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1 INTRODUCTION 3

TO-DO:

1. Look at post-saccadic dynamics of H over drift traces

2. Is smoothed BM a better model of real drifts than unsmoothed BM?

3. Can we predict kc based on D and H? Can we tell the difference between changing one parameter
or the other? Include graphs of H vs D by task

4. Bug in processing for one of the Fixation5 data set? The fixation period was only 1 second but the
traces extend up to 4 seconds? Fixed Jan 19, 2020

5. Include example traces with similar D and different H. Added Jan 17, 2020

1 Introduction

The purpose of this report is to document knowledge about ocular drift, its properties, and potential
models which capture its characteristics (i.e. Janis’s journal about drift in general). This is an analysis of
ocular drift collected from several studies in the lab. The major questions are:

1. How Brownian is ocular drift? What other models may describe drift? Several studies
have shown that drift (or more generally fixation) resemble a random walk in that that the variance
of displacement grows linearly in time. We do see deviations from this model in individuals but have
not thoroughly investigated this question. Engbert and Kleigl (2012?) used a more general model
(fractional Brownian motion) to fit the variance of displacement, and found that fixation is persistent
(drift away) on a short time scale and anti-persistent (drift centrally) on a long time scale.

2. How do the characteristics of ocular drift vary with task? The lab has recorded eye movement
traces during a variety of tasks that can be compared. Here we compared their Brownian properties.

3. Do the characteristics of ocular drift vary within an individual? We have several subjects
who participated in more than one study whose data can be individually compared. (TO-DO)

1.1 General Drift Characteristics

1.2 Visual consequences of drift

2 Models of Drift

2.1 Overview

Here we compare several random walk models of ocular drift characterized by how the variance of dis-
placement of the line of sight varies in time. Note that this section refers to data from the drift-database
which are described in detail in Chapter 3.

• Brownian motion (linear): 〈r2〉 = 4DBM t
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• fractional Brownian motion (power)1: 〈r2〉 = 4DfBM t
H

• Ornstein Uhlenbeck process (exponential): 〈r2〉 = 2DOUP

θ
(1− exp(−2θt))

Note that Brownian motion (BM) is a specific case of fractional Brownian motion (fBM) where the Hurst
index (H) is 1. 2. Engbert and Kliegl use the notation that H > 1 is a persistent fixation (accelerating),
and H < 1 is an anti-persistent fixation. The Ornstein Uhlenbeck process is a random walk in which the
variance of displacement asymptotes at a value defined the ratio of its two parameters (D/θ), where θ is
inversely related to how quickly the asymptote is reached.

Since BM is a specific case of fBM, these two models can be compared by a likelihood ratio test (LLR; see
Section 5.1.3). More generally, the models here are compared by the root mean squared errors or goodness
of fit values (R2).

Note that when θ or t are very small in the OUP model, the variance of displacement can be approx-
imated as linear (for small x, exp(x) = 1 + x). See Appendix ??.

2.2 Brownian Motion

2.2.1 Definition

The probability of gaze location varies with time as

∂q

∂t
= D

∂2q

∂x2
+D

∂2q

∂y2

or equivalently, when r2 = x2 + y2 (see Appendix section 5.1.1 for derivation).

∂q

∂t
=
D

r

∂

∂r

(
r
∂q

∂r

)
The solution to which is q(x, y, t;D). Comparisons are made with the theoretical power spectrum based
on Brownian motion drifts,Q(ξ, f ;D) - derivation in 5.1.2.

q(x, y, t;D) =
1

4πDt
exp

(
−x

2 + y2

4Dt

)
Q(ξx, ξy, f ;D) =

2D(ξ2
x + ξ2

y)

4π2D2(ξ2
x + ξ2

y) + f 2

Q(ξ, f ;D) =
2Dξ2

4π2D2ξ4 + f 2

Note that this is often presented in angular frequencies (k = 2πξ, ω = 2πf) instead of ordinary frequencies
(ξ, f):

Q(k, ω;D) =
2Dk2

D2k4 + ω2

1Note that this is not the standard definition of fBM
2implemented with matlab fit with type exp1 and log(t) as input. JI: 2/18/2019 concerned this isn’t working because

some of the individual LLR test statistics came up negative which shouldn’t be possible
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2.2.2 Estimating the diffusion constant

For a 2-D isotropic, random walk, we know that

〈r2〉 = 〈x2〉+ 〈y2〉

where 〈x2〉 = 〈y2〉 = 2Dt. Therefore,

〈r2〉 = 4Dt⇒ D =
〈r2〉
4t

2.2.3 Properties

Limits of Power

Note that when D = 0 there is 0 power at f 6= 0. When D = 0 and f = 0, there is infinite power
at all spatial frequencies.

Furthermore, note that when integrating over temporal frequencies to a limit (ideal LPF) the total temporal
power is constant and invariant to spatial frequency and diffusion constant.∫ L

0

Q(ξ, f ;D) df =

[
1

π
tan−1

(
f

2πDξ2

)]L
0

=
1

π
tan−1

(
L

2πDξ2

)
(log-log linear)

lim
L→∞

∫ L

0

Q(ξ, f ;D) df =
1

2
(constant)

When integrating over a temporal frequency range (ideal bandpass):

1

L2 − L1

∫ L2

L1

Q(ξ, f ;D) df =
1

π(L2 − L1)

(
tan−1

(
L2

2πDξ2

)
− tan−1

(
L1

2πDξ2

))
The shape of this function:
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Figure 1: example shape of power vs spatial frequency from ideal bandpass

Impact of D on PSD

Note that for two different retinal diffusion coefficients D2 = aD1, the resulting spatiotemporal power
spectra are spatial frequency-scaled versions of one another:

Q(ξ, f ;D2) = Q(ξ, f ; aD1)

=
2D1aξ

2

4π2D2
aa

2ξ4 + f 2

=
2D1(

√
aξ)2

4π2D2
a(
√
aξ)4 + f 2

= Q(
√
aξ, f ;D1)

This holds for each individual temporal frequency (see Fig 2) and even after temporal filtering:

S(ξ;D2) =

∫ ∞
0

H(f)Q(ξ, f ;D2) df

=

∫ ∞
0

H(f)Q(
√
aξ, f ;D1) df

= S(
√
aξ;D1)

where H(f) is the frequency response of some low or bandpass filter. Therefore, the maximum value of
S(ξ;D2) and S(ξ;D1) = S(

√
aξ;D1) are the same, though the peaks occur at different spatial frequencies

for a 6= 1.
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Figure 2: Power in different temporal frequency bands for two diffusion coefficients. Note that changing
the diffusion coefficient scales the x-axis so that the the peak values is the same regardless of the diffusion
coefficient.

Figure 3: Power in different spatial frequency bands for two diffusion coefficients.

