Retinal Motion and Visual Sensitivity During Smooth Pursuit

Bin Yang 07.14.2020

OUTLINE

✤ Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions
- Preliminary Experiments & Data
 - Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
 - Factor Analysis
- Stain Storming

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions
- Preliminary Experiments & Data
 - Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
 - Factor Analysis
- Stain Storming

Smooth Pursuit

- \succ Smooth pursuit allows the eyes to keep a moving target on the fovea
- > Eye velocity is often slower than that of the target (see Lisberger et al, 1987 for review)
 - Result in retinal image slip and catch-up saccades
 - Thought to be caused by errors in tracking the moving target
- Defined as the smooth component, excluding interleaved saccades (Lisberger et al, 1987)

Smooth Pursuit

- \succ Smooth pursuit allows the eyes to keep a moving target on the fovea
- > Eye velocity is often slower than that of the target (see Lisberger et al, 1987 for review)
 - Result in retinal image slip and catch-up saccades
 - Thought to be caused by errors in tracking the moving target

> However, there are still retinal motion and saccades even when pursuit very accurate.

Retinal Instability

- Retinal instability exists even when pursuit very accurate, resulting in retinal motion
- Retinal motion from fixation and saccades enhance visual contrast sensitivities
- How does retinal instability during accurate pursuit affect visual sensitivity?

OUTLINE

Background

Eye Movement Patterns During Smooth Pursuit

Visual Sensitivity during Smooth Pursuit Retinal Effect

- Retinal Effect
- Non-retinal Effect
- Summary & Scientific Questions
- Preliminary Experiments & Data
 - Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
 - Factor Analysis
- Stain Storming

Retinal Effect

> The higher the retinal velocity, the lower the sensitivity to 5.14 cpd.

- 2-point pursuit target
- Grating: 5.14 cpd, 1.36° × 1.36°

Murphy, Vision Research, 1978

Retinal Effect

Smooth pursuit shifts the temporal sensitivity function as a function of retinal velocity.

- MS: motion at same direction of pursuit
- MO: motion at opposite direction of pursuit

Schütz et al, JOV, 2007

OUTLINE

✤ Background

Eye Movement Patterns During Smooth Pursuit

Visual Sensitivity during Smooth Pursuit

- Retinal Effect
- Non-retinal Effect
- Summary & Scientific Questions
- Preliminary Experiments & Data
 - Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
 - Factor Analysis
- Stain Storming

Non-Retinal Effect

Enhance color & achromatic high spatial frequency
Attenuate achromatic low spatial frequency

Vertically modulated line flash for 10 ms

- Red-green & Achromatic Low SF: Gaussian window σ = 0.15°
 0 70% below 1 cpd, 95% below 2 cpd
- Achromatic High SF: 14 cpd square wave, height of 1.2°

Non-Retinal Effect

- Enhance color & achromatic high spatial frequency
- Attenuate achromatic low spatial frequency

Schutz et al, VisRes, 2009

Background: Summary & Scientific Questions

Summary

- Smooth pursuit velocity is often slower than that of the target, resulting in catch-up saccades
 - However, there are still retinal motion and saccades even when pursuit is very accurate
- Spatio-temporal sensitivity is modulated/shifted by retinal motion resulted from imperfect pursuit
- Smooth pursuit also has non-retinal effect on visual sensitivity:
 - Enhance for color and achromatic high spatial frequency
 - Attenuate achromatic low spatial frequency

Scientific Questions

What are the characteristics of smooth pursuit eye movements?

pursuit component + drift-like component (VS fixation?)
(fixation was 0-velocity "smooth pursuit" (Steinman 1990))

- For perfect pursuit, how does retinal motion (caused by drift-like component) affect visual sensitivity for different spatial frequencies?
 - The more the retinal motion, the higher sensitivity to low SF and lower sensitivity to high SF (This is opposite to non-retinal effects)

