Effects of eye movements on spectra of movies
(with M. Rucci)

In v05, we add a section that focuses on single saccades NOT as point processes. Also a comment about
drifting gratings at end of “basic calculation” section.

In v06, we add a section about fractional Brownian motion.

Setup

The goal is to calculate the effects of eye movements on the autocorrelation of a spatiotemporal stimulus.
That is, given a spatiotemporal stimulus S(X,t) (with mean 0) with known autocorrelation Cg, we want

to calculate C,, , the autocorrelation of the spatiotemporal pattern on the retina, after considering eye
movements.

Say the eye movement process has displacements &£(t), characterized by a known

p(f(tl) =X ‘é(to) = Xo) .

We assume that the eye movements described by &(t) are independent of the image. But to allow for the

possibility that saccades occur at “special” times in the image sequence, we assume that a saccade has
occurred at time 0, and allow for the possibility that the saccades may depend on image statistics. We
formalize this dependence by characterizing the stimulus by its autocorrelation at a time t, after the

saccade:

Cs(X,73t)) = (S(X,t))S(X, + X, t, + 2')>XO . (1.1.1)
The autocorrelation on the retina is then

Cu (X, 731)) = (S(Xy + E(t), 1) S (X + X + E(ty + 7).t + r)>XO . (1.1.2)
Averaged over all times, the autocorrelation is

Co (X,7) = {S(X, + E(ty),t)S (X, + X+ E(ty +1),t, + r)>w . (1.1.3)

We also expect that this will be the behavior of eq. (1.1.2) for large t,. For large t,, or, averaged over all
t, (which is dominated by t, large), we anticipate that eq. (1.1.3) will depend only on the average
autocorrelation of S(x,t),

Cs(%,7) =(S(Xyst)S (X + X, b, + 7)),

and that the time-dependent quantity (eq. (1.1.1)) won’t be necessary.

(1.1.4)

Basic calculation

We calculate eq. (1.1.2), and then consider its behavior for large t,. Eq. (1.1.2) can be written:

Cu (668) = [[{S0 + X, 1S (X + X+ %,,t, + D) PIE(,) = X)PIER, +7) = X, |£(t) = X)), dx,dx, ,(2.1.1)

which states that the autocorrelation on the retina is a sum of contributions over all eye movement paths,
in which the eye starts at position X, at time t;, and ends up at position X, at time t, +t. We re-express

this in terms of an initial position on the image, Yy = X, + X, and the displacement due to the eye

movement, AX =X, — X :
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Cu (6858) = [[(SOLLIS(Y + X+ A%,y + 7)) P(E(E) = X)P(E(t, + ) =X +AX | £(t) = X)), dXdAx o o)

Note that the S -terms and the p-terms are independent. The S-terms do not depend on X,, which is the
position of the eyes at time t, (because the movie is considered to be statistically spatially homogeneous).

The p-terms, which describe the eye trajectory, do not depend on Yy, which is the initial position on the
image — and the eye movements described by &(t) are assumed not to depend on the image. (Maybe this

is not true at the fovea.)

What this means is that we can integrate out initial eye position, X, , and replace that factor by a quantity

that describes the eye movement distribution:

A(AX,73t,) = [ PIE() = X)) P&, +7) = X, + AX| £(t) = X)X,

which is the probability that the eyes move by AX between t, and t =t,+ 7 (summed over all starting
locations at t;). Equivalently, making use of the relationship between a conditional and a joint

probability,

A(AX,73t)) = [ PIE(t, +7) = X, + A%, &(t,) = X)X, (2.1.3)

Thus, eq. (2.1.2) becomes
Cy(X%75t) = j(S(y,tO)S(y + X+ AX, t, +z')q(Ax,r;t0)>y dAX. (2.1.4)

Put another way, C,, and C; are related by convolution in space:
Cy (o, 7;1) =Cs(o,751)) * (e, 751, . (2.1.5)

