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Overview

1. Humans are sensitive to changes in retinal image
motion from drift
1. In preparation
2. how to show effect is not just effect of manipulation?

2. Task-dependent control of drift
1. Characteristics of drifts
2. Brownian
3. Long-term temporal correlations



1. Humans utilize temporal transients from ocular
drift for fine spatial discriminations (Rucci et al,
2007; Boi et al, 2017)

2. In a high acuity task, the characteristics of ocular
drift change to provide greater temporal power at
high spatial frequencies (Intoy & Rucci, 2020).

Does visibility depend on the temporal power of
luminance modulations delivered by eye
movements?



Controlling retinal stimulation
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Controlling retinal stimulation
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Manipulating retinal image motion

— eye motion
— stimulus motion
— retinal image motion
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Manipulating retinal image motion
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Manipulating retinal image motion

— eye motion
— stimulus motion
— retinal image motion

Less Retinal Image More Retinal Image
Motion from Drift Motion from Drift



Quantifying retinal image motion

Probability of gaze
displacement over time
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Contrast Sensitivity
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Temporal power from drift
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Temporal power from drift
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Temporal power from drift

contrast sensitivity
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Temporal power from drift
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Temporal power effective on the retina
predicts contrast sensitivity.
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Does contrast sensitivity depend on temporal
power?

Or

Does manipulation of retinal image motion impair
sensitivity?



1. Comparison of normal trials with more/less
retinal image motion

2. Condition in which retinal image motion is

manipulated but provides same temporal power
as normal condition

e Collect new data: (examples: gain = -1 or playback of
other trials)

3. Condition in which visual sensitivity benefits from

more (or less) retinal image motion compared to
normal

 Examine previous data set with 10cpd gratings



10 cpd

* Same task now with
* 10cpd gratings

* Gain conditions [0.75, 1, 1.2]

Drift Only Trials Invalid
Subject | Total | Gain = 0.75 | Gain = 1.00 | Gain = 1.20 | ND/NT/B | S | MS
s1 1013 187 | 237 | 193 01 "142 | 163
155 | 174 | 139 | |
$2 1526 253 | 279 | 257 468 1100 1+ 169
107 : 101 | 104 | |
3 1625 320 | 276 | 369 349 11081194
128 | 94 | 115 5 5




Data Summary

diffusion coefficient (retinal motion)
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Overview

1. Humans are sensitive to changes in retinal image
motion from drift
1. In preparation
2. how to show effect is not just effect of manipulation?

2. Task-dependent control of drift
1. Characteristics of drifts
2. Brownian
3. Long-term temporal correlations



Task-dependent control of drift

Mean speed and curvature varies considerably across individuals, regardless
of task. Drift speed varied significantly depending on the task (ANOVA
F(5, 103)=6.18, p<10™). In contrast, curvature remained constant.
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Task-dependent control of drift
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Brownian Motion model of ocular
drift

* Brownian motion model of drift has helped us
understand the visual functions of drift and explain
empirical results



Brownian Motion model of ocular
drift

* Brownian Motion model of drift has helped us
understand the visual functions of drift and explain
empirical results

1. Spatial whitening (removing redundancy from visual
input) (Kuang et al, 2012)

2. Selective enhancement of high spatial frequency in
images (Rucci et al, 2007; Boi et al, 2017)

3. Predictions:
1. “optimal” drift diffusion by spatial frequency

2. Sensitivity depends on temporal power from drift (Intoy et
al, in prep)



s Brownian motion a good model

of drift?

Ocular Drift is Brownian
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In all tasks, the overall
characteristics of ocular
drift are compatible with a
Brownian motion model.
The variance of gaze
displacement increases
linearly with time, a
signature of Brownian
motion (R? > 0.95). However,
the diffusion constant, the
slope of the increase, varies
with task.



Task-dependent control of drift
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The diffusion constant (which captures changes in speed and
curvature) is one parameter by which drift may be controlled.



Task-dependent control of drift

High-acuity drifts enhance fine details

g% Drift transforms space into a spatiotemporal flow on the
2 retina. Here we examine how spatial information is

2 05 redistributed by drifts from several tasks.
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s Brownian motion a good model
of drift?

BM model well captures

the spatiotemporal
characteristics of retinal |-
input during drifts.
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s Brownian motion a good model
of drift?

* Investigate long-term correlations present in drifts.
* BM is uncorrelated in time.

* Fractional Brownian motion (fBM) has a parameter
for temporal correlations (Hurst index, H)

Brownian Motion(BM):
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Fractional Brownian Motion:
examples

Relationship to long-term correlations:
H > 1: correlated in time

H = 1: uncorrelated in time (BM)

H < 1: anticorrelated in time




Temporal correlations

Brownian Motion(BM):
<r?>=4Dt
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1. Examine covariance of step size across time
2. Estimate H (by regression or DFA)



Temporal correlations in 1BM

L
Simulation: H0.3
w \ —— Simulation: H0.5
0.8 1 \\ Simulation: HO0.7
3;23:232&3}_3 By definition, covariance of fractional
06 omuation: 7.2 Gaussian noise (difference between time
8 o4l samples) is characterized by
cov(Xl,XHk)
3 02f
° =—(|k+1|2 —2|k|2+|k—1|2)
or S —
0.2} |/
-0.4 :
0 5 10 15 20



Temporal correlations
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Temporal correlations

— Fixation Brownian Motion(BM):
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1. Examine covariance of step size across time
2. Estimate H (by regression or DFA)



Temporal correlations: estimating
Hurst index

* Hgpy fit by regression to variance of
displacement
* Hpp, fit by detrended fluctuation analysis

Estimations on simulated fBM traces:
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Temporal correlations
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Power spectra of fBM
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Task-dependent control of drift

* Do humans alter drift by task?

* |s this done to optimize spatial information in the visual
input?

* Are there ways to improve vision based on these
models?

e Can humans control D and H?

e Varying both together alters the spatial frequency
content of visual input, but H varies how space is
explored

* Does it just depend on the inertia of the eye following
saccades (which are much less frequent in high acuity
tasks)



