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1 Introduction

Here I test the quality of the QRad Welch Single Trace algorithm on randomly generated Brownian motion
traces. This came up after theoretical and QRad power spectra for the Eye Chart Experiment did not
match well.
Power spectra are estimated for given eye traces x(t), y(t) using Welch’s method on the signal

o 2mi(Ea cos(O)z (1) +£, sin(0)y (1))

where &, and §, are spatial frequencies, ¢ is the angle in the spectrum which is averaged over to collapse
the spatial dimensions.
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2 Brownian Motion notes

The probability of gaze location varies with time as

or equivalently, when 7? = x? + y? (see appendix for derivation)

9 _ DO ( Jq
ot ror T@T

Comparisons are made with the theoretical power spectrum based on Brownian motion drifts:

1 % 4 92
Q(xv Y, t7 DR) - m exp <_ 4Dt
2Dg(&; + &)
Qs [ DR) = 53 705 — e 73
Am?DR(E2+ E2) + f
2DRE?
42 D34 + f2

Note that this is often presented in angular frequencies (k = 27¢,w = 27 f) instead of ordinary frequencies
(& 1)

2Dk?

Ok D) = paga s o2

2.1 Estimating the diffusion constant

For a 2-D isotropic, random walk, we know that

where (2%) = (y?) = 2Dt. Therefore,

2.2 Limits of Power

Note that when D = 0 there is 0 power at f # 0. When Dr = 0 and f = 0, there is infinite power at all
spatial frequencies.

Furthermore, note that when integrating over temporal frequencies to a limit (ideal LPF) the total temporal
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power is constant and invariant to spatial frequency and diffusion constant.

“tesipyar = Lot (L))
/0' Q(gvfa R) f_ |:; an (27TDR€2):|0

1, L :
= tan (QWDRSQ) (log-log linear)
L 1
lim / Q& f; Dr)df = = (constant)
L—oo /g 2

When integrating over a temporal frequency range (ideal bandpass):

1 L2

1 _ Ly _ Ly
; Dp)df = ———— (tan™" —tan~! (| ——
L1 ), Q&SPed =T (an <27TDR52> an (27TD3§2>)
The shape of this function:
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Figure 1: example shape of power vs spatial frequency from ideal bandpass

2.3 Changing D

Note that for two different retinal diffusion coefficients Dy = aD;, the resulting spatiotemporal power
spectra are spatial frequency-scaled versions of one another:

Q& f; D2) = Q(&, f;aDn)
B 2D, a&?
- 47T2D§a2§4 i f2
_ 2Dy(Va§)?
A DE(V/at) + 2
= Q(\/Eéa E Dl)
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This holds for each individual temporal frequency (see Fig[2]) and even after temporal filtering:

oo

S(&Ds) = ; H(f)Q(E, f; D2) df

= | H()QWaE, f; D) df

0

= S(\/af; Dl)

where H(f) is the frequency response of some low or bandpass filter. Therefore, the maximum value of
S(&; Do) and S(&; Dy) = S(v/a&; Dy) are the same, though the peaks occur at different spatial frequencies
for a # 1.
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Figure 2: Power in different temporal frequency bands for two diffusion coefficients. Note that changing
the diffusion coefficient scales the x-axis so that the the peak values is the same regardless of the diffusion
coefficient.
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Figure 3: Power in different spatial frequency bands for two diffusion coefficients.

2.4 Peak Values

Here we compute the spatial frequency at which peak power occurs for a given (f) and show that the value
of this peak does not depend on the diffusion constant Dp.

Given Dp and f:

0Q _, _ (2Drg)(2*n*DRg" + f?) — (2Dr€*)(2'n* DiE’)
23 (2272D%E4 + f2)2
(2DgE)(—2°m*DRET +2f?)
= (22m2D%E4 + f2)2
=2DrE=0—¢ =0 (minimum)

Therefore, we know that power peaks at the spatial frequency £ = +/f/27D as shown in Figure .

Note that when Dg = 0, the power peaks at an infinite spatial frequency so that the power in any
temporal frequency band cannot vary and must remain constant at 0 - except at f = 0 where power is
infinite and constant
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Figure 4: Power in different frequency bands for two diffusion coefficients. Note that changing the diffusion
coefficient scales the x-axis so that the the peak values is the same regardless of the diffusion coefficient.
The peak location can be predicted as described above.

Given the spatial frequency & at which the peak occurs, we can compute the value of power at this
point:

f
2
4m2 Dyt + f*
1
2r f

Q(§,7f7 DR) =

Therefore, the peak power in each temporal frequency band is determined only by the temporal frequency
(see Figure [5)- and is in fact proportional to the inverse of the temporal frequency.
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Figure 5: Power for different diffusion constants in two temporal frequency bands. Changing the diffusion
constant varies the location of the peak, but the peak value is invariant to the diffusion coefficient.

In log-log-scale, the ”stretching” of the spatial frequency axis may appear to be more like a shift. The
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2.5 Peak after applying temporal filter
If a temporal filter H(f) is applied, then the power spectrum peaks when: (analagous to above)

22D 2271'2D2 4 2\ 2D 2 247T2D2 3
[ (2DRE)(—23 77 D%EN + 217)
_/ (227T2D%%§4 + f2)2
=2Dp =0— ¢ =0 (minimum)

H(f)df

2
sowiet [ 2 [ Prn g oo e = L LEDE

Letting [ H(f)df = 1, then the integral in the numerator is the second moment of H(f), ho = [ f2H(f)df
Then, the peak value is

Vha
R27TDR

4 2D%22 2D2 +f2

-/ ﬂ(h\z/?ﬁ)m‘f i

Q& f; Dr) =

3 Appendix

3.1 Diffusion Equation & Solutions

A 2-dimensional random walk follows the diffusion equation

where D is the diffusion constant on each independent dimension. We can also write this as a function of

r? :x2+y2:
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With the initial condition that at ¢ = 0 the particle is concentrated at 0, the diffusion equation is satisfied
by
2 + y?
Q(il?,y,tvD)—meXp <— 1Dt )
2
q(r,t; D) = — exp (—4—Dt)

Here we confirm that this solves the diffusion equation:
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In three dimensions, the diffusion equation becomes:

dq 0%
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4 WINDOW TYPE, SMOOTHING
4 Window Type, Smoothing
Parameters:
sampling frequency = 1000 Hz
10 trials of 10 seconds each
window length = 512 (square or hanning)
number of angles for radial average: 30
diffusion coefficient D = 325.89 arcmin?/s
mean temporal power, 2 < f < Inf
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Figure 7: Mean temporal power up to Nyquist
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5 Comparison of Different Sampling Frequencies

50 trials of 2 or 3s lengths at three different sampling frequencies (1000, 10000, 100000 Hz)
D = 300 arcmin?/s plus some noise so that the diffusion varied a bit from trial to trial.

mean temporal power, 2 < f < 500
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Figure 8: TOP: Mean of power up to 500Hz. BOTTOM: Mean of power up to Nyquist. Note that the
saturation region extends as the sampling frequency increases.
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Figure 9: Slices of the power spectra at single temporal frequencies.
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6 Compairson of Different Window Sizes

2 mean temporal power, 2 < f < 500
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Figure 11: Slices of the power spectra at single temporal frequencies.
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7 Too Short Windows
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Figure 13: Slices of the power spectra at single temporal frequencies.
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