We use a single-tilde to indicate Fourier transform in the space domain, and a double-tilde to indicate
Fourier transformation in space and time, or just in time.

with C,, (k,7;t,) = j C,, (X, 73t )e ™dx, C (k,z5t,) = j C.(X,7;t,)e ™ dx , and
Gk, 7;t,) = j q(x, 7;t,)e"*dx , it follows that

Cu (k,75t,) = Co (K, 73, A(K, 73t,) (2.1.6)

In the long-time limit, the dependence on t, can be neglected:
Cy (k,7) = Cs (k,0)A(K, 7). 2.1.7)

The multiplication point-by-point in = is equivalent to convolving in temporal frequency, @.

Cyu (k,@) =C, (k,) %, (k. ) (2.1.8)
where
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d(k,®) = [ 4(k, 7)exp(-iwr)dz (2.1.9)
and *  indicates convolution in the temporal frequency domain.

There’s a faster way to arrive directly at eq. (2.1.8), if we simply assume that the movie and the eye
movements are independent. We can calculate the (k,7) representation for an instance of movie and eye

movements — it is pointwise multiplication (since it is convolution in space, and multiplication in time),
and then calculate the covariance over the set of movies and the set of eye movements, and, since these
are independent, it factors.

Comment re measuring spatiotemporal receptive fields with gratings
A propos discussions with M. Rucci and B. Shapley, May 17, 2016. Note that if the stimulus consists of

only a single spatiotemporal frequency, (fs (k,w)=05(k —k,)0(w—w,) , then (2.1.8) becomes

Cyy (k@) = C; (k, ), G(k, @) = 5(k k) )i(K,s 0+ ,). (2.1.10)
This has implications for measuring a neuron’s spatial transfer function with drifting gratings. Say the
neuron is separable, i.e., that its transfer function is some L(k,®)= K (k)W (@) . The power in the

response to a drifting grating is given by
R(kp, ) = [[ C,y (k. )| Lk, ) dkd o

= [[ 4k 0+ @,)3(k k) [K (W (@) dkd oo (2.1.11)
=K (k)| [k, 0+ @)W ()] de

So even though the neuron itself is spatiotemporally separable, the measured response power, R(K,,®,),

is influenced by the coupling based on §(k, w).

Some special cases

We work out these equations for some simple models of image statistics and eye movements. In both
cases, we use common technology from the theory of renewal processes. Say p(t) is the renewal density,

i.e., pP(t)At is the probability that the first event that follows an event at time T will occur between T and
T +t+ At. (In a renewal process, by definition, the event probability depends only on the time since the
last event, and 1s independent of absolute time T.) Our goal is to calculate K (t), the probability that

there are N events in an interval of length t, independent of whether or not there is an event at time 0.

Distribution of the number of expected events for a renewal process

We will do this in the Fourier domain, so we make heavy use of
B(w) = j e “'p(t)dt. (3.1.1)
0

Note that p(0) =1 because of normalization, and that, since
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p'(w) = —T ite™ p(t)dt, (3.1.2)
that
50) = [ (vt G.13)

the mean interval.

We will need p,;,, (1), the probability that a randomly-chosen time is within an interval of length t . This
is proportional to tp(t). Because it must be normalized,

Puitnin (1) = tht) . (3.14)

.[r p(r)dr

0

For N >0, K, (t) (the probability that an interval of length t contains exactly N events) has a
contribution for each event sequence at times 0 <t, <...<t, <t. For the intermediate intervals

((t,_,,t,) 1<n<N), the probability of an event at time t, given an event at time t,_, is p(t,—t _,). For
the first and last intervals, we need Py, (t) , the probability that the first event after an arbitrary time
occurs ata timet, and p,(t), the probability that no event occurs within time t following an event. And

for N =0, weneed p,,.(t), the probability that there is no event in a randomly chosen interval of length
t.