Critical Frequency

Here we compute the spatial frequency at which peak power occurs for a given (f) and show that the
value of this peak does not depend on the diffusion constant D.
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Given DR and f :

∂Q

∂ξ
= 0 =

(22Dξ)(22π2D2ξ4 + f 2)− (2Dξ2)(24π2D2ξ3)

(22π2D2ξ4 + f 2)2

=
(2Dξ)(−23π2D2ξ4 + 2f 2)

(22π2D2ξ4 + f 2)2

⇒2Dξ = 0→ ξ = 0 (minimum)

⇒23π2D2ξ′4 + 2f 2 = 0→ ξ′2 =
f

2πD

Therefore, we know that power peaks at the spatial frequency ξ′ =
√
f/2πD as shown in Figure 4.

Note that when D = 0, the power peaks at an infinite spatial frequency so that the power in any temporal
frequency band cannot vary and must remain constant at 0 - except at f = 0 where power is infinite and
constant

Figure 4: Power in different frequency bands for two diffusion coefficients. Note that changing the diffusion
coefficient scales the x-axis so that the the peak values is the same regardless of the diffusion coefficient.
The peak location can be predicted as described above.

Given the spatial frequency ξ′ at which the peak occurs, we can compute the value of power at this
point:

Q(ξ′, f ;DR) =
2D f

2πD

4π2D2 f2

22π2D2 + f 2

=
1

2πf
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Therefore, the peak power in each temporal frequency band is determined only by the temporal frequency
(see Figure 5)- and is in fact proportional to the inverse of the temporal frequency.

Figure 5: Power for different diffusion constants in two temporal frequency bands. Changing the diffusion
constant varies the location of the peak, but the peak value is invariant to the diffusion coefficient.

In log-log-scale, the ”stretching” of the spatial frequency axis may appear to be more like a shift. The
stretching is more evident when axes are shown in linear scales as shown in Figure 6.

Figure 6: Same as 5 except in linear scale to show stretching of spatial frequency better.
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If a temporal filter H(f) is applied, then the power spectrum peaks when: (analagous to above)∫
H(f)

∂Q

∂ξ
df = 0 =

∫
(22Dξ)(22π2D2ξ4 + f 2)− (2Dξ2)(24π2D2ξ3)

(22π2D2ξ4 + f 2)2
H(f) df

=

∫
(2Dξ)(−23π2D2ξ4 + 2f 2)

(22π2D2ξ4 + f 2)2
H(f) df

⇒2Dξ = 0→ ξ = 0 (minimum)

⇒23π2D2ξ′4
∫
H(f) df + 2

∫
f 2H(f) df = 0→ ξ′4 =

∫
f 2H(f) df

22π2D2
∫
H(f) df

Letting
∫
H(f) df = 1, then the integral in the numerator is the second moment of H(f), h2 =

∫
f 2H(f) df .

Then, the peak value is

Q(ξ′, f ;D) =
2D

√
h2

2πD

4π2D2 h2
22π2D2 + f 2

=

∫ √
h2

π(h2 + f 2)
H(f) df

2.2.4 Empirical Observations

Figure 7: Diffusion constants estimated for each individual and displayed by task on short (left) and long
(right) time scales. Individual data are shown by black circles. ANOVA comparison of these values are
presented in appendix section 5.3.2
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Figure 8: PSD of real drifts (solid curves) and best BM fit (dashed)from Fixation database. LEFT: Slices
through a few spatial frequencies. RIGHT: Slices through a few temporal frequencies. BOTTOM: total
temporal power between 4 and 40Hz. Sampling rate 1000Hz; nfft = 256. 50ms was removed from each of
the start and end of the traces. Note that power peaks, drops, then seems to level out starting around 50
cpd where power at all temporal frequencies seem to converge. See PS QRad.m in DriftCompare folder
(Bill.mat).



2 MODELS OF DRIFT 12

Figure 9: PSD of real drifts (solid curves) and best BM fit (dashed)from Fixation database. LEFT: Slices
through a few spatial frequencies. RIGHT: Slices through a few temporal frequencies. BOTTOM: total
temporal power between 4 and 40Hz. Sampling rate 1000Hz; nfft = 256. 50ms was removed from each of
the start and end of the traces. Note that power peaks, drops, then seems to level out starting around 50
cpd where power at all temporal frequencies seem to converge. See PS QRad.m in DriftCompare folder
(David.mat).
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2.3 fractional Brownian motion

2.3.1 Simulated traces

fractional Brownian motion is a generalization of brownian motion in which the variance of displacement
can vary according to tH instead of just-linearly. Here is an example of how varying H affects the random
walks:

Figure 10: Simulated fBM traces. Note that the H = 2 simulation is essentially motion with a constant
velocity and direction, though it could randomly also go in the other direction. Using code from mathworks
file exchange by Botev - referencing Kroese & Botev (2015) - Spatial Process Simulation.

2.3.2 Definition

The probability of gaze displacement over time with diffusion D is modeled

q(x, y, t;D) =
1

σ2
t π

exp

[
−x

2 + y2

σ2
t

]
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where σ2
t = 4D|t|H . The Fourier transform of this in spatial domain is

Fx,y{q}(kx, ky, t;D) = exp
[
−σ2

t π
2(k2

x + k2
y)
]

= exp
[
−4D|t|Hπ2(k2

x + k2
y)
]

Let k2 = k2
x + k2

y, and define q̃ as the partial Fourier transform:

q̃(k, t;D) = exp
[
−4D|t|Hπ2k2

]
Consider three cases of H when transforming this into the temporal frequency domain (Ft{q̃(k, t;D)}):

1. H = 0
In this case, the variance of displacement is constant in time so all power is contained at f = 0.

Q(k, f ;D) = Ft{exp
[
−4Dπ2k2

]
}

= exp
[
−4Dπ2k2

]
δ(f)

2. H = 1
This case is Brownian motion, so the power as shown previously is

Q(k, f ;D) =
2Dk2

4D2π2k4 + f 2

3. H = 2
In this case, power in the spatial domain is gaussian in time. Therefore, it also gaussian in temporal
frequency.

Q(k, f ;D) = Ft{exp
[
−4Dt2π2k2

]
}

=
1√

4Dπk2
exp

[
− f 2

4Dk2

]
Note that here the variance of power across temporal frequencies increases with spatial frequency.

However, this definition of power differs from the intuitive version. In the case that H = 2, the
particle moves with a constant velocity (either negative or positive). Once the particle is moving it
will always go in that direction at the speed, so the power of the process should be a fixed line in the
frequency domain:

q(r, t;D) = δ(r − 2
√
Dt)

q̃(k, t;D) = exp
[
−4πı

√
Dtk

]
Q(k, f ;D) = δ(f − 2

√
Dk)

With these definitions, then the total temporal power in a fixed range of frequencies [L1, L2] has

value 1/(L2− L1) for spatial frequencies in the range
[

L1

2
√
D
, L2

2
√
D

]
.
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Figure 11: TOP ROW: Power spectral densities for fixed diffusion (D = 20arcmin2/s). MIDDLE ROW:
slices across temporal frequencies. BOTTOM ROW: slices across spatial frequencies. We already know
that spatial whitening occurs in the H = 1 case as power increases with k2. This whitening effect seems to
vanish by H = 2 where power is contained entirely along a line in the spatiotemporal frequency domain.
(see plotQfBM.m in DriftCompare folder)
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Figure 12: Total temporal power for 2 ≤ f ≤ 40Hz (computed from closed form definite integrals). Note
that temporal power for H = 2 is non-zero only in a certain range of spatial frequencies.
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2.3.3 numerical PSD for fractional Brownian motion

Section 2.3.2 describes closed-form PSD for only a few cases of fractional Brownian motion, but we are
interested in the power spectra for intermediate cases of H as well. We can evaluate this numerically by
evaluating the FFT of q̃(k, t;D) defined above.

