coordinate system dependent values 
for ocular torsion are sometime referred to as false 
torsion. The opposite sign of ~F and ~n in the given 
example also shows that one can not simply talk 
about an "ocular torsion of 3 deg", but has to specify 
if it is 3deg in the Fick-system or 3deg in the 
Helmholtz-system. This false torsion is only due to 
the geometric properties of the Fick- and Helmholtz- 
systems. Near the reference position it can be 
approximated by 

0Fick * (~Fick (15) 
~Fick ~ 1 0 0  

0Helmholtz ~g (~Helmholtz 

where all angles are given in deg. The example further 
shows that Fick- and Helmholtz-coordinates not only 
lead to different values for torsion, but also for the 
horizontal and vertical angles. 

Describing 3D eye position as such an arbitrary 
sequence of multiple rotations has the inherent 
disadvantage that different sequences lead to different 
horizontal, vertical and torsional values for the same eye 
position. However, Euler's theorem tells us that any eye 
position can be reached from the reference position by a 
single rotation about a fixed axis. The next section will 
deal with rotation vectors and quaternions, which 
characterize this single rotation from the reference 
position to a new eye position. 

QUATERNIONS AND ROTATION VECTORS 

Quaternions and their relation to rotation matrices 

Rotation matrices are not the most efficient way to 
describe a rotation: they have nine elements, yet only three 
are actually needed to uniquely characterize a rotation. 
Another disadvantage of describing 3D rotations with 
rotation matrices is that the three axes of rotation, as well 
as the sequence of the rotations about these axes, have to 
be defined arbitrarily, with different sequences leading to 
different rotation angles. A more efficient way of 
characterizing a rotation of the eye is to use a vector, with 
the direction of the vector given by the axis of the rotation, 
and its length proportional to the size of the rotation, as 
shown in Fig. 6. Such a vector has only three parameters, 
and there is no sequence of multiple rotations involved. 
The orientation of the vector is given by the right-hand 
rule, i.e. an eye movement left, down or clockwise (as seen 
from the subject) is described by a vector which points up, 
left or forward respectively. In this description torsion is 
not defined as a rotation about the line of sight, but as the 
hi-component of the vector characterizing the total eye 
position. 

Two kinds of such descriptions of rotations have been 
proposed in the oculomotor literature: quaternions and 
rotation vectors. The theory of quaternions was invented 
and developed by Hamilton in the mid-19th century 
(Hamilton, 1899). Its original purpose was to define the 
ratio of two vectors, and hence to be able to rotate one 
vector into another by multiplication with a third vector. 
Hamilton found that he could not accomplish this by 
using three-component vectors, but had to use 
four-component vectors or quaternions. 

A detailed treatment of quaternions and their elegant 
mathematical properties can be found in mathematical 
texts (Brand, 1948; Altmann, 1986), many papers on eye 
movements (Westheimer, 1957; Tweed & Vilis, 1987; 

h 1 

h3 

h 2 

~ h 2  

© 
hi r v % 

o " i  

h 2 

4, 
! 

FIGURE 6. Description of 3D eye position by a vector. (A) The eye in the reference position (top) corresponds to the zero-vector 
(bottom). (B) A different horizontal eye position (top) can be reached by rotating the eye from the reference position about the 
h3 axis. This eye position is thus represented by a vector along the h3-axis, with a length proportional to the angle of the rotation 
(bottom). Note that usually only the end-point of the vector describing the eye position is shown, not  the whole vector (bottom). 
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Hepp et al., 1989; Tweed et al., 1990) and papers in more 
technical journals (Rooney, 1977; Funda & Paul, 1988). 
The following description of quaternions will cover only 
the essential properties of quaternions which describe 
rotations. 