With these quantities, we have (for N >0)

Ke®= [ ] Pra®)P(t, —t)... p(t, ~t, ) Py (t—t,)dlt, .., (3.1.5)
<<ty
This is a convolution, so
= = = N-1 ~
Ky (@) = B (@) (F(@)) Prog (). (3.1.6)
For the special case of N =0,
IZO(a)) = 6none(a)) : (317)

To calculate these quantities, it is easiest to begin with p,(t). It is the total probability that the next
event is at least at a time t in the future. Therefore,

Pes () = [ p(r)d7 . (3.1.8)
t
Thus (noting that p,,(0)=1 but p,,(t)=0 for t <0, so there’s a unit jump at t =0),
Prase (D) = 5(t) = p(t). (3.1.9)
Since
p(t) = L I Pw)e“'daw, (3.1.10)
27y,

eq. (3.1.9) is equivalent to
(0P g () = 5() - Pw), (3.1.11)
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And since (@) =1, it follows from (3.1.11) that

~ 1 o~

Pra (@) = E(l — P(@)). (3.1.12)
From I’Hopital’s rule,

lim Py (@) =i0'(0), (3.1.13)
the mean interval, and, the Taylor expansion near 0 is

= .z, .z,

pﬁrst(w)=lp(0)+lzp 0)+.... (3.1.14)

To calculate pg(t), we note that it is contains a contribution from all intervals of length 7 >t. It is the

probability that time O is inside such an interval times the probability that, conditional on being in this
interval, that it is t —7 from the end. The former is ( Py, (1), €q. (3.1.4))); the latter is 1/7. Therefore,

0

[ p(@)de
Pyitnin (7)A 7 =5 ——. (3.1.15)
Ir p(r)dr

0
The numerator is p,q(t) and the denominator is the mean interval, (3.1.3). Therefore,

o) 1-0@) _1- F@) (3.1.16)
ip'(0)  iw(ip'(0)) -wp'(0)
We could also have seen the relationship of Py (t) to p.o(t) (i.e., Py (t)/ Pg(t) 1s the mean interval)

P first ® =T

1
T

6first (C()) =

by recognizing that the time series is invertible, and that the only difference between pg(t) and p, (1)

is that p,, () is conditioned on the occurrence of an event, which has probability per unit time of

(1/mean interval). Note that
lln’é r)first(a))zl' (3117)

A similar argument yields p,,..(t). Given that a randomly-chosen time is within an interval of length 7,

the probability that the following t seconds stays within the interval (and therefore, contains no events) is
(t—7)/7. Therefore,

. [@-tp)de
Prone(®) = [ Puiin (7)d7 =— : (3.1.18)
vt Irp(r)dr

0

-1

From this it follows that

Prone (1) = () = Pt (1) (3.1.19)

and that i

Prone (@) = .L(l ~ Prs(@)) = .1_2'3,(”) il (3.1.20)
1% 10" p'(0) lw

From the first part of eq. (3.1.14) and L hopital’s rule, it follows that
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. = =2y H I " 1 4
1 B () = 1B (0) =17 p'(0) = == P(0). (3.121)

Eq. (3.1.20) can be checked from (3.1.6) and (3.1.7), since we should have Z IZN () = IL (the Fourier
@

N=0
transform of the Heaviside function):

2, = ~ N~ z N-T ~ = F:) irs (a))ﬁas (a))
Ky (@) = Prone (@) + D Bt (@) (B(@)) B (0) = Py (@) + ——
N=0 N=I 1- p(w)
= p , (3.1.22)
_ L_i 6first(w) N pfirst(a)z Prast (@) _ i
o 1w 1-p(w) 1)
with the last equality following from (3.1.12).
Poisson process
For a Poisson process with rate A4, the renewal density is
pPOisson (t) — le—/u , (321)
its Fourier transform is
& Poisson 1
W) =—, 322
P (@) I+iw/ A ( )
and
6rPoisson (0) =—i/A. (323)
From eq. (3.1.12),
& Poisson 1 1 1 & Poisson
)= = = o). 324
Pras () A +iw/A) A+ie A (@) .24
From eq. (3.1.16),
& Poisson 1 & Poisson
_ R . 3.2.5
Phirst (@) TR () (3.2.5)
From eq. (3.1.20),
& Poisson 1 1 X Poisson
W)=———=— ). 3.2.6
Prone (@) RESPY 7P () (3.2.6)