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
- Factor Analysis

Stain Storming

Preliminary Experiments & Data: Paradigms

White Noise Target

No Noise | Full Contrast / Contrast @ 90% Correct Rate

Band Noise Target

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
- Factor Analysis

Stain Storming

Natural Noise Target

White Noise Target

Pursuit gain: A016: $g_1 \approx g_{10} < 1$; Bin: $g_1 \approx g_{10} > 1$

Band Noise Target

Pursuit gain: A016: $g_1 < g_{10} \approx 1$; Bin: $g_1 < g_{10} < 1$

No Noise | Full Contrast

Pursuit gain: $g_{10} < g_1 < 1$

A016

A027

Gain (eye velocity / target velocity) Gain (eye velocity / target velocity) Gain (eye velocity / target velocity) **Pursuit Gain Pursuit Gain Pursuit Gain** 1cpd pur -1cpd pur -1cpd pur 10cpd pur -10cpd pur -10cpd pur 0 -500 3000 500 1000 1500 2000 2500 -500 2000 2500 3000 -500 500 1000 1500 500 1000 1500 2000 2500 0 0 Time aligned to ramp onset (ms) Time aligned to ramp onset (ms) Time aligned to ramp onset (ms)

No Noise | Contrast 90%

Pursuit gain: $g_{10} < g_{11} \ll 1$

Bin

Interim Summary

- When there is a high-contrast noise patch, the pursuit gain was very close to 1; Although still significantly smaller than 1 for most conditions
- > Pursuit gain is substantially below 1 when there is no high-contrast noise patch.

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
- Factor Analysis

Stain Storming

Natural Noise Target

All Eye Position

Re-centered Drifts

Eye Position Distribution (**Relative**): Natural Noise Target

▶ Diffused to left ($g_1 < g_{10} < 1$)

Horizontal position (arcmin)

Horizontal position (arcmin)

Horizontal position (arcmin)

Horizontal position (arcmin)

A025, 5°/s, $g_1 < g_{10}$

Natural Noise Target

 g_{10}

Λ

 g_1

 $5^{\circ}/s$,

A049,

Eye Position Distribution (**Relative**): Natural Noise Target

→ Diffused to left ($g_{10} < g_1 < 1$)

Natural Noise Target

 \overline{S}

4

A049,

Eye Position Distribution (**Relative**): Natural Noise Target ➢ Diffused to left

White Noise Target

All Eye Position

A016

Eye Position Distribution (**Relative**): White Noise Target

→ Diffused to left ($g_1 \approx g_{10} < 1$)

White Noise Target

All Eye Position

Bin

Eye Position Distribution (**Relative**): White Noise Target

> Diffused to both left and right ($g_1 \approx g_{10} > 1$)

Band Noise Target

All Eye Position

A016

Eye Position Distribution (**Relative**): Band Noise Target

→ Diffused to left ($g_1 < g_{10} \approx 1$)

Band Noise Target

All Eye Position

Bin

Eye Position Distribution (**Relative**): Band Noise Target

> Diffused to left ($g_1 < g_{10} < 1$)

No Noise | Full Contrast

No Noise | Full Contrast

No Noise | Full Contrast

No Noise | Contrast 90%

A081

Eye Position Distribution (**Relative**): No Noise | Contrast at 90%

No Noise | Contrast 90%

Bin

Eye Position Distribution (**Relative**): No Noise | Contrast at 90% > Diffused to left ($g_{10} < g_1 \ll 1$)

Preliminary Experiments & Data: Eye Pos Dist

Interim Summary

> Eye position (relative to target) distribution diffused to the left in pursuit trials
OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
- Factor Analysis

Stain Storming

Drift Velocity Distribution (**Relative**): Natural Noise Target

Wider in pursuit trials

S

4

A049,

White Noise Target

White Noise Target

Bin

Band Noise Target

Band Noise Target

///

No Noise | Full Contrast

No Noise | Full Contrast

Preliminary Experiments & Data: Drifts

No Noise | Full

Contract

No Noise | Contrast 90%

Preliminary Experiments & Data: Drifts

No Noise | Contrast 90%

Interim Summary

Eye drifting velocity (relative to target) distribution was either more diffused (when pursuit gain slightly below 1, significant or not) or shifted to the left (when pursuit gain substantially below 1) in pursuit trials

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
- Factor Analysis
- Stain Storming

