Anisotropic Ocular Drift

Yen-Chu Lin Michele A Cox With lots of help from Janis Intoy

June 30, 2020

Overview

- 1. Brownian Motion as a model of Ocular Drift
- 2. Evidence of Optimal Drifts in Certain Tasks
- 3. Isotropic vs. Anisotropic Optimal Drifts
- 4. Results from tilted-grating detection and discrimination, Letter task

A method for quantifying and comparing the shape of drift

5. Next steps for investigating anisotropic drift

Brownian Motion

- Brownian motion is the apparently random motion of small particles suspended in fluid.
- Brownian motion drives diffusion such that over time particles will move from regions of high concentration to low concentration.
- When diffusion is the same in every direction, i.e. *isotropic*, movement is characterized by a single diffusion coefficient (D).

Brownian Motion

Diffusion

Brownian Motion: Applied to Drift

- Parameterized by the diffusion constant, D
- Gaze displacement at any given time follows the normal distribution
 - Variance increases **linearly** with time
 - $< r^2 > = 4Dt$

Brownian Motion: Applied to Drift

Brownian Motion: Applied to Drift

Smaller D --> Increases Critical Frequency

"Optimal" Drifts

Smaller D --> Increases Critical Frequency

Three Pieces of Evidence:

- 1. Snellen (Intoy & Rucci, 2020).
- 2. Crowding (Clark et al, VSS).
- 3. Drift Meta Analysis (Intoy et al., VSS)

Task-dependent Changes in Drift

The diffusion constant (which captures changes in speed and curvature) is one parameter by which drift may be controlled.

Is Brownian motion a good model of drift?

Ocular Drift is Brownian

In all tasks, the overall characteristics of ocular drift are compatible with a Brownian motion model. The variance of gaze displacement increases linearly with time, a signature of Brownian motion ($\mathbb{R}^2 > 0.95$). However, the diffusion constant, the slope of the increase, varies with task.

Anisotropic Diffusion

Long-term anisotropic (asymmetric) diffusion of toluidine blue solution in water. Angles indicate the maximum diffusion trend (MDT).

Time

Dai, J. (2014). Macroscopic anisotropic Brownian motion is related to the directional movement of a "Universe field". *Natural Science*, 2014.

Is Brownian motion a good model of drift?

- Investigate long-term correlations present in drifts.
- BM is uncorrelated in time.
- Fractional Brownian motion (fBM) has a parameter for temporal correlations (Hurst index, H)

Brownian Motion(BM): $\langle r^2 \rangle = 4Dt$

Fractional Brownian Motion (fBM): $< r^2 > = 4Dt^H$ $H = 1 \rightarrow$ Brownian Motion

Fractional Brownian Motion

Hurst Index (H)

H > 1 : correlated in timeH = 1: uncorrelated in time (BM)H < 1: anticorrelated in time

Simulated fBM Drifts

Fractional Brownian Motion

Hurst Index (H)

H > 1 : correlated in time

- H = 1: uncorrelated in time (BM)
 - H < 1: anticorrelated in time

Anisotropic Diffusion

Long-term anisotropic (asymmetric) diffusion of toluidine blue solution in water. Angles indicate the maximum diffusion trend (MDT).

Time

Dai, J. (2014). Macroscopic anisotropic Brownian motion is related to the directional movement of a "Universe field". *Natural Science*, 2014.

Past and Current Empirical Investigations

Switch Speaker

Tasks to Test Stimulus-Dependent <u>Anisotropic</u> Drift

- 1. Grating detection task
- 2. Grating discrimination task
- 3. Letter discrimination task

Optimal Anisotropic Drift?

Rucci et al., 2007, Nature

Optimal Anisotropic Drift?

Performance Under Partial Stabilization

Rucci et al., 2007, Nature

Expected Results

Optimal bias ocular drifts strategy – from the luminance change point of view

Active, controlled anisotropic FEM

FEM would change for each stimulus

STIMULUS-DRIVEN

increase luminance power for all stimuli

Stimulus-Dependent Anisotropic Drift?