Stimulus autocorrelation
We consider a few model cases, and assume that the images are statistically homogeneous. We use C4(X)
to denote the spatial autocorrelation of the image ensemble, i.e.,

Cs(X) = (S(X)S(X, + x))xo, 4.1.1)
and
(k)= T Co(x)e ™ dx. (4.1.2)

A single still image
When the stimulus is a single still image, S(x,t) = S(X), then the spatiotemporal autocorrelation only
depends on the spatial displacement. So
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Cs(X,7) =C4(7) (4.2.1)
and its Fourier transform is given by

C. (k, @) = 276, (K)S(). (4.2.2)
For this, the convolution in eq. (2.1.8) becomes trivial:
Cy (k,@) =& ()d(k, @) (4.2.3)

Randomly changing snapshots

Assume that the stimulus consists of a static image that changes according to a renewal process with
renewal density p(t), and each image is uncorrelated. If there is no change in the image within the time

lag of the autocorrelation, the result of the above section applies. This happens with probability K (7).

Otherwise, since the images are uncorrelated, the autocorrelation is zero. Thus (taking both positive and
negative times into account)

Cs(X.73ty) = ¢, 0K, (|7 - 4.3.1)
The Fourier transform of K (|r|) contains a contribution IZN (w) for 7 >0 and a contribution IEN (—w)

for 7<0,

Co (K@) = & (K)( Brone (@) + Prone(~) ). (4.3.2)

We can view this either as changes in the image, or as saccades at times determined by p(t). For the
latter, one can use a gamma distribution

pgamma (t) — (a/l)a ta—le—alt (4 3 3)
I'(a)

This has a mean rate A, a mean interval 1/ 1, and a variance for the mean interval of 1/a4”. Since it is

the a-fold convolution of a Poisson process of rate aA, its Fourier transform is

gamma _ 1 )
p (w)—(—mw/(M)] : (4.3.4)

The eye movement process

One dimension, Brownian

For a Brownian process, ((AX,7;t,) is independent of t,. We assume that the eye position corresponds

to a diffusion governed by
0 0’
— (X, 1) = Dg,punian =5 (X, 1) 5.1.1
p q(x,t) = Dg v q(x,t) (5.1.1)
Via standard techniques, this leads to
q(kﬂ T)Brownian = eXp(_kzDBrownian |T|) . (5 1 2)

r

2

That is, the eye position, after time 7 , has a probability distribution whose variance is 2Dg_ian |

namely,
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2

1 X

X,T) = ——-—exp(———). 5.1.3
q( ) 4'7Z-DBrownianT p( 4DBrownianT) ( )
Since §(k,7) = I q(x,7)e"dx,

2 i 2 _ az
(x >=ij q(x,r)dx=—%q(k,r)|k:0. (5.1.4)
Thus, the variance after time 7 can be directly found from eq. (5.1.2):
(%) = 2Dy qupian - (5.1.5)

To see the effects on static images, we apply eq. (2.1.8). We need the spatiotemporal transform of eq.
(5.1.2):

o0

dBrownian—lD (k’ C{)) = j eXp(_k2 DBrownian |Z'|) exp(—ia)r)d 7C (5 1 6)
A standard result is

I exp(—b|r|) exp(—iwr)dr = 22b = (5.1.7)
7 b*+w

So with b =Kk’Dg,nian »

& kzD rownian

qBrownian—lD(k’a)) =2 k4D2 . +a)2 (518)

Brownian

k| << \/a)/ DBrownian b

w?, (5.1.9)

For b<<w, i.e.,

aBrownian—lD (k’ 0)) ~ 2k2 DBrownian
which (in eq.(4.2.3)) neutralizes a power spectrum of K.