SF	Subject	Statistics	Contrast	Pursuit	Gain	DF	DF Detrend	Total Bias	Drift Speed	nMascs	nSacs	nMacs+nSacs	Drift PSD
		N	369	369	369	369	369	369	363	369	369	369	369
	A025	Coefficient	0.147456	0.700769	-2.62779	0.010746	0.01861	0.068584	0.004986	-0.00856	-0.0864	0.112831	0.147456
		<i>p</i> -value	1.91E-09	0.013623	0.455986	0.001136	0.088073	0.004442	0.479217	0.909186	0.336926	0.314671	1.91E-09
	A 0/10	N	583	583	583	583	583	583	582	583	583	583	583
1 cpd	A049	Coefficient	0.133926	-0.00829	0.038608	-0.00118	-0.02532	-0.02193	-0.00368	0.299463	0.105694	nMacs+nSacs D 369 0 0.112831 0 0.314671 1 583 0 0.279228 0 0.028184 1 899 0 -0.03763 0 0.660928 1 392 0 0.04143 0 313 0 -0.07405 0 0.6688449 7 730 0 -0.02272 0 0.850989 0	0.133926
_	(5/5)	<i>p</i> -value	1.44E-07	0.964732	0.993424	0.088403	0.068313	0.066821	0.789066	0.006265	0.365196		1.44E-07
	A 0/10	N	899	899	899	899	899	899	899	899	899	899	899
	A049	Coefficient	0.148607	0.164403	1.312063	0.002167	0.023264	0.016428	0.017735	0.02073	0.078361	-0.03763	0.148607
	(4/5)	<i>p</i> -value	1.90E-09	0.292612	0.628015	0.030107	0.130111	0.080797	0.031123	0.802825	0.426627	0.660928	1.90E-09
		N	392	392	392	392	392	392	391	392	392	392	392
	A025	Coefficient	0.08143	0.46227	0.778721	-0.00017	0.000826	-0.00664	0.018459	0.050371	0.012136	0.04143	0.08143
		<i>p</i> -value	0.004233	0.06542	0.640916	0.326167	0.632951	0.333433	0.050066	0.696964	0.911813	0.773164	0.004233
	A 0/10	N	313	313	313	313	313	313	308	313	313	313	313
10 cpd	(E°/c)	Coefficient	0.71959	-0.17192	0.832218	0.000397	-0.00113	0.005504	-0.00303	-0.00526	0.054153	-0.07405	0.71959
	(5/5)	<i>p</i> -value	7.66E-11	0.540638	0.867594	0.789369	0.962531	0.714078	0.794328	0.970543	0.72957	0.668449	7.66E-11
	A 0/10	N	730	730	730	730	730	730	729	730	730	730	730
	A0+7	Coefficient	0.691303	0.077027	3.231558	-0.00016	-0.02096	0.003167	-0.00569	-0.05852	-0.04415	-0.02272	0.691303
	(4/3)	<i>p</i> -value	0	0.686797	0.358304	0.920958	0.156467	0.804639	0.629396	0.625055	0.738154	0.850989	0

A025: $g_1 < g_{10} < 1$; A049: $g_{10} < g_1 < 1$; A049(4deg): $g_1 \approx g_{10} \approx 1$

Preliminary Experiments & Data: Factor Analysis

White Noise Target

SF	Subject	Statistics	Contrast	Pursuit	Gain	DF	DF Detrend	Total Bias	Drift Speed	nMascs	nSacs	nMacs+nSacs	Drift PSD
		N	80	80	80	80	80	80	80	80	80	80	80
	A016	Coefficient	1.04E-01	-0.034	2.7787	DFDF DetrendTotal BiasDrift SpeednMascsnSacsnMacs+nS808080808080808080-0.011-0.063-0.055-0.0220.2147-0.4160.66340.23140.16210.43460.44320.4360.2501 5.15E-0 176176176171176176176-0.002-0.073-0.02-0.035-0.245-0.221-0.9354 0.04510.00690.10480.0106 0.14580.19410.32388707070707070700.0028-0.0080.0442-0.006-0.384-0.524-0.26680.27150.83340.22880.83940.14080.25220.352461581581581541581581580.0010.0430.00540.00280.26230.16681.933360.44120.33160.69140.89260.35380.56110.1148	0.6634	-0.01					
1 and		<i>p</i> -value	1.29E-06	0.9576	0.7893	0.2314	0.1621	0.4346	0.4432	0.436	0.2501	5.15E-02	0.6964
1 cpa		N	176	176	176	176	176	176	171	176	176	176	176
	Bin	Coefficient	2.03E-01	-0.383	3.1755	-0.002	-0.073	-0.02	-0.035	-0.245	-0.221	-0.9354	-0.016
		<i>p</i> -value	5.85E-13	0.3604	0.5037	0.0451	0.0069	0.1048	0.0106	0.1458	0.1941	nMacs+nSacs 80 0.6634 5.15E-02 176 -0.9354 0.32388 70 -0.2668 0.35246 158 1.93336 0.1148	0.0408
		N	70	70	70	70	70	70	70	70	70	70	70
	A016	Coefficient	1.45008	-0.486	1.335	0.0028	-0.008	0.0442	-0.006	-0.384	-0.524	-0.2668	0.0584
10 and		<i>p</i> -value	8.53E-06	0.4608	0.8545	0.2715	0.8334	0.2288	0.8394	0.1408	0.2522	0.35246	0.6423
io cpu		N	158	158	158	158	158	158	154	158	158	158	158
	Bin	Coefficient	1.03E-01	0.2774	3.4099	0.001	0.043	0.0054	0.0028	0.2623	0.1668	1.93336	-0.159
		<i>p</i> -value	5.12E-14	0.5358	0.581	0.4412	0.3316	0.6914	0.8926	0.3538	0.5611	NMacs+nSacs 80 0.6634 5.15E-02 176 0.9354 0.32388 70 -0.2668 0.35246 158 1.93336 0.1148	0.0313