Calculations below were done with the following parameters:

• sampling frequency = 210

• t ∈ [−30, 30] seconds

• D = 20 arcmin2/s

Figure 13: Sample q̃(k, t;D) as a function of time for several spatial frequencies (k) and Hurst indices (H).
Transform these over time to numerically compute Q(k, f ;D).
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Figure 14: Power spectra Q(k, f ;D) for several Hurst indices (H). (Color axes are the same in all panels.)

We can evaluate how well the whitening effect occurs in each of these conditions by computing the
temporal power

S(k;D) =

∫
Q(k, f ;D)T (f) df

For convenience here we use T (f) = 1 for f ∈ [2, 40] and 0 otherwise.
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Figure 15: Temporal power S(k;D) (TOP ROW) and normalized by squared spatial frequency S(k;D)/k2

(BOTTOM ROW) for several Hurst indices (H). Whitening occurs for all H < 2 - however there is an
interesting “bump” at high spatial frequencies for H near 2 (for example, in the bottom right panel H = 1.8
case, there is an increase in power starting around 6 cpd). Increasing H pushes the critical frequency up
and increases the value of peak power, and decreases the power at lower spatial frequencies. Note that
H = 2 was computed analytically here. D = 20 arcmin2/s.
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Figure 16: Effect of changing D on S(k;D) for fixed H. The increased power at high H and low D is an
artifact of the numerical process. As with BM, changing D appears to shift the spectra along the spatial
frequency axis. Note that H = 2 here was computed analytically and is shown for comparison.
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2.3.4 Properties

2.3.5 empirical observations

Figure 17: Fractional diffusion constants and hurst indicies estimated for each individual and displayed by
task on the short time scale. Individual data are shown by black stars if the fractional BM model was a
significantly better fit to the 〈r2〉 data (p < .05, likelihood ratio test). A large proportion of the Fixation
and FreeView and Reading data seem to resemble fractional brownian motion. ANOVA comparison of
these values are presented in appendix section 5.3.2

Figure 18: Fractional diffusion constants and hurst indicies estimated for each individual and displayed by
task on the long time scale. Individual data are shown by black stars if the fractional BM model was a
significantly better fit to the 〈r2〉 data (p < .05, likelihood ratio test). A large proportion of the Fixation
and FreeView data seem to resemble fractional brownian motion. ANOVA comparison of these values are
presented in appendix section 5.3.2
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Figure 19: Hurst index versus DfBM for each subject colored by task. Note the correlation between DfBM

and HfBM . Since larger D push the critical frequency up and large H drop the critical frequency, these
effects may act to cancel each other out. This plot is broken out by task in section 5.2.1.

Figure 20: Dynamics of fBM with length of fixation. Distributions of Hurst index when fBM is fit to
different time delays across all tasks. Note how the mode of the distribution shifts towards 1 (Brownian
motion) with increasing fixation duration. Since H = 1 is a signature of BM, a one-sample t-test was run
to compare the mean of each distribution to 1 (p-values shown in top left corner).Means and standard
deviations of each are listed in the first table of section 5.3.1.
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Figure 21: Dynamics of HfBM with length of fixation. Graph shows means and SEM across all individuals
(solid black circles) and broken down by task (colored squares with same color legend as in Figure 7). This
value does not seem to trend over time, and changes are within the error of the estimates. Snellen (orange)
is consistently closer to 1 than other tasks though. Means and standard deviations of each are listed in
the first table of section 5.3.1.
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Figure 22: Sample eye traces of subjects with similar D but different H. TOP: D = 44.32 and H = 1.20.
MIDDLE: D = 44.63 and H = 1.37. BOTTOM: D = 49.59 and H = 1.75. Note that from top to bottom,
there are more traces that go directly away from the initial position. (JI: Note that the Fixation5-A70
traces here included what appeared to be a smooth pursuit portion of the trial)
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Figure 23: S(k;D,H) based on empirically-observed parameters D and H. Individual lines show individual
observers, here colored by diffusion constant (left panel) or Hurst index (right panel). Note that the power
spectra are visibly separable by both parameters, so the correlation between them do not completely cancel
each other out (under these conditions). See numeralPSD fBM.m in DriftCompare folder.

Figure 24: HfBM versus DfBM colored by the critical spatial frequency based on S(k;D,H). Note that
the critical frequency is highest for individuals lying along the upper edge.
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2.4 Ornstein Uhlenbeck process

Figure 25: OUP model parameters estimated for each individual and displayed by task on the short time
scale. Individual data are shown by gray circles. Note how most θ values floor at 0, suggesting a linear
model would be sufficient.

Figure 26: OUP model parameters estimated for each individual and displayed by task on the long time
scale. Individual data are shown by gray circles. Note how many θ values floor at 0, suggesting a linear
model would be sufficient. Snellen appears to be the most like an OUP, especially at the longer time
interval.
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Figure 27: Dynamics of OUP with length of fixation. Distributions of θOUP when fBM is fit to different
time delays across all tasks. Note how the mode of the distribution shifts towards 0 (Brownian motion)
with decreasing fixation duration. Means and standard deviations of each are listed in the first table of
section 5.3.1.

2.5 Model Comparisons

General observation: The fractional brownian motion model best fits the empirical variances of displace-
ment as shown by the adjusted R2 and rmse values below. However, fBM provides a signficant improvement
in the model in a small proportion of individuals, shown by the likelihood tests (see ??).
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2.5.1 R2 and rmse

Figure 28: Adjusted R2 goodness of fit of each model at different time scales. Overall, fractional Brownian
motion best fits the empirical data. The adjusted R2 takes into account the number of parameters in the
model (one for BM, two each for fBM and OUP)
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Figure 29: root mean squared error of each model at different time scales. Overall, fractional Brownian
motion best fits the empirical data.
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2.5.2 LR-tests: fBM v BM

Figure 30: The log-likelihood test statistic (T-val, left) and corresponding p-values (right) comparing fBM
and BM. Black starred points indicate a significant p-value (that fBM is a better than BM).
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Figure 31: Proportion of individuals for whom fBM is a significantly better fit than BM.
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2.5.3 LR-tests: OUP v BM

Figure 32: The log-likelihood test statistic (T-val, left) and corresponding p-values (right) comparing OUP
and BM. Black starred points indicate a significant p-value (that OUP is a better than BM).
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Figure 33: Proportion of individuals for whom OUP is a significantly better fit than BM.