A quaternion q which uniquely characterizes a rotation 
by an angle 0 about an axis n is given by 

q = q0 + (q~*i + q2*j + q3*k) = q0 + q.I, (16) 

where 

q q2 and I = , 
q3, 

and {i, j ,  k} are defined by 

i . i = - l ,  j j = - I  k . k =  - 1  (17) 
i j  = k, j . k  = i k.i  = j  

j . i = - k ,  k ' ] = - i  i . k = - j  

The elements {q0, ql, q2, q3} have the following properties: 

q0 = cos(0/2) (18) 

Iql = + + = sin(O/2) 

q is parallel to n 

q0 is often called the scalar component of  the quaternion q, 
and q the vector component of  q. q describes the eye 
position as shown in Fig. 6(B), with the length of the 
vector given by sin(0/2). 11: follows from equation (18) that 
quaternions describing rotations have the length 1, i.e. 
x / q 0 2 + q 2 + q ] + q ] = l ,  and are thus called unit 
quaternions. In general, the length of a quaternion does 
not have to be 1. If it is different, then the quaternion 
describes a combined rotation and stretching of a vector 
(Rooney, 1977). 

The connection between a quaternion q and a rotation 
matrix R, both describing the rotation of a vector x about 
an axis n by an angle 0, can be derived from the definition 
of quaternions in equations (16)-(18) 

qo(x.I)oq- '  = (R.x).I. (19) 

Although the left side of equation (19) is a full quaternion, 
the scalar component evaluates to zero, and does not 
therefore appear on the right side. The inverse quaternion 
q-~ is for unit quaternions given by • 

q- 1 _~. q0 - q'I (20) 

and the formula for the combination of two quaternions 
(o) is given below. For combined rotations, care has to be 
taken with the sequence of quaternions: if we describe the 
first rotation about p with the quaternion p, and the 
following rotation about the head-fixed axis parallel to q 
by the quaternion q, the combined rotation is given by 

3 3 

qop = )-' qili * ~ p~]~j 
i = O  j = O  

= (q0p0 - q'p) + (q0p + p0q + q × p).I.  (21)  

The right side of equation (21) is obtained by using the 
definitions of {i, j, k} in equation (17). The sequence of 
the quaternions in equation (21) is important, and the 
opposite sequence, p o q, would lead to a different 
orientation of the eye, as has been shown in the previous 
chapter. For rotations about head-fixed axes, o can be 
read as "after". 

Rotation vectors and their relation to rotation matrices 

Since the scalar-component of a unit quaternion does 
not contain any information that is not already given by 
the vector part, it can be eliminated by using rotation 
vectors instead of quaternions. The rotation vector r, 
which corresponds to the quaternion q describing a 
rotation of 0 about the axis n, is given by 

q = tan(0/2) • ~-~ = tan(0/2) • n, r =  q0 (22) 

with Iq[ the length of q as defined in equation (18). 
The development of this parametrization of rotations 

can probably be attributed to Rodrigues (1840), and the 
coefficients of the rotation vectors are sometimes referred 
to as Euler-Rodriguesparameters (Altmann, 1986, p. 20). 
One of the first to rediscover these parameters for the 
oculomotor field was Haustein (1989), whose paper also 
provides a good introduction to rotation vectors. The 
rotation vector corresponding to the rotation matrix R 
can be determined easily from the elements of the rotation 
matrix by 

r = 
1 "+" (RI,  "+" R22 + Ra3) \ R 2 ,  - -  R I 2 /  

To establish the relationship between rotation vectors 
and other descriptions of rotations such as Fick-angles, 
we have to know how to get the rotation vector for 
combined rotations. Using equations (21) and (22) we get 

rqorp = rq -q- rp -+- rq × rp (24) 
1 - -  rq'rp 

where re is the first rotation (about an axis parallel to re) 
and rq the second rotation (about a head-fixed axis parallel 
to rq). For example, with 

t! 7) rp = 0. 4 and rq = 

0.087 

equation (24) would describe a rotation of 20 deg about 
the interaural axis h2, followed by a rotation of 10 deg 
about the head-fixed yaw axis h3. According to our 
discussion above of active and passive rotations, the same 
formula can also be interpreted as a first rotation of 10 deg 
about the yaw axis e3, followed by a second rotation of 
20deg about the rotated, eye-fixed axis e2--which 
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corresponds to the horizontal and vertical rotation in a 
Fick-gimbal. The rotation vector corresponding to the full 
Fick rotation matrix in equation (7) can be obtained by 
adding a third rotation about the (eye-fixed) line of sight, 
el. Denoting a rotation vector which describes a rotation 
about an axis n by an angle 0 with r(n, 0), this leads to 

r = r(ea,0F)or(eE, t~F)or(el,@F) 

1 

1 + tan(0F/2) • tan(~be/2) * tan(~kF/2) 

/tan(~kF/2) -- tan(0F/E) • tan(~bF/2)\ 
• /tan(q~v/2) + tan(0F/2) • tan(~kr/2)| (25) 

\tan(OF~2) -- tan(~bF/2) • tan(~F/2)/ 

, h 3 (horizontal) 

_20o ', 
Displacement Plan. 