Band Noise Target

SF	Subject	Statistics	Contrast	Pursuit	Gain	DF	DF Detrend	Total Bias	Drift Speed	nMascs	nSacs	nMacs+nSacs	Drift PSD
		N	94	94	94	94	94	94	94	94	94	94	94
	A016	Coefficient	2.23E-01	-0.382	7.9707	0.0035	DF DetrendTotal BiasDrift SpeednMascsnSacsnMacs+nSac949494949494940.0395-0.006-0.0320.32530.43130.111740.52360.91150.20930.16230.19480.626461941941881941941940.0096-0.01-0.0060.18260.13751.330090.69660.46330.66820.19580.33530.075248888888888880.03630.04780.01710.235-0.0810.305640.65780.34310.57330.30050.76790.196381941941871941941940.0027-0.007-4E-040.04710.04310.285120.82630.66550.97460.74590.77120.78327	0.11174	0.0097				
1 and		<i>p</i> -value	5.01E-05	0.4811	0.2048	0.5652	0.5236	0.9115	0.2093	0.1623	0.1948	0.62646	0.607
1 cpa		N	194	194	194	194	194	194	188	194	194	194	194
	Bin	Coefficient	2.02E-01	0.0347	-1.583	-0.001	0.0096	-0.01	-0.006	0.1826	0.1375	1.33009	0.0004
		<i>p</i> -value	2.78E-04	0.9181	0.708	0.3145	0.6966	0.4633	0.6682	0.1958	0.3353	nMacs+nSacs940.111740.626461941.330090.07524880.305640.196381940.285120.78327	0.9588
		N	88	88	88	88	88	88	88	88	88	88	88
	A016	Coefficient	0.37568	0.3094	4.2115	0.0062	0.0363	0.0478	0.0171	0.235	-0.081	0.30564	-0.064
10 and		<i>p</i> -value	4.76E-04	0.5987	0.5257	0.3261	0.6578	0.3431	0.5733	0.3005	0.7679	0.19638	0.5207
10 cpu		N	194	194	194	194	194	194	187	194	194	194	194
	Bin	Coefficient	1.370409	-0.213	-4.54	-7E-04	0.0027	-0.007	-4E-04	0.0471	0.0431	0.28512	-0.006
		<i>p</i> -value	6.00E-09	0.5494	0.3878	0.7047	0.8263	0.6655	0.9746	0.7459	0.7712	nMacs+nSacs 94 0.11174 0.62646 194 1.33009 0.07524 88 0.30564 0.19638 194 0.28512 0.78327	0.934