The optimal D

With the idea of asking whether fixational eye movements can be tuned to task, let’s find the value of D
k*Dg g ) .
oM js maximal.
k*D +o

Brownian

where (K, ) =2

0. = o kD
2 Jogi(k, ) = log| 22—
o0 e =55 Og( k4D2+a)2J

0 0
=£log(D)—%(k4D2+w2) : (5.1.10)

1 2D

D k'D’+o’
So 8%61(1(,60) =0 occurs when 2k‘D* =k*D’ + @, i.e., when k'D* = @’, i.e., when D=w/k’. This
means we predict that partial stabilization will improve sensitivity if D> @/k”.
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One dimension, Brownian, with drift

Let’s say that the mean eye position moves at a fixed velocity ¢. So now
qBrownianDrift (AX’ 75 to) = qBrownian (AX - CZ', 75 to) (5 1 . 1 1)

where Ogumian 1S given by eq. (5.1.1). Then

~ —ikx
qBrownianDrift (k’ Z') = J. qBrownianDrift (X’ Z')e dX

—00

= I qBrownian (X —Cz, T)e_ikxdx = I qBrownian (U, T)e—ik(u+cr)du : (5 1. 12)

—00 —00

(ka T) = e_iKCT eXp(_kzDBrownian |T|)

—iker &

=€ qBrownian

Calculating as above,

aBrownianDrift—lD (k’ a)) = J. eXp(_ikCT —k? DBrownian |T|) exp(—ia)r)d T

= [ eXp(=k’Dgyqupian [7]) eXP(=i(@+ kC)7)d T = Gy iy 10 (K, @+ kC) . (5.1.13)

k’D

— 2 Brownian

k4 Dérownian + (0) + kC)2

The no-drift asymptotic analysis (for |k| << \J@/ Dg,gmian » that the second term in the denominator
dominates) still holds provided that also

|+ ke| >> k* Dgyppian -
(5.1.14).

Not surprisingly, in the neighborhood of w+kc =0, i.e., when k =—w/ ¢, which corresponds to

spatiotemporal components that move synchronously with the drift, there is a “resonance:”

~ 2

Obrownianoritt_1o (K» —KC) =

qBrownlanDrlft—lD ( ) k 2 D

Brownian

Two dimensions, Brownian

To match the 1-D case, we set this up so that the variance at time 7 is 2Dz (expected distance squared in
the plane). Since this is a sum of an X-variance and a y-variance, we’d want the X-variance and y-variance

each to be Dz . So, the relationship to the one-dimensional problem is Dy, ..., = D/2, and the diffusion

law is

0 o 0

—q(X, Y,t) = Dgrounian | = + = |A(X, Y, 1) ==DV-q(Xx,y.,t). 5.1.15
8tq( y,t)=Dg (8x2+ay2]q( y,0) > a(x, y,t) ( )
Diffusion along each coordinate is independent. So, eq. (5.1.2) yields

G(k, k,,7) = o (5.1.16)
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and eq. (5.1.3) yields

1 x? 1 y’? 1 x* +y?

X, Y,7)= exp(— exp(— = exp(— , 5.1.17
40%.¥.7) (\/27zDr xp( 2Dr)j(\/27rDr Xp( 2Dr)j 27Dr Xp( 2Dzt ) ( )
and we can check that

. 0* 0% ).

7)o, 200 5119

2 2
Again using eq. (5.1.7) with b = (%J D, the spatiotemporal transform is

G — i A —ior _ (kx2 + kyz)D

qBrownian—ZD(kx’ky’a))__[Oq(kxakyar)e da)— (kX2 +ky2)2 D2/4+a)2 . (5119)
For small k or short times, i.c., for k} +k’ <<2a/D (equivalently, |k| << \/@/ Dg,gnia ) this is
approximately

aBrownian—zD(kw I(y9 (0) ~ (kx2 + kyz)Daf2 ’ (5120)

which (in eq.(4.2.3)) also neutralizes a power spectrum of K.

