Binocular Snellen

Characteristics of eye movements during the Snellen visual acuity test

Janis Intoy

APLAB

November 20, 2018

1 How do the eyes move when acquiring detailed visual information?

- 1 How do the eyes move when acquiring detailed visual information?
- 2 How does binocular coordination change during a high acuity task?

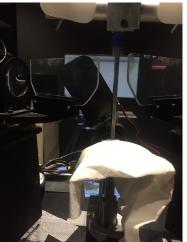
- 1 How do the eyes move when acquiring detailed visual information?
- 2 How does binocular coordination change during a high acuity task?
 - Does the degree of conjugacy increase?

- 1 How do the eyes move when acquiring detailed visual information?
- 2 How does binocular coordination change during a high acuity task?
 - Does the degree of conjugacy increase?
 - Are the eyes more synchronized?

Method: Measuring Eye Movements

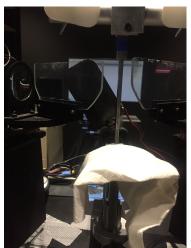
 measure changes, not absolute position of gaze

Method: Measuring Eye Movements

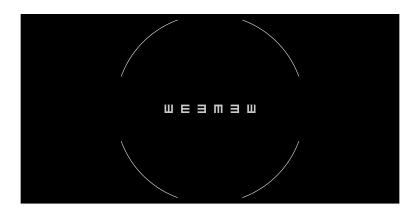

- measure changes, not absolute position of gaze
- assumption that vergence during initial fixation is on the plane of fixation

Method: Gaze Localization

1 Binocular automatic calibration


Method: Gaze Localization

- Binocular automatic calibration
- 2 Monocular manual calibrations of each eye with occluder



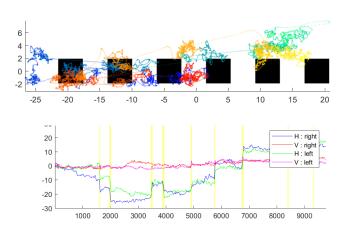
Method: Gaze Localization

- 1 Binocular automatic calibration
- 2 Monocular manual calibrations of each eye with occluder
- 3 Monocular recalibrations of each eye with occluder

Method: Stimulus and Task

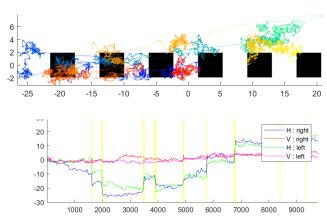
Strokewidth of 0.8 (20/16 line) or 1.0 (20/20 line)

Method: Stimulus and Task

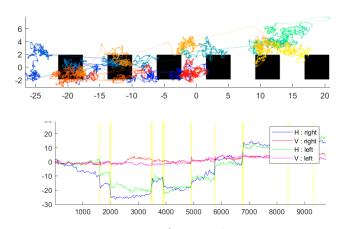

Strokewidth of 0.8 (20/16 line) or 1.0 (20/20 line)

Data Collection

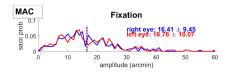
Subject	Total	(S)	(T)	Correct	Avg Dur (s)	# Sacc
MAC ¹	134	89	121	85.5%	7.6 ± 2.1	1536
A068	221	89	131	87.5%	9.1 ± 2.1	1378
Anne ²	108	67	69	81%	10.6 ± 4.06	783

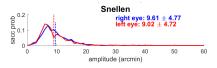

- Trials with more than 500ms of blink/no track excluded from analysis.
- Trials following incomplete manual calibration were excluded from spatial (S) analysis, but included in temporal analysis (T).
- 1. 20/20 line stimuli. 2. Did not have monocular occluder for calibration.

Outline

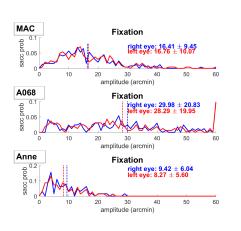

Outline

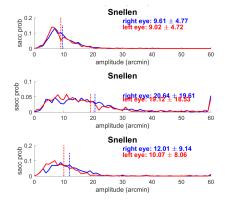
1 Characteristics and correlations of left and right eye movements



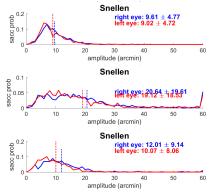

Outline

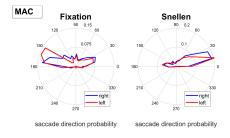
- 1 Characteristics and correlations of left and right eye movements
- 2 Differences between left and right eye movements