Preliminary Experiments & Data: Factor Analysis

No Noise | Full Contrast

SF	Subject	Statistics	Pursuit	Gain	DF	DF Detrend	Total Bias	Drift Speed	nMascs	nSacs	nMacs+nSacs	Drift PSD
		N	286	286	286	286	286	285	286	286	286	286
	A056	Coefficient	-0.18625	-3.38094	0.001874	0.013879	0.006803	-0.01534	0.13271	0.276255	-0.08804	0.008914
		<i>p</i> -value	0.821566	0.662174	0.501966	0.573357	0.814327	0.588448	0.606794	0.373344	0.763321	0.645561
		N	227	227	227	227	227	227	227	227	227	227
1 cpd	A016	Coefficient	-97.9313	4.506059	0.010387	-0.0286	0.128339	0.030109	0.19209	-0.43226	0.635675	0.038693
_		<i>p</i> -value	0.21074	0.793611	0.752094	0.563231	0.563436	0.792693	0.7659	0.505678	0.378826	0.634492
	A027	N	46	46	46	46	46	45	46	46	46	45
		Coefficient	1.78E-13	7.73E-13	-2.58E-16	-4.12E-16	4.40E-15	-5.86E-15	1.69E-14	-5.87E-14	-1.95E-14	-6.34E-15
		<i>p</i> -value	1	1	1	1	1	1	1	1	1	1
		N	315	315	315	315	315	314	315	315	315	315
	A056	Coefficient	0.35667	-2.41735	0.001713	0.010709	0.00213	0.012061	-0.1912	-0.53494	0.206409	-0.07941
		<i>p</i> -value	0.767998	0.490907	0.216833	0.699757	0.901447	0.581051	0.579664	0.169789	0.584649	0.499248
		N	256	256	256	256	256	251	256	256	256	256
10 cpd	A016	Coefficient	-97.8476	4.812093	-0.00029	0.042122	-0.01349	-0.03895	-0.69752	52.08134	-1.49262	0.299153
_		<i>p</i> -value	0.200251	0.300748	0.720318	0.522191	0.461859	0.154192	0.221961	0.149656	0.042289	0.251679
		N	60	60	60	60	60	59	60	60	60	60
	A027	Coefficient	-0.44629	1.911199	-0.00011	0.003886	0.00065	-0.01133	0.09646	54.23402	0.067253	0.070655
		<i>p</i> -value	0.7166	0.387512	0.738195	0.696042	0.956263	0.459441	0.59426	0.166108	0.740554	0.597353

 $g_{10} < g_1 < 1$

Preliminary Experiments & Data: Factor Analysis

///

No Noise | Contrast 90%

SF	Subject	Statistics	Pursuit	Gain	DF	DF Detrend	Total Bias	Drift Speed	nMascs	nSacs	nMacs+nSacs	Drift PSD
		N	169	169	169	169	169	158	169	169	169	169
SFSubject1 cpdBinA08110 cpdBinA081	Coefficient	2.51568	-3.90727	0.00044	0.128705	0.018132	0.02308	0.12975	-0.19259	0.681473	0.01865	
1 and		<i>p</i> -value	1.08E-09	7.22E-09	7.21E-06	1.33E-07	2.33E-07	8.28E-08	0.17800	0.01266	1.08E-07	3.57E-09
1 cpa		N	124	124	124	124	124	114	124	124	124	124
	A081	Coefficient	1.65122	-1.94843	0.00021	0.021674	0.010226	0.00744	-0.0893	-0.41985	-0.06891	0.01412
		<i>p</i> -value	0.00061	0.001345	0.00159	0.22038	0.000607	0.01824	0.54416	0.479943	0.652479	0.000251
		N	171	171	171	171	171	154	171	171	171	171
	Bin	Coefficient	-100.4	16.84288	-0.0005	0.000408	-0.01939	-0.0095	-0.1795	0.079058	-0.52989	1.446257
10 and		<i>p</i> -value	0.00059	3.87E-06	1.47E-04	0.969623	0.000411	0.11401	0.14826	0.645508	0.00919	8.55E-06
10 cpu		N	118	118	118	118	118	105	118	118	118	118
	A081	Coefficient	-100.89	6.795836	-0.0002	-0.00266	-0.00988	-0.0059	-0.3516	-0.38852	-0.34407	2.029419
		<i>p</i> -value	0.00019	2.41E-05	0.0024	0.647569	0.009638	0.36231	0.09324	0.612202	nMacs+nSacs 169 0.681473 1.08E-07 124 -0.06891 0.652479 171 -0.52989 0.00919 118 -0.34407 0.110012	1.57E-05

Interim Summary

- When there is a noise patch, the weighted total temporal power only shows positive effect on performance with the natural noise
- > No other factors show consistent / significant effect
 - > Kind of surprising, as DF and temporal power are always higher for pursuit
 - > Probably due to:
 - > Too small variance in predictors, especially within fixation (or pursuit) trials
 - > Power of noise patch is also modulated (but band noise should work?)
- For the condition with no noise patch and contrast @ 90%, lots of factors affect performance
 - > Should be due to that these predictors are correlated with each other
 - Such effect is not so novel considering the literature

