Ocular drift: modulating retinal power and interactions with retinal sensitivity

Janis Intoy July 24, 2018

Questions and Overview

- How does drift contribute to vision across the retina?
- How much drift is optimal?
- Is drift controlled to modulate temporal power on the retina?
- Background
- Methods for studying perceptual and computational consequences of drift
- Current state of the "Drift Gain" projects
- Next Steps

Background

What is ocular drift?

- Wandering motion of the eye between saccadic events
- In the fovea, drift can move the image on the retina by many photoreceptors
- "slow-control"

Why do we drift?

- Drive responses from retinal ganglion cells (RGC) which prefer dynamic inputs over static
- Space-time transformation to enhance and improve signal-to-noise ratio (SNR) for high spatial frequencies

Why do we drift?

Boi et al 2017

How do we drift?

- Drift during fixation have been well characterized (Cherici et al 2012)
- Maintain velocity of retinal image (Epelboim & Kowler, 1993)
- Characteristics of fixational drift change based on instruction, type of fixation marker, rotation of eye in head, ... (Nachmias 1961, Steinman 1973, Kowler 2011)

Resembles Brownian motion

How do we drift? В Horizontal ye (arcmin/s) During head-free fixation, drifts of the eye and head counterbalance each other so as to maintain the characteristics of retinal image motion observed during head-fixed fixation R = -0.84 slope = -0.78 (F) Head-fixed viewing (G) Normal head/eye movements -200 200 0 250 250 -2 Yaw (arcmin/s) 200 200 Vertical Log probability Time (ms) Time (ms) 150 150 200 -6 100 100 -8 50 50 -200 R = -0.78 slope = -0.88 -10-200 200 0 0 0 20 40 60 20 40 60 0 0 Pitch (arcmin/s) Space (a Space (arcmin) · ····~ 、· ··~/ Poletti et al 2015 Rucci & Victor 2015

How do we drift?

Subject counts: 9, 8, 14, 12, 10, 8

Methods

Temporal power on the retina

Power Spectrum estimation (Direct)

moving image

Stationary image: i(x, y)Eye movements: $\xi_x(t), \xi_y(t)$ Retinal input: $r(x, y, t) = i \left(x + \xi_x(t), y + \xi_y(t) \right)$

PS of retinal input: $S(k_x, k_y, f) = \mathcal{F}\{r(x, y, t)\}^2$

Power Spectrum estimation (Model-based)

Assumes 1. homogeneity of image and 2. independence of FEM and image

Stationary image: $I(k) = \mathcal{F}{i(x)}$ Eye movements: $Q(k, f) = \mathcal{F}{q(x, \tau)}$ $q(x, \tau)$: Probability of eye displacement over time

PS of retinal input:

$$S(k,f) = I(k)Q(k,f)$$

2. Brownian Motion model of $q(x,\tau) \rightarrow$ known closed forms of $q(x,\tau;D)$ and Q(k,f;D)

1. Empirical estimate of $q(x, \tau)$

Kuang et al 2012

Power Spectra

Power Spectra of BM

RGC Sensitivity

• Neurophysiological measurements of RGC spatiotemporal sensitivity

RGC Sensitivity

• Neurophysiological measurements of RGC spatiotemporal sensitivity

Power Spectra of BM

Retinal Power

FIG. 2. Temporal contrast-sensitivity (reciprocal of threshold contrast) functions for different spatial frequencies. The points are the means of four measurements and the curves (two with dashed low-frequency sections) differ only in their positions along the contrast-sensitivity scale, \bigcirc 0.5 cycle per degree, \bigcirc 4, \triangle 16, \blacktriangle 22 cycles per degree.

Measured temporal sensitivity functions

- Neurophysiological recordings taken from parafovea (Benardete & Kaplan 1999ab)
- Human temporal sensitivities measured foveally (Watson 1986, Robson 1966, Kelly 1979)

More on spatiotemporal sensitivity

- How does it spatiotemporal sensitivity vary across the retina?
 - P-to-M cell ratio & projections changes with eccentricity (Azzopardi et al 1999)
 - Do the properties of P and M-cells change with eccentricity?
- How does *human* sensitivity vary across the retina?
 - Speed of information processing varies with eccentricity (Carrasco et al 2003)
 - Foveal sensitivity is more lowpass and peripheral sensitivity is more bandpass (Snowden & Hess 1992; Allen & Hess 1992)
 - Sensitivity shape is similar at all retinal locations, just poorer in periphery (Virsu et al 1982, Rovamu et al 1978)
 - Others who have studied temporal sensitivity across the visual field choose eccentricities fovea, 10deg, 30deg, 60deg (Pointer & Hess 1989)