, : 
(tors on 

~ 'thickness" 

where OF, ~bF and ~kF are the Fick-angles. 
Close to the reference position, the relations between 

Fick-angles, Helmholtz-angles, rotation vectors and 
quaternions can be approximated by the simple formula (rl) (ql) 

~ 1 0 0 .  r2 ~ 1 0 0 .  q2 (26) 
r3 q3 

Fick Helmholtz 

where 0, ~ and ~k are given in deg. 

Donders' law and Listing's law 

While looking at a small target, the position of the target 
determines the gaze direction, but does not specify the 
amount of ocular torsion about the line of sight. However, 
as Donders discovered, the torsional eye position is not 
arbitrary, but uniquely determined by the gaze direction 
(Donders, 1848). This principle has been called Donders' 
law. It is valid for an erect and stationary head, with the 
eyes looking at targets at infinity. Listing's law goes one 
step further, by specifying the amount of ocular torsion. 
Using rotation vectors or quaternions, Listing's law can 
be formulated very simply: all rotation vectors (or 
quaternions) characterizing 3D eye position lie closely 
scattered along a plane. Recordings of eye movements in 
humans and monkeys show that the standard deviation of 
rotation vectors describing eye positions from this plane 
is only about 0.5-1.0 deg. The best fit plane to these data 
is called displacement plane (Tweed et al., 1990). Figure 7 
shows an example of such a plane. Expressing the same eye 
position data in either Fick- or Helmholtz-angles does not 
lead to data points that lie closely scattered along a plane, 
but instead to data points which lie on curved surfaces 
(Suzuki, Straumann, Hess & Henn, 1994). 

The orientation of the displacement plane also depends 
on the reference position used to describe the eye positions. 
Figure 8 shows that shifting the reference position by 
20~ deg in any direction shifts the plane of the rotation 
vectors describing exactly the same eye positions by ~ deg 
in the same direction. Since we have defined our head-fixed 
coordinate system such that hi is parallel to the line of sight 
of the eye in the reference position, a shift of the reference 
position by 20t also leads to a shift of the head-fixed 
coordinate system by the same amount in the same 
direction. For example, in Fig. 8(A) the displacement 

[] h 3 (horizontal) 

~ ~ ! ~  hz i~ ~ ,.. ," hz (vertical) 

• f , .? 

FIGURE 7. (A) Side view and (B) front view of rotation vectors, 
recorded while the subject was looking around in the light for 90 see. The 
hrcomponent indicates torsional, the h2-component vertical, and the 
hrcomponent horizontal eye position. Only the end-points of the 
rotation vectors characterizing the eye positions are plotted, not the 
rotation vectors themselves. The reference position was looking straight 
ahead, and in (A) the best-fit plane (displacement plane) to the data is 

indicated. 

plane is perpendicular to the reference position (and thus 
perpendicular to b~), and therefore coincides with the hr--h3 
plane. In Fig. 8(B), the reference position (and thus the 
head-fixed coordinate system) has shifted 2~ deg forward. 
Since the displacement plane tilts only • deg forward in 
space, it is now tilted 0~ deg backward with respect to the 
head-fixed coordinate system. The net result is therefore 
a tilt of the displacement plane in the head-fixed 
coordinate system in the direction opposite to the shift of 
the reference position. 