3 Drift Database & Preprocessing

• Analysis Code: https://gitlab.com/jintoy/DriftCompare

• Data: Reformatted versions are on BOX (ask Janis), but all data were originally pulled from OPUS,
many from BACKUPS. See tables in Section 3.1 for more details.

https://gitlab.com/jintoy/DriftCompare
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3.1 Data

Task # Subjects Description

Fixation 54 sustained fixation - usually with a
marker

FreeView 32 free viewing of natural images
LargeFaces 15 expression discrimination of large faces

- 5 deg height? (Shelchkova et al)
SmallFaces 10 expression discrimination of small faces

- 1 deg height? (Shelchkova et al)
Reading 14 reading task (Bowers et al, 2018)
Snellen 8 20/20 line eye chart discrimination
1-2cpd 13 1-2cpd grating orientation discrimina-

tion
4-5cpd 4 4-5cpd grating orientation discrimina-

tion
8-10cpd 11 8-10cpd grating orientation discrimina-

tion
12-16cpd 13 12-16cpd grating detection or orienta-

tion discrimination

Table 1: Major task categories and the number of subjects (not necessarily unique) that participated in
each.

Table 2 (below): Breakdown of major tasks into data sets. Janis’s copy of data along with original data
locations (TO-DO) are also listed. Some data were already broken up into fixation structures (“prepro-
cessed”) so I’m not sure if they were filtered, trimmed, ...
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Task # Description BOX source original

Fixation
Fixation 12 Cherici et al (2012), marker

on, 5s(?) fixations
/FixationPrecision/Data ClaudiaProjects/FixationPrecision/Data/

Fixation2 15 Shelchkova et al (Large
Faces - fixation trials)

/Faces/LargeFaces BACKUPS/Shelchkova Backup/Christie-
MSFaces/Data

Fixation3 10 Shelchkova et al (Small
Faces - fixation trials)

/Faces/SmallFaces/Processed BACKUPS/Shelchkova Backup/

Fixation4 14 Bowers & Poletti (2017) -
fixation trials

/Reading/data BACKUPS/Bowers Backup/Reading/data/

Fixation5 8 Snellen monocular fixations
(800-1000ms)

/Snellen/Processed JanisData/APLab/EyeChartE Stuff

FreeView
FreeView 10 Drift Gain (Bowers) with

gain = 1, 30sec trials
/DriftGain FreeView BACKUPS/Bowers Backup/DriftGain/FreeView/Norick Matlab/data/

FreeView2 21 FreeView database from
OPUS

/FreeViewingDatabase FreeViewingDatabase

LargeFaces
LargeFaces 15 Shelchkova et al, 2s(?) trials /Faces/LargeFaces BACKUPS/Shelchkova Backup/Christie-

MSFaces/Data

SmallFaces
SmallFaces 10 Shelchkova et al, 2s(?) trials /Faces/SmallFaces/Processed BACKUPS/Shelchkova Backup/

Reading
Reading 14 Bowers & Poletti (2017) /Reading/data BACKUPS/Bowers Backup/Reading/data/

Snellen
Snellen 8 Snellen monocular data,

self-paced trials
/Snellen/Processed JanisData/APLab/EyeChartE Stuff

1-2cpd
1cpd 4 Christie CS data, 1.5s tri-

als with contrast ramp and
plateau

/ContrastSensitivityData/1cpd BACKUPS/Poletti Backup/Martina/ContrastSensitivity/Data/

2cpd 4 Christie CS data, 1.5s tri-
als with contrast ramp and
plateau

/ContrastSensitivityData/2cpd BACKUPS/Poletti Backup/Martina/ContrastSensitivity/Data/

1cpd2 4 Boi et al (2017) - one-over-f
exp, preprocessed

/exp one over f/1cpd BACKUPS/Boi Backup/projects/coarse to fine/exp one over f/data/eye movement database/lo

1cpd3 5 Mostofi et al (2016), prepro-
cessed

/DriftTraces CP ThTTrials/1cpd BACKUPS/Mostofi Backup/backup Sept2016/projects/MsacCS VisRes16/Matlab
codes and
data/Data/CleanData/DriftDb/DriftTraces CP ThTTrials

4-5cpd
4cpd 4 Christie CS data, 1.5s tri-

als with contrast ramp and
plateau

/ContrastSensitivityData/4cpd BACKUPS/Poletti Backup/Martina/ContrastSensitivity/Data/

5cpd 4 Christie CS data, 1.5s tri-
als with contrast ramp and
plateau

/ContrastSensitivityData/5cpd BACKUPS/Poletti Backup/Martina/ContrastSensitivity/Data/

8-10cpd
8cpd 4 Christie CS data, 1.5s tri-

als with contrast ramp and
plateau

/ContrastSensitivityData/8cpd BACKUPS/Poletti Backup/Martina/ContrastSensitivity/Data/

10cpd 4 Boi et al (2017) - one-over-f
exp, preprocessed

/exp one over f/10cpd BACKUPS/Boi Backup/projects/coarse to fine/exp one over f/data/eye movement database/hi

10cpd2 5 Mostofi et al (2016), prepro-
cessed

/DriftTraces CP ThTTrials/10cpd BACKUPS/Mostofi Backup/backup Sept2016/projects/MsacCS VisRes16/Matlab
codes and
data/Data/CleanData/DriftDb/DriftTraces CP ThTTrials

12-16cpd
12cpd 4 Tilted Grating experiment

by Sara, preprocessed
/TGExp DriftOnly BACKUPS/Aghajari Backup/TGExp/Data/DriftOnly

16cpd 4 Christie CS data, 1.5s tri-
als with contrast ramp and
plateau

/ContrastSensitivityData/16cpd BACKUPS/Poletti Backup/Martina/ContrastSensitivity/Data/

16cpd2 7 Drift Gain Grating (Bow-
ers) - no scotoma

/DriftGain 16cpd NoScotoma BACKUPS/Bowers Backup/DriftGain/Scatoma/data/NoScotoma

Table 2
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3.2 Procedure & Data Saving

The following is implemented in runAll.m.

• Individuals with less than 20 valid drift segments were removed from analysis.

• Drifts during stimulus presentation were extracted from the data.

• Shorter trials (generally <5s) with blinks and no-tracks during stimulus presentation were removed
from analysis. In longer trials, only drift periods occurring within 200ms of a blink or no-track
segment were removed from analysis.

• Drift periods with durations <100ms were removed from analysis. The first and last 50ms of each
drift period were also discarded.

• Diffusion constants were estimated on the remaining drift periods for each individual in each task.
The regression period excludes the first 50ms of time lag.

• Janis’s processed data are saved on BOX: https://rochester.app.box.com/folder/65801521764

– Subfolders: dsq255-2 (〈r2〉 computed up to 255ms lag - a fast data set) and dsq long (〈r2〉
computed up to the longest duration possible for each individual - a very slow dataset)

– .mat files are created for each individual in each task (Task Subject.mat) and contains the
following:

∗ fix struct array : each element contains the x and y traces of a drift segment. The structure
may contain additional information if created by the original experimenter.

