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1 Problem

Here we consider the estimation of power spectrum of retinal inputs under natural condition, i.e., a
static input I(x) under eye movements ξ(t) = [ξx(t), ξy(t)]. Our traditional way for this estimation
requires to reconstruct a 3D movie of the retinal inputs, and then use the Welch method to calculate
the power spectrum.

If we want to have higher resolution in spatial and temporal frequencies, we need to construct a
larger 3D matrix for the 3D movie. This poses a challenge to the processing ability of the simulation
software running under 32-bit operating system.

We want to find another way to estimate the power spectrum of retinal inputs.

2 Methods

2.1 Non-stationary eye movements

When a static image L(x) (x = [x, y]) is shifted under eye movements ξ(t), the retinal input is
given by I(x, t) = L[x− ξ(t)]. For a non-stationary eye movement process ξ(t) (like a saccade), we
are interested in

PI(k, ω) =
〈

|I(k, ω)|2
〉

ξ,L
, (1)

where k = [k cos α, k sin α] is the spatial frequency, I(k, ω) is the Fourier transform of L[x − ξ(t)],

I(k, ω) =

∫

dte−2πiωt

∫

dxe−2πik·xL[x − ξ(t)] (2)

and 〈〉ξ,L represents an average over all eye traces ξ and all images L.
Substituting Eq. (2) into Eq. (1), we have

PI(k, ω) =

〈
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∫

dxe−2πik·xL(x)

∫

dte−2πiωte−2πik·ξ(t)
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2
〉

ξ,L

. (3)

Assuming eye movements are independent of the images, we can further simplify Eq. (3) as

PI(k, ω) = PL(k)
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∫

dte−2πiωte−2πik·ξ(t)

∣
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2
〉

ξ

(4)

where PL(k) =
〈

|L(k)|2
〉

L
is the power of the static input L(x).
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To reduce 2D space to 1D, we can conduct a radial average on PI(k, ω) over α. If PL(k) is
radially symmetric, we have PL(k) = 〈PL(k)〉α. Therefore, we obtain

PI(k, ω) = 〈PI(k, ω)〉α = PL(k)

〈
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∫

dte−2πiωte−2πik·ξ(t)

∣

∣
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2
〉

ξ,α

(5)

We can observe that the estimation of spatiotemporal power PI(k, ω) can be conducted from a
Fourier transform of e−2πik·ξ(t).

This approach can also be applied when the static input is instead a spatiotemporal separable
input, i.e., I(x)W (t). In this case,

PI(k, ω) = PL(k)

〈
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∣

∫

dte−2πiωtW (t)e−2πik·ξ(t)

∣
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∣

2
〉

ξ,α

. (6)

Now the power spectrum can be estimated by a temporal Fourier transform of W (t)e−2πik·ξ(t).

2.2 Stationary eye movements

Eq. (1) is not the traditional way of defining power spectrum (without averaging over space and
time), and should be used only for non-stationary eye movements. However, when ξ(t) is a station-
ary process (i.e., drifts), we can consider the traditional way of power spectrum definition.

The finite fourier transform of L[x − ξ(t)] in time and space is given by

IW,T (k, ω) =

∫

W/2

−W/2
dx

∫ T/2

−T/2
dt L[x − ξ(t)]e−2πi(k·x+ωt)

=

∫ T/2

−T/2
dt e−2πiωte−2πik·ξ(t)LW,ξ(t)(k), (7)

where

LW,ξ(t)(k) =

∫

W/2+ξ(t)

−W/2+ξ(t)
dx′ L(x′)e−2πik·x′

(8)

The power spectrum PL(k, ω) is therefore given by

PI(k, ω) = lim
W,T→∞
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〈

|IW,T (k, ω)|2
〉

ξ,L

= lim
W,T→∞,
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∣

∣
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∣

∣

∫ T/2

−T/2
dt e−2πiωte−2πk·ξ(t)LW,ξ(t)(k)
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∣
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2〉

ξ,L

, (9)

and, assuming that eye movements are independent of the input L(x) , and LW,ξ(t)(k) → LW(k)
when W → ∞, we have

PI(k, ω) = PL(k)PE(k, ω), (10)
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where

PL(k) = lim
W→∞

〈

|LW(k)|2
〉

L

W
(11)

is the power spectrum of the images, and

PE(k, ω) = lim
T→∞

〈

∣

∣

∣

∫ T/2
−T/2 dt e−2πiωte−2πik·ξ(t)

∣

∣

∣

2
〉

ξ

T
, (12)

denoting the temporal power spectrum of e−2πik·ξ(t).
We have previously showed that the same power spectrum PL(k, ω) can be written as

PL(k, ω) = PL(k)Q(k, ω), (13)

where Q(k, ω) is the Fourier transform in both space and time of q(x, τ),

q(x, τ) =

∫

p(ξ(t0 + τ) = x1 + x, ξ(t0) = x1)dx1. (14)

From both Eq. (10) and Eq. (13), it must follow that PE(k, ω) = Q(k, ω). This can be shown as
follows. PE(k, ω) can be obtained by Fourier transform an autocorrelation function CE(k, τ) in
time, where

CE(k, τ) =
〈

e−2πikξ(t0)e2πikξ(t0+τ)
〉

t0
. (15)

Assuming that the eye movement is characterized by a probability function p(ξ(t0) = x1, ξ(t0+τ) =
x2), we have

CE(k, τ) =

〈
∫

dx1

∫

dx2e
−2πikx1e2πikx2p(ξ(t0) = x1, ξ(t0 + τ) = x2)

〉

t0

. (16)

If we perform an inverse Fourier transform on CE(k, τ) in space, we obtain

CE(x, τ) =

〈
∫

dx1

∫

dx2

∫

dke−2πik(x1−x2−x)p(ξ(t0) = x1, ξ(t0 + τ) = x2)

〉

t0

=

〈
∫

dx1

∫

dx2δ(x1 − x2 − x)p(ξ(t0) = x1, ξ(t0 + τ) = x2)

〉

t0

=

〈
∫

dx1p(ξ(t0) = x1, ξ(t0 + τ) = x1 − x)

〉

t0

= q(x, τ), (17)

assuming t0 can be neglected in the long-time limit.
Since PE(k, ω) is the Fourier transform of CE(x, τ), and Q(k, ω) is the Fourier transform of

q(x, τ), with CE(x, τ) = q(x, τ), we know that PE(k, ω) = Q(k, ω).