For every data-set there is one reference position such 
that the corresponding displacement plane is exactly 
perpendicular to the reference gaze direction, i.e. the line 
of sight of the eye in this reference position [Fig. 8(A)]. This 
position of the eye is termed the primary position, and the 
corresponding displacement plane is termed Listing's 
plane. Some researchers prefer to use the expression 
Listing's plane in a wider sense, and refer to any plane of 
rotation vectors or quaternions as Listing's plane. In this 
wider sense, the planes in Fig. 8(A, B, C) would all be 
Listing's planes. Using equation (24) it can be shown that 
the vector perpendicular to the displacement plane is 
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2c~ 
~ ]  Reference Position 

= Primary Posltlon 

,isplacement Plane 
' = Ustir~s Plane 

~q 

Refer~ce Position 

Displacement Plane 

- - - -  2 C t  
c e  Position 

"1[ Displacement Plane 

FIGURE 8. Expressing the same eye positions with respect to different reference positions leads to planes of rotation vectors 
with different orientations (displacement planes). (A) When the reference gaze direction is exactly perpendicular to the 
displacement plane, the reference position is called primary position, and the displacement plane Listing' s plane. In this example, 
we show a subject whose primary gaze direction is 2~ deg up. (B, C) Changing the orientation of the reference position by 2~ deg 

leads to a shift of the displacement plane by • deg. The thin dashed lines indicate the earth horizontal and vertical axes. 

exactly halfway between the primary gaze direction (i.e. 
the direction of  the line of  sight of  the eye in the primary 
position) and the reference gaze direction (Tweed et al., 
1990). 

From the description of  eye position, we turn in the next 
section to the description of  eye movements and eye 
velocity. 

MATHEMATICAL DESCRIPTION OF EYE VELOCITY 

Eye movements within Listing" s plane 

T o  begin with a specific example, consider an 
eye movement from right to left at an elevation of  
20 deg up [Fig. 9(B, C), top row]. Both start and end 
position of  the eye are Listing's positions: the rotation 
vector for the rotation from the reference position 
[Fig. 9(A)] to either of  Lhese positions [Fig. 9(B)] lies in 
Listing's plane. For  simplicity we consider the case where 
Listing's plane is exactly upright, i.e. that the reference 
position is the primary position and Listing's plane 
coincides with the h2--h3 plane of  our head-fixed coordinate 
system. About which axis must the eye rotate to get from 
the start position to the end position? From equation (24) 
one can derive that the eye must rotate about an axis that 
tilts 10deg backward, in order to keep the eye in 
Listing's plane during the whole movement. Note that all 
rotation vectors describing the rotations from the fixed 
reference position to the current eye position lie within 
Listing's plane [Fig. 9(A)], while the rotation vectors 
describing rotations from one eye position at 20 deg 
elevation to another one tilt 10 deg out of  Listing's plane 
[Fig. 9(B)]. 

From equation (24) we can derive that a purely 
horizontal eye movement from a start position 

to an end-position 

re:t ) 
is described by the rotation vector 

r ~ -  l + a  2 + b * c  " 
(27) 

This means that for a horizontal eye movement at 
an elevation ct, the axis of  eye velocity is tilted ~t/2 deg 
backward. Note that neither rs, which describes the 
rotation from the reference position to the starting 
position, nor ro, which describes the rotation from the 
reference position to the end position, have a torsional 
component,  i.e. a component along h~. Nevertheless r~, 
which characterizes the rotation from rs to re, does have 
such a component. 

There are _now two groups of  rotation vectors: one 
which describes each eye position by characterizing the 
hypothetical rotation from a fixed reference position 
[Fig. 9(A)] to the current position [Fig. 9(B)]; and a second 
group which describes the actual rotation from one eye 
position to the next [Fig. 9(B, C)]. While all vectors of  the 
former group lie in Listing's plane, rotation vectors of  the 
latter group tilt in general out of  Listing's plane. In our 
example, where the eye is elevated 20 deg, they tilt out of  
Listing's plane by 10 deg. This is a specific example of  the 
more general rule that when Listing's law holds, the axis 
of  eye velocity always lies in a plane with the following 
properties: the orientation of this plane depends on the 
current eye position (i.e. its orientation changes when the 
eye position changes), and is such that the vector 
perpendicular to the plane is exactly halfway between the 
current gaze direction and the primary gaze direction 
(Tweed et al., 1990). 