Note that had we considered a separate D, and D, we’d have found
aBrownian—ZD (kx > ky ° 0)) ~ (kx2 Dx + ky2 Dy )afz H (5 1.2 1)
so, not surprisingly, if diffusion only occurs in one dimension (D, = 0), the neutralization only applies to

Fourier components that vary in the other dimension.

Fractional Brownian motion

Generalize (5.1.16) to

a(k|.0) = g 1ok (5.1.22)

We’d like to compute, or at least estimate,

k

Qe (K|, 0) = Tq(\ﬂ)e‘“dt. (5.1.23)

Put b=|k|' D. Then q(K[.0)=¢™"" and Gy, (K|.0) = Z(b, ). where

Z(b,w) = [ e et (5.1.24)

Note a kind of scaling:
Z(b,w)= [ e e dr =b" [ e e Mt =b"Z (1 ab ™). (5.1.25)
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We hypothesize (based on eyemov_spec fbm.m) that for large @ (@ >>b),

Z (b, w) ~ Ab,h)o™". (5.1.26)
This makes sense from the kind of “fractional derivative” discontinuity that (5.1.22) has near 0.
Assuming this is the case, then looking at (5.1.25) for large @ :

Z(0,0)=b""Z(1,ab™") ~ b AL h) (@b ™Y = A(L,h)o " b = A(LLh)o ™ \R \2 D. (5.1.27)

That is, for sufficiently large temporal frequencies @
~ - |2
G (K], "k b, (5.1.28)

which yields whitening, since, integrating over the same (high) range of @ ’s yields results that are

proportional to \Rr .

Bazant (“Lecture 227, https://ocw.mit.edu/courses/mathematics/18-366-random-walks-and-diffusion-fall-
2006/lecture-notes/lec22 _neville.pdf) in egs. 23 to 29 shows that

aal (a)sin %

L (a,X)= L j e e dr ~ _ (5.1.29)
27 e 7Z'|X|
)
. 7h
bhI"(h)sin—
Z(b,w) =27L, (=, @) ~————2 (5.1.30)
2 |a)
So the hypothesis (5.1.26) holds with
A(b,h)zbl“(h+1)sin%h. (5.1.31)

The validity of the asymptotic is illustrated in eyemov_spec fbm.m.

Abrupt refixations within random steps
We can use the renewal process analysis to analyze another case: saccades with renewal density p(t),

k). If
x>y
exactly N steps are taken (which has a probability K, (7)), then the distribution of displacements has

and in which the step is drawn from a random distribution r(X,y) with Fourier transform F(k,,k

Fourier transform (F(kx, y)) Therefore (with “c.c.” for complex conjugate, i.e., substituting —@ for

),

~ N =

Grer20 (Kyo Ky @) = DKy ( (r(kx,ky)) +C.C. (5.2.1)
0

or,
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areflx 2D(kx’ y° a)) = 6none(a)) + Z 6first(a))( 6((0)),\‘71 6Iast(a))(r(kx’ ky))N +C.C.

or,
ﬁfirst (a)) plast(a))r(kx ’ y)

s c.C.
1- po)F(k,.k,)

areflx ZD(kx9 y’a)): 6none(a))+
or,

=B (1= B@) Fk,.k,)
i’ p'(0) i’ p(0)(1- P(e)F(k,.k,))

q:reflx 2D(kx9 y?° ):

or,
- fo) (1= B@) fk, k)
i0p'(0) i’ (O)(1- p(@)T(k,.k,))

arefix—zD (kx > ky , @) =

or,

&reﬁxw(kx,ky,w) — (o) [ (1 - f)(a))) f(kx,ky)] ee

PO (1-P@)F(k,.k,))
or,

I-Ppl) 1-Teky) oo
i’ p'(0) (1- p(@)F(K,.K,))

areflx ZD(kx’ y? ):

To see the behavior for small k, say r(X, y) has variances V, and V,, so that

V, k?+V k2
F(k,.k Q—exp(—%).

