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0.044 waves RMS
0.265 waves PV

680 nm channel
0.043 waves RMS
0.250 waves PV

840 nm channel
0.045 waves RMS
0.289 waves PV

940 nm channel
0.048 waves RMS
0.266 waves PV
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Specifications

The AOSLO has been successfully implemented and can achieve cellular resolution in 
the central fovea. Using an active alignment procedure enabled the optical system to 
achieve diffraction-limited performance, as demonstrated by wavefront measurements 
and resolution target images. Real-time distortion correction was also implemented. 

Next steps:
1. Finalize the image processing pipeline and montaging procedures
2. Run semi-automated cone detection algorithms on these images
3. Compute the cone density and determine the preferred retinal locus of fixation
4. Collect more human retinal images 

Recent research indicates that high-acuity vision is a sensorimotor process based 
on the interaction between foveal stimulation and eye movements [1-2].

Advances in adaptive optics scanning laser ophthalmoscopes (AOSLOs) now 
enable individual human cones in the central fovea to be resolved, where the cones 
are smallest and most densely packed [3-7].

Simultaneous examination of both foveal anatomy and fixational eye movements 
provides a powerful tool for advancing understanding of the mechanisms that 
underlie high-acuity vision.
 
This AOSLO has been optimized for imaging the human central fovea in vivo.

•

•

•

•

Once the system was fully aligned, the Shack-Hartmann wavefront sensor was 
placed at the eye pupil plane and the wavefront was measured for each channel.

The RMS wavefront error is less than 0.05 waves for all channels, which is 
diffraction-limited by the Maréchal criterion (< 0.07 waves). This demonstrates that 
the optical system is well aligned and optimized for resolving human foveal cones.

•

•

Achieving cellular resolution in the central fovea requires a well-aligned and 
optimized imaging system due to the resolution limit imposed by the human eye. 

For coarse optical alignment, a laser-cut stencil was used to transfer the coordinates 
of each component onto the optical table with +/- 1 mm position uncertainty.

An active alignment strategy was employed to optimize the alignment of each relay 
telescope in the AOSLO, resulting in a diffraction-limited imaging system.

A portable Shack-Hartmann wavefront sensor was positioned at each intermediate 
pupil plane, and the spacing between each pair of mirrors was adjusted until each 
relay telescope had less than 0.01 Diopters of residual defocus. 

•

•

•

•

Shack-Hartmann wavefront sensor
placed at these intermediate pupil planes 
during the active alignment procedure

Horizontal scanning is achieved with 
a resonant scanner that follows a 
sinusoidal motion profile.

This sinusoidal motion causes the 
image to be stretched at the edges 
and compressed in the center.

This distortion is corrected by digitally 
resampling the image in real time.

•

•

•
A resolution target was 
imaged at the back focal 
plane of a model eye lens.

Bars are resolved up to 
(and slightly beyond) the 
Rayleigh resolution limit.

•

•

0.5 degrees

0.5 degrees

Montaged image spanning 2.0° x 1.6° for subject 1

Montaged image spanning 1.8° x 1.8° for subject 2
Central 0.5 degree region with highest 
cone density, enlarged by a factor of 3.

Subject 1
 • right eye
 • SR: -2.0 D
 • 7.2 mm pupil 
   diameter
 • 840 nm imaging light
 • 9 fixation points
 • 1° x 1° scanning
    field of view

Subject 2
 • right eye
 • SR: -3.5 D
 • 6.5 mm pupil 
   diameter
 • 840 nm imaging light
 • 9 fixation points
 • 1° x 1° scanning
    field of view

Images collected with the system demonstrate cellular-resolved performance, with 
the smallest foveal cones being resolved in two human subjects.

All imaging was conducted with the 840 nm channel while subjects fixated on a small  
marker (4.7 x 4.7 arcmin) presented with the 680 nm channel.

•

•
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183 x 183 pixels (0.36° x 0.36°), 840 nm light

wavelength

543 nm

680 nm

840 nm

horizontal vertical

161 144

203 144

144 161

Maximum resolved spatial frequency
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The optical design for the 
system is based on work 
by Dubra and Sulai [3] 
and Mozaffari et al. [5]

0.5 degrees
(0.44 mm)