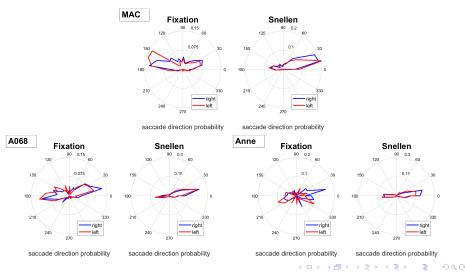

Microsaccade Characteristics: Amplitude

Microsaccade Characteristics: Amplitude

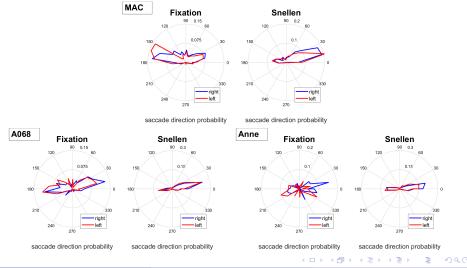



Microsaccade Characteristics: Amplitude

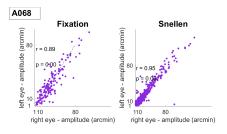
Distribution of microsaccade amplitudes during Snellen task peak around 8-10 arcmin, the center to-centering spacing between optotypes.

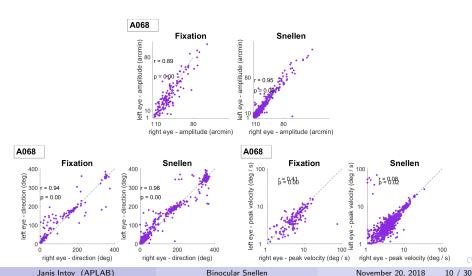


Microsaccade Characteristics: Direction

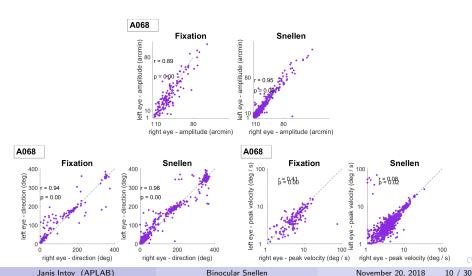

9 / 30

Microsaccade Characteristics: Direction



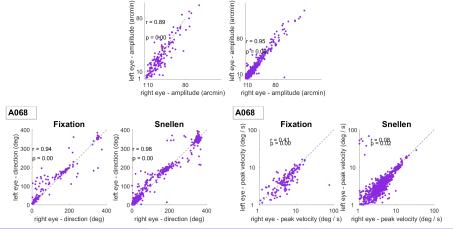

Microsaccade Characteristics: Direction

Microsaccades during the Snellen test shift gaze to the right.



Janis Intoy (APLAB) Binocular Snellen November 20, 2018 9 / 30

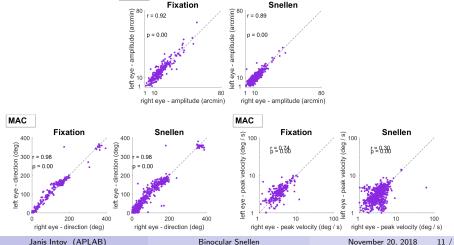
Janis Intoy (APLAB) Binocular Snellen November 20, 2018



Janis Intoy (APLAB) Binocular Snellen November 20, 2018

A068

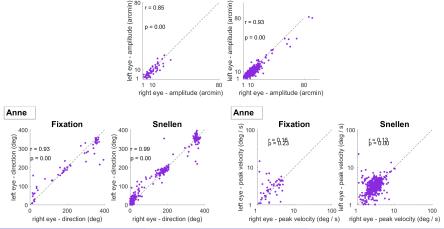
Microsaccade amplitudes, directions, and peak velocities are highly correlated in the two eyes.


Fixation

Snellen

MAC

Microsaccade amplitudes, directions, and peak velocities are highly correlated in the two eyes.



30

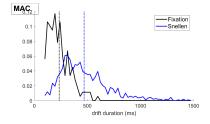
Anne

Microsaccade amplitudes, directions, and peak velocities are highly correlated in the two eyes.

Fixation

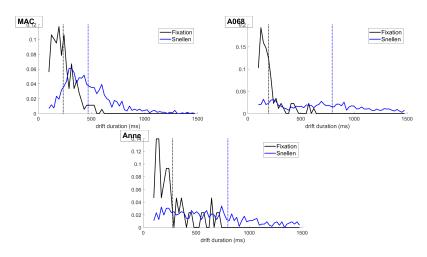
Snellen

Microsaccades: Summary of characteristics and correlations

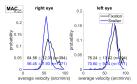

1 Microsaccades shift both lines of sight across the optotypes.

Microsaccades: Summary of characteristics and correlations

- 1 Microsaccades shift both lines of sight across the optotypes.
- 2 Microsaccade characteristics are highly correlated in the two eyes.