∗ data struct with characteristics about each drift in fix:

· subject: subject name or source file name of vt cell array

· task: (str) minor label

· keepBlinks: (bool) whether or not trials with blinks were kept

· driftIndex: (vector) if available, trial index from vt of corresponding drift segment

· duration: (vector) duration of each corresponding drift segment (before trimming)

· curvature: (vector) average curvature of each corresponding drift segment

· speed (vector): average speed of each corresonding drift segment (computed with sgfilt,
smoothing = 41)

· varHorz and varVert: (vectors) positional variance of each drift segment

· span: (vector):radius of smallest circle that contains each drift

· diffCoeff: (double): diffusion constant estimated from all drift segments (recomputed
in post-procesing)

· Dsq: (vector) 〈r2〉 that was used for diffusion constant estimation

· DsqSingleSeg: (array)〈r2〉 for each individual drift segment

· FracBM: currently not computed (done in post-processing)

· diffCoeffBoot: bootstrap iteration computations of diffusion constant

· FracBMBoot: currently not computed (done in post-processing)

https://rochester.app.box.com/folder/65801521764


3 DRIFT DATABASE & PREPROCESSING 37

· dsqBoot: bootstrap iteration computations of Dsq

The main outcome of this processing is the empirical variances of displacement over time for each
individual. These can be used downstream to fit different models and estimate diffusion constants. Images
of different time scales are shown in Section ??. Individual variances are shown in Section ??.

Figure 34: Average variance of displacement by task shown as mean and standard error across subjects.
Left panel shows the short time-scale (up to around .25s) and the right panel shows up to 5s. The
discontinuities on the longer time-scale are likely the result of shorter trials ending which can drastically
change the mean when few data remain.
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Figure 35: Individual variance of displacement colored by task.

Figure 36: Distribution of drift durations by task. Note that reading and large faces have the shortest
durations.
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4 Empirical estimations of drift PSD

4.1 Methods

4.1.1 QRad Welch

Power spectra are estimated numerically for given eye traces x[t], y[t] using Welch’s method on the signal

s[ξ, t, θ] = e−2πi(ξ cos(θ)x[t]+ξ sin(θ)y[t])

where ξ is spatial frequency and θ is the angle in the spectrum. (See Xutao Kuang’s note for its derivation
and relationship to Q.) Radial averaging (over θ) takes place to compute the spectra as a function of
spatial and temporal frequencies:

S[ξ, f ] =
1

N

N∑
n=1

Ft{s[ξ, t, θn]}

P [ξ, f ] = |S[ξ, f ]|2

4.2 Other considerations

4.2.1 Saturation Regime in Drift - does it exist?

Code in test PSD smoothing.m in Modeling toolbox.
The goal here is examine whether simulated drifts have a saturation regime as found in saccade PSD.

Drifts were simulated as Brownian motion and power spectra computed using the QRad-Welch procedure.
Parameters of the simulations:

• Simulated eye traces

– 4 traces of 10 sec duration

– variable diffusion constant: 40 or 200 or 1000 arcmin per s23

– variable: if smoothed, s-golay filter with 41ms window

– variable: sampling frequency

– variable: nfft

• Power Spec estimation

– Hann window (size nfft)

– spatial frequencies: log scale from 0.1 - 200 cpd

– power averaged over 30 angles in [0, 2π)

3a larger diffusion constant makes the effects more striking
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4.2.2 Effect of smoothing

Figure 37: PSD with and without smoothing. Color axes are the same. Slices and parameters are shown
in following figure.

Figure 38: PSD with and without smoothing. Solid lines are not-smoothed. Dashed lines are smoothed (s-
golay with 41ms window). Dotted black lines are PS from Brownian motion model. LEFT: Slices through
a few spatial frequencies. RIGHT: Slices through a few temporal frequencies. D = 40; ; Sampling rate
1000Hz; nfft = 1024. Note that smoothing has more impact on high spatial frequencies with this realistic
diffusion constant. To make these differences more clear, the next figure uses larger diffusion constants.
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Figure 39: PSD with and without smoothing. Solid lines are not-smoothed. Dashed lines are smoothed (s-
golay with 41ms window). Dotted black lines are PS from Brownian motion model. LEFT: Slices through
a few spatial frequencies. RIGHT: Slices through a few temporal frequencies. TOP: D = 200; BOTTOM:
D = 1000; Sampling rate 1000Hz; nfft = 1024. See list of observations below.

• Smoothing causes the critical frequency to increase slightly relative to not-smoothing and the Brow-
nian motion model.

• Beyond the critical frequency, power drops off more slowly when smoothed.

• As with the Brownian model, power at all temporal frequencies eventually converge, even with
smoothing. However, this seems to happen at a higher spatial frequency compared to non-smoothing.
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4.2.3 Effect of sampling frequency

Figure 40: PSD for different sampling frequencies. Different colors mark different sampling frequencies.
Different line-styles mark different temporal or spatial frequency slices. Dotted black lines are PS from
Brownian motion model. LEFT: Slices through a few spatial frequencies. RIGHT: Slices through a few
temporal frequencies. (TOP) D = 40, (BOTTOM) D = 200; nfft = 1024.

• Sampling frequency impacts power at high spatial frequencies (near horizontal lines in left panel).

• The higher sampling frequency pushes the saturation zone to high spatial frequencies (i.e. it matches
the Brownian model over a broader range of spatial frequencies).

• The sampling frequency determines the power at which the PSD saturates, but the spatial frequency
at which the saturation occurs depends also on the diffusion constant.
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5 Appendix

5.1 Additional Derivations & Definitions

5.1.1 Brownian motion: Diffusion Equation & Solutions

A 2-dimensional random walk follows the diffusion equation

∂q

∂t
= D

∂2q

∂x2
+D

∂2q

∂y2

where D is the diffusion constant on each independent dimension. We can also write this as a function of
r2 = x2 + y2:

r =
(
x2 + y2

)1/2

∂r

∂x
=
x

r
∂2r

∂x2
=
r2 − x2

r3
=
y2

r3

∂q

∂t
= D

[
∂

∂x

(
∂q

∂r
· ∂r
∂x

)
+

∂

∂y

(
∂q

∂r
· ∂r
∂y

)]

= D


∂

∂x

(
∂q

∂r

)
︸ ︷︷ ︸

∂2q

∂r2
· ∂r
∂x

·∂r
∂x

+
∂q

∂r

∂2r

∂x2
+

∂

∂y

(
∂q

∂r

)
︸ ︷︷ ︸

∂2q

∂r2
· ∂r
∂y

·∂r
∂y

+
∂q

∂r

∂2r

∂y2


= D

[
∂2q

∂r2

(
∂r

∂x

)2

+
∂2q

∂r2

(
∂r

∂y

)2

+
∂q

∂r

(
∂2r

∂x2
+
∂2r

∂y2

)]

= D

[
∂2q

∂r2

(
x2 + y2

r2

)
+
∂q

∂r

(
y2 + x2

r3

)]
= D

[
∂2q

∂r2
+

1

r

∂q

∂r

]
=
D

r

∂

∂r

(
r
∂q

∂r

)
With the initial condition that at t = 0 the particle is concentrated at 0, the diffusion equation is satisfied
by

q(x, y, t;D) =
1

4πDt
exp

(
−x

2 + y2

4Dt

)
q(r, t;D) =

1

4πDt
exp

(
− r2

4Dt

)
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Here we confirm that this solves the diffusion equation:

∂q

∂x
= − 2x

4Dt
q

∂2q

∂x2
= −

(
2

4Dt

)
q +

(
2x

4Dt

)2

q

=

(
x2 − 2Dt

4D2t2

)
q

∂2q

∂x2
=

(
y2 − 2Dt

4D2t2

)
q

∂q

∂t
=

(
−1

t
+
x2 + y2

4D2t2
)

)
q

=
x2 + y2 − 4Dt

4Dt2
q

⇒ D
∂2q

∂x2
+D

∂2q

∂y2
=

(
x2 − 2Dt

4Dt2

)
q +

(
x2 − 2Dt

4Dt2

)
q

=
x2 + y2 − 4Dt

4Dt2
q =

∂q

∂t

In three dimensions, the diffusion equation becomes:

∂q

∂t
= D

∂2q

∂x2
+D

∂2q

∂y2
+D

∂2q

∂z2

∂q

∂t
=
D

r2

∂

∂r

(
r2∂q

∂r

)
5.1.2 PSD of Brownian motion

Here we show the steps between q(x, y, t;D) and its transform in frequency space, Q(ξx, ξy, f ;D).

q(x, y, t;D) =
1

4πDt
exp

[
−x

2 + y2

4Dt

]
q̃(ξx, ξy, t;D) = Fx,y {q(x, y, t;D)}

= exp
[
−4π2Dt(ξ2

x + ξ2
y)
]

see Note 1

Q(ξx, ξy, f ;D) = Ft {q̃(ξx, ξy, t;D)}

=
8π2D(ξ2

x + ξ2
y)

16π4D2(ξ2
x + ξ2

y)
2 + 4π2f 2

see Note 2

=
2D(ξ2

x + ξ2
y)

4π2D2(ξ2
x + ξ2

y)
2 + f 2

Note 1: FT of gaussian is a gaussian with inverse variance

exp
[
−π(a2x2 + b2y2)

]
↔ 1

|ab|
exp

[
−π
(
ξ2
x

a2
+
ξ2
x

b2

)]
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Note 2:

exp [−at]↔ 2a

a2 + 4π2f 2

5.1.3 Likelihood ratio testing

I compare the two brownian motion models by means of a log likelihood ratio test, a test that can be used
to test nested hypotheses (because Brownian motion is a specific type of fractional Brownian motion with
HfBM = 1.)

I think I made some strange assumptions in this test - namely that the variance of the residuals of the
fits vary with time lag. I’m not sure this is valid.

The LLR test statistic (chi-square distribution) is computed as

T = 2 log

(
L(H1)

L(H0)

)
=
∑
i

(4DBM ti − 〈r2〉i)2 − (4DfBM t
H
i − 〈r2〉i)2

σ2
i

where σ2
i is computed as the variance across single segment variances of displacements.

5.1.4 OUP for small θ is BM

For small, x, exp(x) ≈ 1 + x. Therefore, for small θ, exp(−2θt) ≈ 1− 2θt so that

2D

θ

(
1 + e−2θt)

)
≈ 2D

θ
(2θt) = 4Dt
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5.2 Additional Figures

5.2.1 HfBM versus DfBM by task

Figure 41: HfBM versus DfBM parameters for fractional brownian motion model separated by task. This
is the same data shown in Fig 19. From left-to-right and down the tasks are Fixation, FreeView, Large
Faces, Reading, Small Faces, Snellen.
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5.3 Data tables

5.3.1 Table of Individual Parameters

All

255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

mean 16.60 25.41 1.15 16.95 0.17 18.31 24.14 1.10 19.17 0.18 14.86 15.57 1.03 16.27 0.19
STD 10.59 32.85 0.19 10.47 0.48 16.56 35.48 0.24 16.49 0.42 10.35 12.19 0.25 10.15 0.29

Fixation

255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

Chris 9.27 10.61 1.08 9.28 0.00 9.80 10.39 *1.06 9.80 *0.00
Matt- 20.60 27.23 1.17 20.59 0.00 25.30 33.82 *1.29 25.29 *0.00
Thoma 16.56 19.67 1.10 16.54 0.00 16.39 16.46 1.00 16.39 0.00 14.29 12.27 0.74 21.87 0.80
Adria 7.89 9.33 1.10 7.88 0.00 7.90 7.97 1.01 7.90 0.00
Andre 16.98 34.47 *1.42 16.92 *0.00 14.18 10.96 0.75 21.27 1.19
Giorg 5.29 5.03 0.97 5.53 0.23 4.76 4.09 0.85 5.84 0.57
Janis 5.23 4.61 0.93 5.88 0.61 5.45 5.77 1.05 5.46 0.00
Karis 9.18 11.87 1.15 9.17 0.00 9.65 10.41 1.07 9.65 0.00 9.75 9.89 1.03 9.75 0.00
Kyle- 24.29 42.62 *1.34 24.20 *0.00
Migue 13.19 20.10 *1.25 13.16 *0.00 13.70 14.45 1.05 13.70 0.00 14.57 15.34 *1.16 14.56 *0.00
A70 7.16 8.13 1.08 7.16 0.00
AB 19.91 30.48 *1.25 19.88 *0.00
AO 9.21 9.13 1.00 9.33 0.08
CH 17.87 29.30 1.30 17.82 0.00
CS 78.43 302.56 *1.82 78.00 *0.00 132.35 292.27 *1.75 132.22 *0.00
ML 14.99 19.64 1.16 14.96 0.00 13.01 10.83 0.82 16.90 0.74
NT 12.85 17.21 1.17 12.83 0.00 12.86 12.85 1.00 13.02 0.03
SB 9.76 6.67 0.78 12.83 1.52 8.92 7.23 0.81 11.49 0.77
Bill 28.58 39.95 1.20 28.56 0.00 33.01 39.83 *1.19 33.00 *0.00 33.38 33.64 1.02 33.38 0.00
Claud 6.53 5.71 0.92 7.40 0.66 5.34 3.98 0.72 8.15 1.24 4.32 3.92 *0.72 6.27 *0.54
David 24.65 38.07 1.26 24.60 0.00 27.16 30.84 *1.13 27.15 *0.00 27.04 26.88 0.98 28.32 0.06
Greg 10.45 15.65 1.24 10.43 0.00 12.42 16.15 *1.26 12.42 *0.00 14.45 15.36 *1.19 14.45 *0.00
Joy 9.77 11.24 1.08 9.76 0.00 9.63 9.45 0.98 9.95 0.09 8.92 8.58 0.88 10.56 0.23
Julie 19.41 24.84 1.15 19.37 0.00 23.01 30.46 *1.28 23.00 *0.00 27.43 29.57 *1.23 27.42 *0.00
Katha 10.38 15.04 *1.22 10.36 *0.00 10.61 10.77 1.01 10.65 0.01 9.91 9.66 0.92 11.06 0.15
Kulve 10.32 13.50 1.16 10.32 0.00 11.02 12.12 1.09 11.02 0.00 11.54 11.79 1.06 11.54 0.00
Laure 12.03 13.31 1.06 12.04 0.00 11.72 11.34 0.97 12.32 0.13 10.96 10.63 0.91 12.39 0.17
Maria 13.02 22.02 *1.31 13.00 *0.00 15.33 19.55 *1.24 15.32 *0.00 13.17 11.94 0.72 21.82 0.76
Wende 8.77 6.86 0.85 10.58 1.02 7.71 6.67 0.86 9.08 0.45
mean 15.61 28.10 1.16 15.81 0.14 18.38 26.19 1.05 19.21 0.22 15.36 15.34 0.97 17.18 0.21
STD 13.52 53.92 0.20 13.33 0.36 25.30 57.49 0.22 25.07 0.39 8.53 8.96 0.17 8.46 0.30