The axis of  the vector describing the eye rotation 
from one position (e.g. our start position) to the next (e.g. 
our end position) is also the axis of  average eye velocity 
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h 3 

+ 
h 1 

h 3 

h2 

FIGURE 9. (A) Eye in the reference position. (B) Eye positions which have been reached from the reference position by a rotation 
about the axes indicated with solid arrows in (A). Note that all these axes lie in Listing's plane, indicated by the shaded plane. 
To get from (B) to a different eye position at the same elevation (C), the eye has to rotate about an axis which does not lie in 

Listing's plane, but tilts out of Listing's plane as indicated by the vectors in (B). 

during that movement.t Tweed and Vilis (1990) have 
shown that during saccades with the head stationary, the 
eye actually does stay in Listing's plane, and the axis of eye 
velocity moves out of Listing's plane for saccades from one 
tertiary position (i.e. an eye position with horizontal and 
vertical components) to another. Minken, Van Opstal and 
Van Gisbergen (1993) have extended this finding by 
showing that Listing's law holds even for curved saccades. 

In summary, for Listing's law to hold the axis of eye 
velocity does in general not lie in Listing's plane, although 
all rotation vectors describing eye positions do. 

Determination of eye velocity 

As pointed out previously, rotation vectors describing 
eye positions depend on the choice of the reference 
position. In contrast, the eye velocity does not depend on 
the reference position, since it only describes the 
movement from the current eye position to the next, which 
does not involve the reference position. 

The simplest formula describing the eye velocity to is 

t i n  real saceades the axis of eye velocity is often not constant throughout 
the saccades (Bains, Crawford, Cadera & Vilis, 1992). 

given in the quaternion notation (Tweed & Vilis, 1987): 

dq o9 = 2 • ~-~ oq-' (28) 

where o9 = (0, to) is a quaternion, with to the common 
eye velocity vector. Note that the angular eye velocity de- 
pends not only on the time derivative dq/dt of the eye 
position, but also on the current eye position q itself. 

Expressed in rotation vectors (Hepp, 1990), equation 
(28) is equivalent to 

dr dr 
d--t + r x d--t 

to = 2 * 1 + r: (29) 

A more complex formula is required if angular velocity is 
expressed in Fick-angles (Goldstein, 1980): 

• _.  1 

- -dd/*sin(Or) 

to = /-ddt r *cos(0D + -ddtF *sin(0D*cos(~be ) . 

L dOedt ~ .sin(tp~) ] 

(30) 
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Equations (28)--(30) are equivalent, as they express the 
same eye velocity in different coordinate systems. The 
time derivatives of the eye-coordinates--dq/dt for 
quaternions, for dr/dt rotation vectors, and {dO/dt, 
dc~/dt, d~k/dt} for Fick-angles--are often referred to as 
coordinate velocity. This coordinate velocity obviously 
depends on the parameters chosen to describe the eye 
position. In contrast, the eye velocity vector to describes 
the actual eye movement, with its axis  given by the 
instantaneous axis of eye rotation and its length by the 
angular velocity of this rotation, and does not depend on 
the parametrization of the eye position. The preceding 
formulas also show that the coordinate velocity is in 
general not equivalent to the angular velocity to. 

APPLICATIONS 

Combined eye-head movements 

Using dual search coils, one can directly measure the 
orientation of the eye in space, often called gaze, and the 
orientation of  the head in space. How can the formulas~ 
given above be used to derive from these data the position 
of  the eye in the head? 

Let R~ead be the rotation matrix describing the rotation 
of the head in a head-fiLxed reference system, and Reye 
describe the rotation of' the eye in the head. From a 
geometric point of  view, we first rotate the head, and then 
the eye in the (now rotated) head. In other words, we use 
passive rotations or rotathms of the coordinate system. This 
determines the sequence of the two rotations, and the 
rotation matrix describing the gaze rotation, R~=, 
is--according to the discussion following equations (5) 
and (6)--given by 

{]~gaze = ~head'~Ley¢. (31) 

Using rotation vectors, equation (31) can be expressed as 

rs~ = rheadOreye. (32) 

This can be rearranged to yield the rotation vector 
describing the position of the eye in the head, r~,  as 

reye := r~a~Ors~. (33) 

The formula for the combination of two rotation vectors 
is given by equation (24), and the inverse of a rotation 
vector can be determined easily by r -  t = - r. 