Interim Summary

- > Drift diffusion coefficient was always higher in pursuit trials
- No consistent difference in drift diffusion coefficient between 1 cpd and 10 cpd in pursuit trials; except for the Band Noise Background condition, which could be explained by the difference in pursuit gain
- > The lower the pursuit gain, the more the catch-up saccades

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist
- Factor Analysis

Stain Storming

Brain Storming

For perfect pursuit, how does retinal motion (caused by drift-like component) affect visual sensitivity for different spatial frequencies?

Expectation:

• The more the retinal motion, the higher sensitivity to low SF and lower sensitivity to high SF (This is opposite to non-retinal effects, therefore might difficult to observe)

Experiment:

- Circle/target + Gabor/stimulus (noise background causes problem in terms of SNR; band noise causes problem in control of pursuit gain)
- Seems pursuit always has higher DF, we could simply compare pursuit and fixation
- Orientation discrimination: **stabilize** the Gabor, hopefully the motion is not obvious
- Detection task: stabilize vertically the pursuit target and a horizontally oriented Gabor

Stain Storming

What are the characteristics of smooth pursuit eye movements?
pursuit component + drift-like component

Evidence:

- Fixation was 0-velocity "smooth pursuit" (Steinman 1990); more careful literature review was required to confirm this question was not already investigated
- Drift velocity distribution in pursuit trials looked very similar to that in fixation trials, but
 - \circ More diffused when pursuit gain slightly below 1, significant or not
 - The whole distribution (relative to target) could shift if pursuit gain substantially below 1

Other analysis methods?

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions
- Preliminary Experiments & Data
 - Characterize Pursuit EMs: pursuit gain, pos dist, vel dist, drift segment dist
 - Factor Analysis
- Stain Storming
- Supplementary

Brain Storming

- Is pursuit gain / catch-up saccades rate modulated / actively controlled to enhance sensitivity depending on spatial frequency?
 - **Prediction**: higher SF => faster pursuit & less saccades; Vice versa.
 - Difficulties:
 - Pursuit gain & catch-up saccade rate are strongly modulated by motion estimation
 - Other factors related to SF already investigated?
 - Pursuit gain & catch-up saccades also change retinal location, any confounding issue?
 - Experiment:
 - Control the contrast for equal motion estimation across SFs
 - Note that the perceptual effect of pursuit gain is less novel, considering the literature available.
- > Difference in contrast sensitivity in terms of orientation discrimination and motion detection
 - We found difference in pursuit gain even when same contrast thresholds measured in orientation discrimination
 - Check the literature whether already investigated

Brain Storming

- > For perfect pursuit, is retinal motion actively controlled for higher sensitivity to target SF?
 - If indeed it was the case, then why we never saw such phenomenon in other conditions, e.g., fixation? (Duje asked a similar question)
 - > How to differentiate from that retinal motion is merely affected by feature size? (Duje)
 - Oculomotor is spatially guided by visual input (literature?)
 - For high-acuity tasks, e.g., Snellen, it is reasonable to keep the stimulus in the PRL (the right term?) as accurate as possible, which results in smaller DF
 - Related to last point, according to Intoy & Rucci, 2020, and Intoy et. al., VSS 2020, drift is more likely to be modulated by task demands and critical feature size, instead of spatial frequency band. But how to test this?
 - Discriminate orientation of fixed-spatial-frequency grating of different sizes/cycles
 - T/L discrimination with fixed stroke width but varied size

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Drift Analysis: pursuit gain, segment dist, pos dist, vel dist
- Diffusion Coefficient & M/Saccade Rate

Stain Storming

Natural Noise Target

- ➤ df (diffusion coefficient):
 - Pursuit > Fixation
 - Inconsistent between 1 cpd and 10 cpd; consistent with pursuit gain (A025 and A049)
- ➤ M/Saccades:
 - More catch-up saccades when df higher

Natural Noise Target

Natural Noise Background (A025: $g_1 < g_{10} < 1$; A049: $1 > g_1 > g_{10}$; A049(4deg): $g_1 \approx g_{10} \approx 1$)