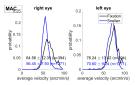

Drift Characteristics: Duration

Drifts are longer in Snellen than during Fixation.

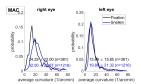


Drift Characteristics: Duration

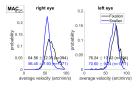
Drifts are longer in Snellen than during Fixation.

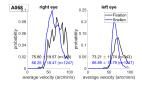


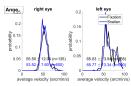
Velocity

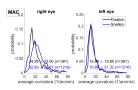


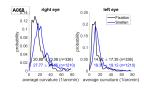
Curvature

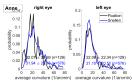

Velocity

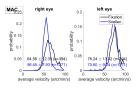


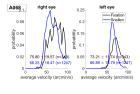

Curvature

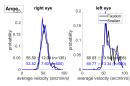

Velocity

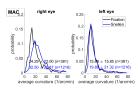


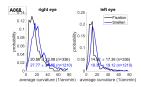


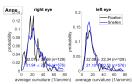

Curvature

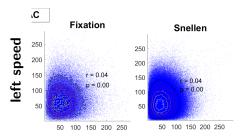


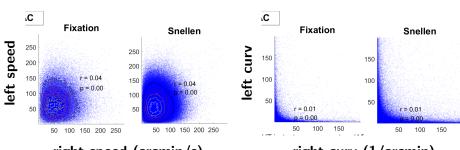



Velocity

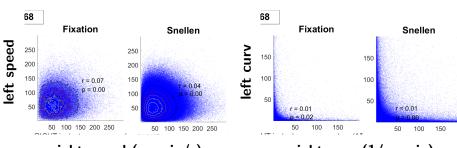




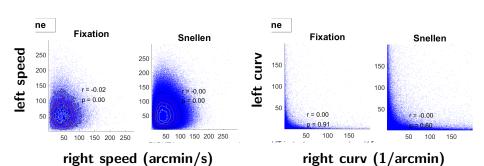

Curvature

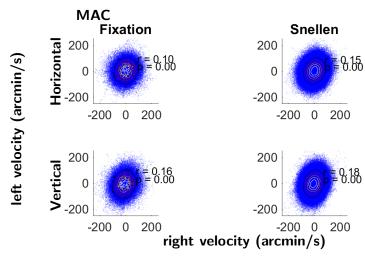


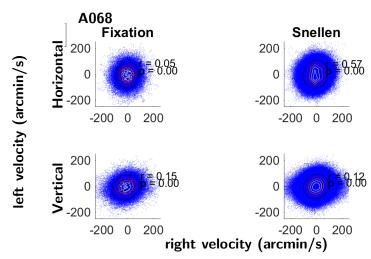
Drift is slower and more curved during the Snellen test.

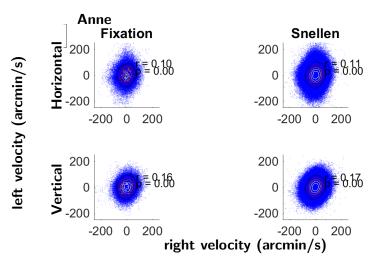


right speed (arcmin/s)

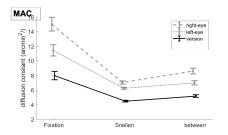

right speed (arcmin/s)


right curv (1/arcmin)



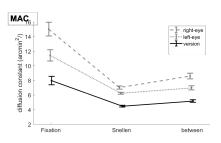

right speed (arcmin/s)

right curv (1/arcmin)



Drift diffuses less during Snellen

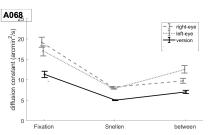
Version: average movement of the eyes

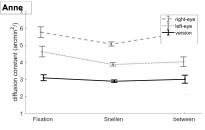

$$x = (x_R + x_L)/2$$

$$y = (y_R + y_L)/2$$

Between: period following fixation before first response

Drift diffuses less during Snellen



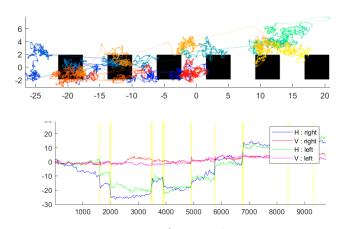

Version: average movement of the eyes

$$x=(x_R+x_L)/2$$

$$y = (y_R + y_L)/2$$

Between: period following fixation before first response

Drifts: Summary of characteristics and correlations

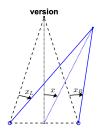

1 Each eye drifts less during the Snellen test than during sustained fixation.

Drifts: Summary of characteristics and correlations

- 1 Each eye drifts less during the Snellen test than during sustained fixation.
- 2 In these experimental conditions, the instantaneous drift properties are not correlated.