Three-dimensional vestibulo-ocular reflex 

Imagine a person sitting upright on a stationary 
turntable and looking straight ahead. Since Listing's 
plane is in general not exactly upright, let the person have 
a displacement plane that is tilted 0t deg backward from 
the earth vertical, as shown in Fig. 10. Furthermore, let 
the eye be in the reference position when the subject is 
looking straight ahead. As noted in the section on 
Listing's law, the primary position is in this case tilted 
20t deg up with respect ~to the earth horizontal. What 
happens when this person is accelerated about the earth 
vertical axis? In general, the eye won't  rotate about 
exactly the same axis as the head, toho~d, but about a 

J 
J 

Displacement 

Ference Position 

! 
b 

\ eye 

FIGURE 10. Side view of a person whose displacement plane is tilted 
ct deg backward. When the person is rotated about an earth vertical axis, 
the axis of eye velocity for eye movements elicited by the 
vestibulo-ocular reflex, tom, does not coincide exactly with the axis of 

head velocity, tobY. 

different axis, toeye. It has to choose between two strategies: 
on the one hand, it would have to rotate exactly about the 
earth-vertical axis to compensate accurately for the head 
movement; on the other hand, it would have to rotate 
about an axis that lies in the displacement plane for 
Listing's law to hold during horizontal eye movements. 
Note that for different elevations of the eye, the axis about 
which the eye has to rotate changes with the elevation of 
the eye if Listing's law is to be conserved (Crawford & 
Vilis, 1991). Which strategy does the eye choose? 
Investigations by Fetter, Tweed, Misslisch, Fischer and 
K6nig (1992) indicate that a compromise strategy is 
chosen, and the eye rotates about an axis that is tilted by 
0t/2 deg, i.e. an axis which lies halfway between the 
displacement plane and the earth-vertical axis. In other 
words, if the axis of head rotation is not exactly 
perpendicular to the primary position, the eye will not 
rotate about the same axis as the head, and eye 
movements will not fully compensate for the head 
rotation. 

Side-view of Listing's plane 

In general, the reference position for eye movements 
does not coincide with the primary position, and Listing's 
plane does not line up with the hz--h3 plane of the 
head-fixed coordinate system. To have Listing's plane 
aligned with the h2---h3 plane, one has to rotate the 
head-fixed coordinate system such that the primary 
position of the eye corresponds to the zero-rotation 
vector, and the primary gaze direction coincides with the 
h~ axis. Once this is done, a side view of  Listing's plane can 
be obtained by plotting the components of the rotation 
vector corresponding to horizontal or vertical eye 
position (r3 or r2) vs the component corresponding to the 
torsional eye position (r,). 
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The situation is similar to the "eye in head"  problem 
dealt with above: there, we wanted to separate the 
rota t ion f rom the reference posit ion to the current  gaze- 
posit ion into first a ro ta t ion  o f  the head, and then a 
ro ta t ion o f  the eye within the (rotated) head. Here we 
want  to separate the ro ta t ion f rom the reference posit ion 
to the current  eye position, r~cp, into first a rota t ion f rom 
the reference posit ion to the pr imary  position, r~pp, and 
then a ro ta t ion f rom the pr imary  posit ion to the current  
eye position, rpp.cp. In ana logy to equat ion (33) we can 
write 

rpp~cp = r~lppOrrp~cp. (34) 

I f  the displacement plane is described by the equat ion 

r~ = offset + ay • r2 + az * r3 (35) 

where offset  is the intersection o f  the displacement plane 
with the h~ axis, and 

- -  az/ 

is the vector that  characterizes the orientat ion o f  the 
plane as shown in Fig. 7, then one can show that  r~pp is 
given by 

/offset~ 
r~p.pp/ az ~ (36) 