Tilted grating <u>detection</u> task

- 8 cpd, 11 deg in size
- Trials are block design; subjects knows the grating orientation
- Do we see any evidence that the <u>DIRECTION</u> of drift changes with task?

С

Tilted Grating Detection: Previous and Repeated Analyses

- Drift Metrics
 - Position
 - Velocity
 - Curvature
 - Speed

- Data Segmentation
 - Plateau vs. Drift
 - Fast vs. Slow Drifts
 - Performance
 - Overall detection (d-prime)
 - Hits, Miss, Correct Rejection, False Alarms

In all cases, no consistent differences in metrics between right-tilted and left-tilted sessions

No difference in Velocity Angles between Two Grating Viewing

Tilted grating detection task

Histogram of Velocity Angles

Capturing the 2D Features of Drifts

Capture the Features of Drifts on A Trial by Trial Basis

Distance between Two Covariance Matrices

Distance between Two Covariance Matrices

Figure 1. Geometric interpretation of the distance between two tensors. The two structure tensors \mathcal{T}_1 and \mathcal{T}_2 are represented by the elliptic blobs shown in the lefthand side of the figure. After the change of coordinates defined by the matrix Z, \mathcal{T}_1 is represented by the unit disk and the principal axes of \mathcal{T}_2 are equal to the eigenvalues λ_1 and λ_2 that appear in (6), see text. doi:10.1371/journal.pcbi.1000625.g001

 $Q = T_1^{-1} T_2$ We want to know how close Q is to identity

the Frobenius norm of the matrix-log of Q

$$d_0(T_1, T_2) = \left\| \log T_1^{-1} T_2 \right\|_F = \sqrt{\log^2(\lambda_1) + \log^2(\lambda_2)}$$

Stretching Change the Standard

5

4

stretching factor

Change in Size Can Be Normalized by A Single Factor

Normalized by the size

Difference in Directional Bias between Two Grating Viewing?

No Difference in Directional Bias between Two Grating Viewing

Hit

Miss

Tasks to Test Stimulus-Dependent <u>Anisotropic</u> Drift

Tilted grating discrimination task

- 0.5 16 cpd, 4 deg in size
- Trials are block design; subjects know the spatial frequency of the grating
- Do we see any evidence that the <u>DIRECTION</u> of drift changes with task?

Overall Differences between Two Tilted Grating Viewing

ALL DATA FITTED WITH 1 ELLIPSE not trial-by-trial

No Trial-by-Trial Differences between 2 Tilted Grating Viewing

Tasks to Test Stimulus-Dependent <u>Anisotropic</u> Drift

Letter discrimination task

0.3 sec

(1)

0.5 sec

- Letter pairs, ~1.5 deg in size
- Trials are block design; subjects know which letter pairs within trials
- Do we see any evidence that the <u>DIRECTION</u> of drift changes with task?

Difference in velocities between pairs

Preliminary data suggests no directional bias between different letters within blocks, but difference between different pairs

Difference in accelerations between pairs

Preliminary data suggests no directional bias between different letters within blocks, but difference between different pairs

Overview of Results from All 3 Tasks

	Grating detection	Grating discrimination	Letter discrimination
Between Stimuli	No difference	Maybe?	No difference
Between Stimuli – trial-by-trial	No difference	No difference	No difference
Between Tasks – trial-by-trial	N.A.	N.A.	YES (need more data)

Current Hypotheses & Next Steps

Switch Speaker

Optimal bias ocular drifts strategy – from the luminance change point of view

0

Next Steps

- Develop and test <u>measures of drift anisotropy</u>
- Analyze <u>multiple datasets</u> for evidence of change in drift anisotropy across conditions
- <u>a priori definition</u> of an optimal drift anisotropy for any given task and stimulus that is widely adaptable