FreeView
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255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

Charl 20.63 17.26 0.89 23.51 0.68 20.61 20.79 1.01 20.63 0.00 25.21 28.10 1.35 25.21 0.00
Clair 31.51 44.32 1.20 31.43 0.00
DaveF 28.70 83.06 *1.64 28.58 *0.00 43.14 76.03 *1.57 43.11 *0.00
DaveV 16.91 30.51 *1.35 16.85 *0.00 17.04 17.05 1.00 17.54 0.08
Ignat 51.31 93.02 *1.36 51.18 *0.00
Jonat 29.08 27.55 0.97 30.19 0.19 26.37 22.04 0.83 34.07 0.72
Jonat 26.74 26.93 1.00 26.76 0.00 26.56 25.25 0.95 28.77 0.22
Julie 44.00 51.60 1.09 43.90 0.00 45.72 51.15 1.10 45.69 0.00
Julie 29.75 40.47 1.18 29.66 0.00 29.74 29.28 0.98 30.89 0.10
Laure 30.43 43.13 1.21 30.37 0.00 37.63 53.18 *1.34 37.62 *0.00 53.82 63.85 *1.56 53.82 *0.00
Laure 29.10 33.85 1.09 29.05 0.00
Roshn 18.32 23.18 1.14 18.33 0.00 22.86 34.08 *1.40 22.86 *0.00
RyanF 18.31 18.02 0.99 18.87 0.15 17.16 14.86 0.86 21.27 0.60
RyanV 15.98 14.65 0.95 17.18 0.38 14.66 12.67 0.86 17.92 0.56
SamFV 22.52 29.54 1.16 22.48 0.00 23.52 24.20 1.03 23.51 0.00
SamVS 21.39 33.20 1.26 21.35 0.00
Teale 19.09 14.50 0.84 23.26 1.08 17.50 15.15 0.86 20.99 0.50
Teale 19.87 22.42 1.07 19.86 0.00
XixiF 15.11 16.95 1.07 15.12 0.00
XixiV 13.12 9.95 0.84 16.53 1.25
Andre 10.37 6.35 0.71 15.27 2.19
Deniz 19.51 37.69 *1.39 19.49 *0.00 29.16 55.76 *1.65 29.14 *0.00
Laird 32.21 66.23 *1.43 32.13 *0.00 48.95 98.52 *1.71 48.92 *0.00
Laura 15.82 18.74 1.10 15.81 0.00
Manue 18.87 23.25 1.12 18.88 0.00 20.44 23.32 1.13 20.44 0.00
Marc 22.36 22.29 1.00 23.27 0.19 21.63 19.78 0.92 24.53 0.38
Melis 32.43 48.72 1.24 32.39 0.00 34.41 43.68 *1.18 34.40 *0.00
Miche 16.16 11.42 0.79 20.97 1.44 11.29 6.43 *0.49 25.62 *2.85
mean 23.91 32.46 1.11 24.74 0.27 26.76 33.85 1.10 28.84 0.32 39.52 45.98 1.45 39.51 0.00
STD 9.23 21.02 0.21 8.59 0.55 10.80 23.82 0.31 9.51 0.66 20.23 25.28 0.15 20.23 0.00

LargeFaces

255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

Andre 10.80 13.73 1.14 10.80 0.00 12.98 17.28 *1.28 12.98 *0.00 14.38 16.27 *1.23 14.38 *0.00
Brand 8.97 12.67 1.21 8.97 0.00 9.17 8.85 0.96 10.00 0.24
Chris 9.62 12.16 1.14 9.63 0.00
Dylan 9.95 15.14 1.25 9.94 0.00 13.16 21.28 *1.48 13.16 *0.00
Kavi- 14.18 20.65 1.22 14.18 0.00 16.23 19.64 *1.19 16.23 *0.00
Kyle- 24.10 58.46 *1.53 24.03 *0.00 36.93 70.34 *1.65 36.91 *0.00
Matt- 24.97 30.23 1.11 24.94 0.00 28.39 35.39 *1.22 28.38 *0.00
Mia-5 15.68 16.58 1.03 15.66 0.00
Patri 16.60 19.85 1.11 16.58 0.00 17.64 18.93 1.07 17.63 0.00 18.37 19.30 *1.15 18.37 *0.00
Rolli 18.98 21.66 1.08 18.97 0.00 20.36 22.13 1.08 20.36 0.00 17.63 16.43 0.80 24.45 0.47
Sande 28.16 39.64 1.20 28.12 0.00 32.58 40.92 *1.23 32.57 *0.00
Sidha 13.33 16.93 1.14 13.34 0.00
Thoma 13.19 15.02 1.08 13.20 0.00 14.01 15.79 1.12 14.00 0.00
Tracy 20.23 25.32 1.13 20.19 0.00 20.64 20.93 1.01 20.64 0.00
mean 16.34 22.72 1.17 16.32 0.00 20.19 26.50 1.21 20.26 0.02 16.79 17.34 1.06 19.07 0.16
STD 6.15 12.78 0.12 6.13 0.00 8.86 17.04 0.20 8.75 0.07 2.12 1.70 0.23 5.07 0.27
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Reading

255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

Audre 16.79 20.61 1.12 16.77 0.00
Avrey 18.24 45.99 *1.56 18.20 *0.00 29.66 59.91 *1.71 29.64 *0.00
Chris 7.95 15.31 *1.39 7.94 *0.00
Cody 13.56 12.67 0.96 14.16 0.23
Kevin 9.62 11.04 1.08 9.62 0.00
Matt 24.04 44.63 *1.37 24.00 *0.00
Mia 9.54 7.99 0.90 11.06 0.79
Olivi 36.52 118.08 *1.71 36.36 *0.00
Orian 9.61 12.23 1.14 9.60 0.00
Patri 23.59 45.07 *1.39 23.53 *0.00
Rolli 7.14 3.77 *0.62 12.37 *3.24
Tracy 12.00 17.48 1.22 12.00 0.00
Victo 26.51 53.61 *1.42 26.43 *0.00
mean 16.55 31.42 1.22 17.08 0.33 29.66 59.91 1.71 29.64 0.00 NaN NaN NaN NaN NaN
STD 8.87 31.08 0.29 8.35 0.90 0.00 0.00 0.00 0.00 0.00 NaN NaN NaN NaN NaN