Outline

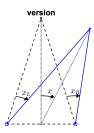
- 1 Characteristics and correlations of left and right eye movements
- 2 Differences between left and right eye movements



Version and Vergence Components

Version: avg movement of the eyes

$$x = (x_R + x_L)/2$$


$$y = (y_R + y_L)/2$$

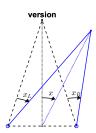
Version and Vergence Components

Version: avg movement of the eyes

$$x = (x_R + x_L)/2$$
$$y = (y_R + y_L)/2$$

Vergence: diff. in the movements of the eyes*

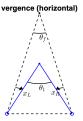
$$V_x = (x_R - x_L)/2$$


$$V_y = (y_R - y_L)/2$$

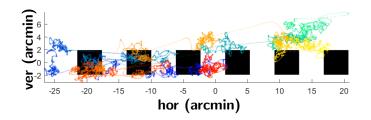
vergence (horizontal) θ_f $x_L = \theta_1$ x_L

Version and Vergence Components

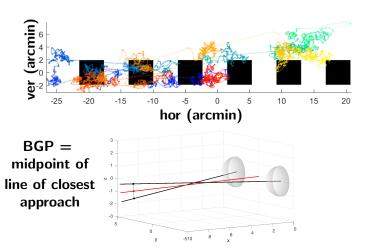
Version: avg movement of the eyes


$$x = (x_R + x_L)/2$$
$$y = (y_R + y_L)/2$$

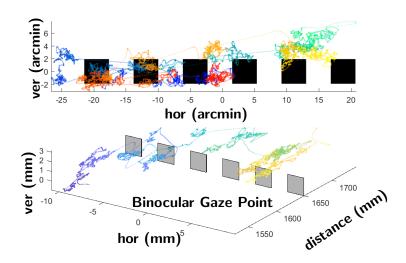
Vergence: diff. in the movements of the eyes*

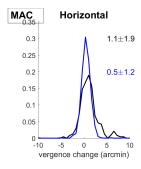

$$V_{x}=(x_{R}-x_{L})/2$$

$$V_y = (y_R - y_L)/2$$

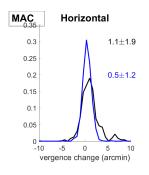


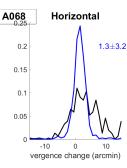
* 1. $V_x > 0$: uncrossed. $V_x < 0$: crossed 2. Vergence is measured relative to the fixation point, which we assume is located at (0, 0) on the monitor.

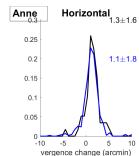

Binocular Gaze Point


Binocular Gaze Point

Binocular Gaze Point

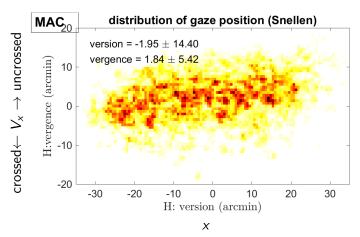


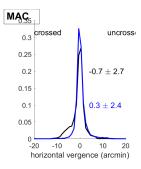

Microsaccades change horizontal vergence



23 / 30

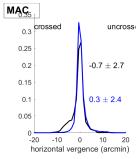
Microsaccades change horizontal vergence

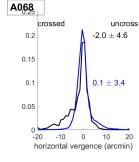


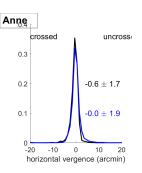

BGP across stimulus

Go to 3D figures in Matlab.

Drifts don't change horizontal vergence

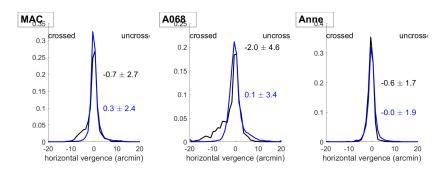

Change in vergence from start of drift.



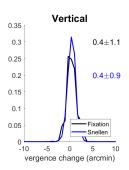

25 / 30

Drifts don't change horizontal vergence

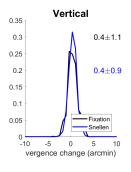
Change in vergence from start of drift.