- ➤ df (diffusion coefficient):
 - Pursuit > Fixation
 - Inconsistent between 1 cpd and 10 cpd; consistent with pursuit gain (A025 and A049)

➤ M/Saccades:

More catch-up saccades when df higher

White Noise Target

- White Noise Background (A016: $g_1 \approx g_{10} < 1$; Bin: $g_1 \approx g_{10} > 1$)
- ➤ df (diffusion coefficient):
 - Pursuit > Fixation
 - Inconsistent between 1 cpd and 10 cpd
- > M/Saccades:
 - More saccades in pursuit trials

Band Noise Target

- Band Noise Background (A016: $g_1 < g_{10} \approx 1$; Bin: $g_1 < g_{10} < 1$)
- ➤ df (diffusion coefficient):
 - Pursuit > Fixation
 - Difference between 1 cpd and 10 cpd is consistent with difference in pursuit gain
- ➤ M/Saccades
 - No consistent result

No Noise Full

Contract

No Noise Background | Full Contrast ($g_{10} < g_1 < 1$)

- ➤ df (diffusion coefficient):
 - Pursuit > Fixation
- ➤ M/Saccades:
 - Lots of catch-up saccades in pursuit trials

No Noise | Contrast 90%

No Noise Background | Contrast at 90% ($g_{10} < g_1 \ll 1$)

- ➤ df (diffusion coefficient):
 - Pursuit > Fixation
- ➤ M/Saccades:
 - Lots of catch-up saccades in pursuit trials

OUTLINE

Background

- Eye Movement Patterns During Smooth Pursuit
- Visual Sensitivity during Smooth Pursuit
 - Retinal Effect
 - Non-retinal Effect
- Summary & Scientific Questions

Preliminary Experiments & Data

- Characterize Pursuit EMs: pursuit gain, pos dist, vel dist, drift segment dist
- Factor Analysis
- Brain Storming

Natural Noise Target

Segment Direction Distribution: Natural Noise Target > More towards left ($\pm 180^\circ$) in pursuit trails (g < 1 for A025, A049 5°/s)

A025, 5°/*s*, $g_1 < g_{10}$ A049, 4°/s A049, 5°/s, $g_1 > g_{10}$ **Drift Segment Direction Drift Segment Direction Drift Segment Direction** 0.015 r 0.015 r 0.015 1cpd fix 1cpd fix 1cpd fix Probability density Probability density Probability density 10cpd fix 10cpd fix 10cpd fix 1cpd pur 1cpd pur 🗕 1 cpd pur 0.01 0.01 0.01 -10cpd pur 10cpd pur 10cpd pur 0.005 0.005 0.005 0 -180 -90 -180 -180 -90 -90 90 180 90 180 0 90 180 Drift direction (deg) Drift direction (deg) Drift direction (deg)

Although pursuit gain not significantly different from 1

White Noise Target

Segment Direction Distribution: White Noise Target

- → A016: more towards left (±180°) in pursuit trails ($g_1 \approx g_{10} < 1$)
- Bin: more towards right (20°) in pursuit trials ($g_1 \approx g_{10} > 1$)
 A016
 Bin

Band Noise Target

Segment Direction Distribution: Band Noise Target

> More towards left (±180°) in pursuit trails (A016: $g_1 < g_{10} \approx 1$; Bin: $g_1 < g_{10} < 1$)

No Noise | Full Contrast

Segment Direction Distribution: No Noise | Full Contrast

→ More towards left (±180°) in pursuit trails ($g_{10} < g_1 < 1$)

No Noise | Contrast 90%

Segment Direction Distribution: No Noise | Contrast at 90%

→ More towards left (±180°) in pursuit trails ($g_{10} < g_1 \ll 1$)

✤ Supplementary

Example Trials from Bin

Fixation Pursuit (Relative to Target) iTrial: 44 | sf: 1.0 | type: c iTrial: 17 | sf: 1.0 | type: c 2 2 1.5 1.5 -Fp On -Fp On 1 1 Eye position (degrees) Target On Target On Eye position (degrees) 0 2.0 2.0 Motion On Motion On Mask On Mask On \sim Response Response Ramp Ramp Plateau Plateau Blink Blink NoTrack NoTrack -Eye X -Target -Eye X -Eye Y -Eye Y -Saccade -1 -1 Microsaccade Microsaccade -1.5 -1.5 -2 ^L0 -2 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 0 Time (ms) Time (ms)