SmallFaces

255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

Adria 6.98 9.36 *1.17 6.97 *0.00 7.73 8.76 *1.12 7.73 *0.00
Andre 10.05 15.62 1.26 10.03 0.00 11.85 15.07 *1.24 11.85 *0.00 12.93 13.21 *1.07 12.93 *0.00
Giorg 8.48 13.37 1.27 8.47 0.00 8.72 8.61 0.99 9.20 0.14 6.31 5.49 0.61 12.35 1.06
Janis 6.34 6.75 1.04 6.35 0.00 6.64 6.89 1.04 6.64 0.00 5.95 5.76 0.90 6.70 0.16
Karis 8.26 9.86 1.11 8.26 0.00 8.61 9.02 1.05 8.61 0.00 8.49 8.54 1.02 8.49 0.00
Kerri 16.42 28.27 *1.33 16.37 *0.00 20.26 27.89 *1.32 20.25 *0.00 29.05 35.48 *1.67 29.05 *0.00
Kyle- 14.12 15.49 1.05 14.09 0.00 13.82 13.41 0.97 14.41 0.11
Migue 10.31 14.72 1.21 10.30 0.00 11.26 12.97 *1.14 11.26 *0.00 14.35 16.17 *1.38 14.35 *0.00
mean 10.12 14.18 1.18 10.11 0.00 11.11 12.83 1.11 11.24 0.03 12.85 14.11 1.11 13.98 0.20
STD 3.51 6.55 0.11 3.49 0.00 4.39 6.72 0.12 4.41 0.06 8.65 11.28 0.37 7.93 0.42

Snellen
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255ms 500ms 1000ms
DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP DBM DfBM HfBM DOUP θOUP

A024- 6.50 6.05 0.96 6.94 0.33 6.28 5.75 0.91 7.16 0.36
A039- 6.40 7.19 1.07 6.40 0.00 6.02 5.34 0.88 7.18 0.49 4.91 4.56 *0.79 6.50 *0.40
A068- 10.05 9.11 0.94 11.22 0.56 9.43 8.46 0.89 10.95 0.41 8.61 8.28 0.88 9.99 0.20
A083- 10.98 13.33 1.12 10.97 0.00 12.60 15.76 *1.22 12.60 *0.00
A084- 5.50 5.48 1.00 5.49 0.00 5.62 5.65 1.01 5.62 0.00
Anne- 5.13 3.84 0.83 6.41 1.21 4.28 3.24 *0.73 6.28 *1.12 3.41 3.08 *0.70 5.16 *0.61
MAC-d 6.97 7.18 1.02 6.97 0.00 7.18 7.72 1.07 7.18 0.00
A70 5.82 8.67 *1.24 5.81 *0.00 7.33 10.50 *1.36 7.33 *0.00 9.45 10.54 *1.35 9.45 *0.00
AB 11.87 12.23 1.02 11.89 0.00 11.67 11.36 0.97 12.15 0.11 11.20 11.01 0.95 11.97 0.09
AO 7.97 8.94 1.07 7.96 0.00 7.75 7.59 0.98 7.98 0.08 6.92 6.48 0.81 9.26 0.42
CH 10.07 11.69 1.09 10.06 0.00 11.94 16.56 1.33 11.93 0.00
CS 6.51 8.10 1.13 6.50 0.00 7.15 8.25 1.14 7.15 0.00
ML 10.90 17.62 *1.29 10.89 *0.00 13.10 17.36 *1.28 13.10 *0.00 14.99 15.76 *1.16 14.98 *0.00
NT 8.06 10.16 1.14 8.05 0.00 8.85 10.38 *1.16 8.84 *0.00 9.88 10.36 *1.15 9.88 *0.00
SB 16.01 25.27 *1.27 15.97 *0.00 18.49 22.80 *1.21 18.48 *0.00
mean 8.58 10.32 1.08 8.77 0.14 9.18 10.45 1.08 9.60 0.17 8.67 8.76 0.97 9.65 0.21
STD 3.02 5.38 0.13 2.95 0.34 3.75 5.44 0.18 3.51 0.31 3.65 4.06 0.22 3.03 0.23

5.3.2 Compare Model Paramaters by Task

100ms 255ms 500ms 750ms 1000ms

DBM

ANOVA F(101, 5) =14.10, p =1.890e-10 ANOVA F(101, 5) =6.30, p =3.952e-05 ANOVA F(72, 5) =2.56, p =3.447e-02 ANOVA F(41, 4) =6.45, p =4.032e-04 ANOVA F(27, 4) =5.99, p =1.381e-03
Fixation FreeView 1.043e-06 Fixation FreeView 1.590e-02 FreeView Snellen 2.245e-02 Fixation FreeView 4.207e-02 Fixation FreeView 4.336e-03

FreeView LargeFaces 2.700e-03 FreeView SmallFaces 5.776e-03 FreeView SmallFaces 2.857e-02 FreeView LargeFaces 3.462e-02
FreeView Reading 6.054e-04 FreeView Snellen 2.770e-05 FreeView Snellen 2.356e-03 FreeView SmallFaces 3.299e-03

DfBM

ANOVA F(101, 5) =1.51, p =1.931e-01 ANOVA F(101, 5) =1.24, p =2.979e-01 ANOVA F(72, 5) =1.13, p =3.508e-01 ANOVA F(41, 4) =5.62, p =1.064e-03 ANOVA F(27, 4) =6.41, p =9.195e-04

HfBM

ANOVA F(101, 5) =1.84, p =1.123e-01 ANOVA F(101, 5) =1.07, p =3.842e-01 ANOVA F(72, 5) =2.11, p =7.438e-02 ANOVA F(41, 4) =1.77, p =1.540e-01 ANOVA F(27, 4) =2.09, p =1.097e-01

DOUP

ANOVA F(101, 5) =16.62, p =5.998e-12 ANOVA F(101, 5) =7.41, p =5.882e-06 ANOVA F(72, 5) =3.17, p =1.215e-02 ANOVA F(41, 4) =6.35, p =4.522e-04 ANOVA F(27, 4) =5.95, p =1.442e-03
Fixation FreeView 3.319e-08 Fixation FreeView 5.037e-03 FreeView Snellen 7.190e-03 Fixation FreeView 4.600e-02 Fixation FreeView 7.807e-03

FreeView LargeFaces 3.784e-04 FreeView SmallFaces 1.783e-03 FreeView SmallFaces 3.384e-02 FreeView SmallFaces 4.305e-03
FreeView Reading 5.129e-05 FreeView Snellen 5.532e-06 FreeView Snellen 2.832e-03 FreeView Snellen 5.122e-04

thetaOUP
ANOVA F(101, 5) =0.41, p =8.416e-01 ANOVA F(101, 5) =1.11, p =3.614e-01 ANOVA F(72, 5) =0.98, p =4.369e-01 ANOVA F(41, 4) =1.46, p =2.312e-01 ANOVA F(27, 4) =0.23, p =9.167e-01

Table 3: ANOVA to compare effect of task on model parameters and p-values from multiple comparisons.
Only pairs of tasks with significant differences are listed.
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