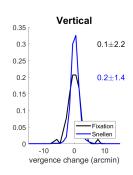


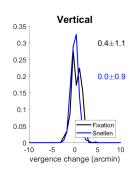
Drifts don't change horizontal vergence


Change in vergence from start of drift.

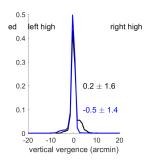
Microsaccades tend to uncross the eyes while drift on average does not change vergence. Next: Do drifts show tendencies to correct or amplify the vergence change from the previous microsaccade?

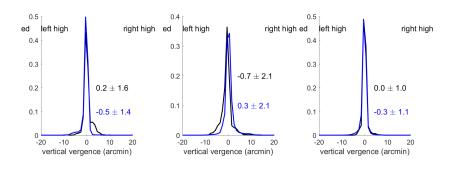

Microsaccades don't change vertical vergence

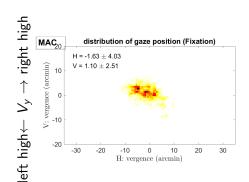

Change in vergence from start of drift.

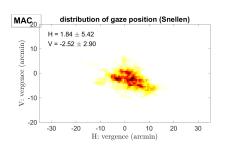


Microsaccades don't change vertical vergence

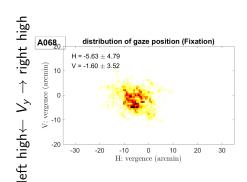

Change in vergence from start of drift.

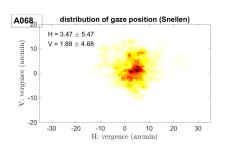



Drifts don't change vertical vergence

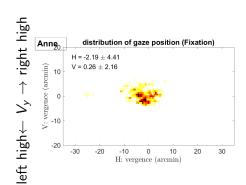


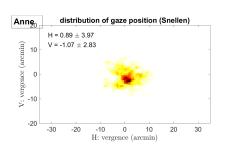
Drifts don't change vertical vergence


Positional offset of gaze

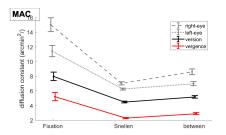


 $crossed \leftarrow V_x \rightarrow uncrossed$


Positional offset of gaze



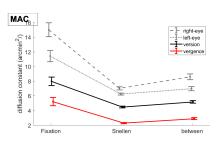
 $crossed \leftarrow V_x \rightarrow uncrossed$


Positional offset of gaze

 $crossed \leftarrow V_x \rightarrow uncrossed$

Positional offset diffuses less in Snellen

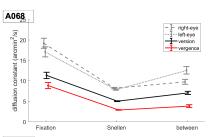
Vergence: difference between eyes

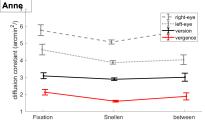

$$x = (x_R - x_L)/2$$

$$y = (y_R - y_L)/2$$

Between: period following fixation before first response

Positional offset diffuses less in Snellen




Vergence: difference between eyes

$$x=(x_R-x_L)/2$$

$$y = (y_R - y_L)/2$$

Between: period following fixation before first response

1 How do the eyes move when acquiring detailed visual information?

- 1 How do the eyes move when acquiring detailed visual information?
 - Conjugate microsaccades position move each line of sight from optotype to optotype.

- 1 How do the eyes move when acquiring detailed visual information?
 - Conjugate microsaccades position move each line of sight from optotype to optotype.
 - Each eye drifts longer and more slowly during the Snellen test, enhancing relevant spatial information.

- 1 How do the eyes move when acquiring detailed visual information?
 - Conjugate microsaccades position move each line of sight from optotype to optotype.
 - Each eye drifts longer and more slowly during the Snellen test, enhancing relevant spatial information.
- 2 How does binocular coordination change during a high acuity task?

- 1 How do the eyes move when acquiring detailed visual information?
 - Conjugate microsaccades position move each line of sight from optotype to optotype.
 - Each eye drifts longer and more slowly during the Snellen test, enhancing relevant spatial information.
- 2 How does binocular coordination change during a high acuity task?
 - Microsaccades seem to constantly uncross gaze. Why?

- 1 How do the eyes move when acquiring detailed visual information?
 - Conjugate microsaccades position move each line of sight from optotype to optotype.
 - Each eye drifts longer and more slowly during the Snellen test, enhancing relevant spatial information.
- 2 How does binocular coordination change during a high acuity task?
 - Microsaccades seem to constantly uncross gaze. Why?
 - Though drifts in the eyes do not exhibit synchronous speeds or direction in these conditions, the decrease in the diffusion rate during Snellen results in slower changes in retinal disparity.