CONCLUDING REMARKS 

Full unders tanding o f  the vestibular system or the 
ocu lomotor  system requires 3D stimuli, and the 
measurement  and analysis o f  3D eye movements .  While 
ro ta t ion matrices are an easy way to establish a 
correspondence between measured values (e.g. search coil 
voltages) and the ro ta t ion o f  the eye f rom a reference 
posit ion to the current  position, rota t ion vectors and 
quaternions have proven to be more  intuitive and 
efficient. They  are non-redundant ,  using three parameters  
to describe the three degrees o f  f reedom o f  rotat ions;  they 
don ' t  require an arbitrarily chosen sequence o f  rotations,  
but  describe eye posit ion by a single rota t ion f rom the 
reference posit ion to the current  position; they form an 
intuitive way  o f  parametr izing rotat ions by expressing 
them by their axis and size; they allow for  an easy 
combina t ion  o f  rotat ions;  and they permit descriptions 
and tests o f  Listing's law in a simple way. But while 
rota t ion vectors and quaternions offer m a n y  advantages,  
there are still some situations where the Fick- or  
Helmhol tz-coordinate  system may  be more  appropriate.  
Fo r  example, Fick-angles m a y  be more  useful for  the 
description o f  large gaze shifts (Glenn & Vilis, 1992), and 
Helmhol tz-coordinates  m a y  have advantages for  the 
description o f  conjugate  eye movements  (Collewijn, 
1994). The methods  and techniques used for  the 
description o f  3D eye movements  have also been applied 
to other  m o t o r  systems, and have proven useful to find 
and to describe control  strategies for  head and a rm 

movements  (S t raumann et al., 1991; Hore  et al., 1992; 
Miller et al.,  1993). 
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APPENDIX 
(i) The scalar product of twc, vectors a and b is defined as 

(a~) (b~) 
a: • b: =albj+a2b2+a3b3. (AI) 
a3 b3 

(ii) The cross product of two vectors a and b is defined as 

(a) (,).,a., 
a :  x b2 =/a3b, a,b3~. (A2) 
a3 b3 \a,b2 a2bff 

The resulting vector is perpendicular to a and b, and vanishes if a and b are parallel. 
(iii) In general, the multiplication of two matrices A and B is defined as 

A.  B = C (A3) 
with 

C,k = ~ = A~Bjk. 

This equation can also be used for multiplication of a matrix with a vector, when the vector is viewed as a matrix with three rows and one column. 
(iv) Using equation (A3), and inserting equations (2)-(4) into equation (7), RE*ok can be obtained as 

[COS(0F)COS(~bF) COS(0F)sin(~bF)sin(~F) -- sin(0F)COS(~kF) COS(0F)sin(q~F)COS(~) + sin(0F)sin(~bF)] 
RF~k = /sin(0r)cos(~br) sin(0F)sin(~bF)sin(~bF) + COS(0F)COS(~bF) sin(0F)sin(~bF)cos(~bF) -- COS(0F)sin(~bF)/. (A4) 

L - sin(qSF) COs(~bF)sin(~'F) COs(~bv)COS(~b~) J 

In the same way, RHoh~hoJ~ can be obtained from equation (8) by matrix multiplication as 

[ COS(6'H)COS(~H) --sin(0n)COS(q~H)COS(ffH) + sin(~b.)sin(~b,) sin(0H)COs(~bH)sin(~bH) + sin(~bH)COS(~H) 
RHelmholtz = [ sin(OH) Cos(OH)COS(I//H) --  cos(On)sin(~b.) (A5) 

[-coS(Os)Sin(~bn) sin(0a)sin(tpa)cos(~bH) + cos(~bn)sin(~,H) --sin(0H)sin(~bH)sin(~bH) + COS(~bH)COS(~a) 

Care has to be taken, because tlhe exact form of the rotation matrices depends on the definition of R, and definitions different from equation (1) 
can lead to matrices which are the transpose of the matrices in equations (A4) and (A5). 

(v) Expressing the components of a rotation vector in the corresponding Fick-angles leads to equation (25). In an analogous manner, these 
components can be expressed in Helmholtz-angles, which gives 

/tan(~bF/2) + tan(OF~2) * tan(~F/2)\ 
1 |tan(~bv/2) + tan(0F/2) * tan(~F/2)]. (h6) 

r = r(e:,~bH)or(e3,0H)or(el,~ka) = 1 -- tan(0F/2) • tan(~bF/2) • tan(~kF/2) * \tan(0F/2) -- tan(~bF/2) * tan(~F/2)/ 