For |k| V <<1, eq. (5.2.7) becomes,

y 1- p(w) (VK +V .k,
k. .k ,0)=—= YV _l4c.c.
qreflx ZD( X y ) Ia)2 ﬁ’(O)( 2

For a gamma-process, spec_renewdec _demo.m for a plot of the @ -factor (for 4 =

a=1,2,4,...128).
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W 1
LR I

For a Poisson process, this reduces to

y)
Grerc-20 (Ko K p@) = (Vi +V k). (5.2.10)

Note that the k-term neutralizes a power spectrum of k™ (provided V, =V,).

Abrupt refixations within a window

Another example is that of saccades with renewal density p(t), but the saccades always land somewhere
within a Gaussian window (so they never accumulate a large deviation from the starting position). Let the
autocorrelation of this window be r(X, y) with Fourier transform F(k,,k ). This is just like the previous

case, except that for N > 2 steps, the decorrelation is no more than for N =1.

awmdow 2D(kx’ y’a)) = 6none(a)) + Z 6first(a))( 6(a)))N_l 6Iast(a))r(kx’ y) +C.C. (531)

or, ~ 3

awindow_zo (kx’ g a)) _ 6n0ne(a)) n pfirst(w) plast:(a))r(kx’ y) 1 CC. (532)

1= p(o)

or,

. p(a)) (1= P(@) Pk, .k, )

qwindow—ZD (kx9 y? 60) - (O) ia)z F:)’(O) +C.C. (533)

or, _

g (k,,k ):ﬂ(l— F(k,.k,))+cc. (5.3.4)
window—2D \ "' x 2 NNy » ia)2 p/(o) X2ty

For a Poisson process, this reduces to
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~ 22 ~
qwindow—zD(kkayaa)) = 22 + a)z (1 - r(kkay)) . (535)

For a Gaussian (k,,k, ) and |k|2V << 1, the asymptotic behavior is the same as that of (5.2.7). But note

that this case factors exactly; the case in which saccadic movements can accumulate only factors
asymptotically.

Constant velocity, Poisson direction-interchanges (one dimension)

This is a model of eye movements that is not intended to be physiologic; instead, it is a highly non-
physiologic model, to look at what happens if eye movements are very different from the normal.

I think we can anticipate that this will have the same effect as Brownian motion at sufficiently slow
frequencies (but only for orientations that are approximately perpendicular to the movements).

It also might serve as a starting point for analyzing nystagmus.

The model is that eye movements drift with a constant velocity Vv, but the velocity changes direction
randomly (according to a Poisson process), with rate a.

To analyze the process, we note that eye movements evolve in a “state space”, in which the state consists
of the current direction of the eye movement (L or R), and, the current displacement, X. That is, we can

h, (X,t
hREx t;} , where h,(x,t) is the probability that the eyes are at a
L )

displacement X and are moving to the right, and h _(X,t) is the probability that the eyes are at a

describe the state at time t by a pair [

displacement X and are moving to the left.

hL (X,1)
h, (x,t)

this, we start with a Fourier basis, for a reason that will become quickly clear:

We’d like to find eigenvectors for the operator that determines how ( j evolves in time. To do

1 e ikx
hj(x,t):gihj(k,t)ek dk (5.4.1)

for j=R or j=L. Thatis, ﬁR(k,t) is the projection of the probability distribution onto €"* of the right-

drifting component, and similarly for ﬁL(k) . Note that evolution in time can mix ﬁR(k,t) and ﬁL(k,t) at

the same spatial frequency Kk, but cannot mix components at different spatial frequencies. So the Fourier
transformation determines two-dimensional subspaces in which the probability density evolves, and
therefore, these must contain the eigenvectors. Our initial conditions are

hL(X,0 o(X
600 1000} (5.4.2)
h (x,0) ) 2{d(x)
since the eyes start at the origin, and can be assumed to have equal probability of starting to drift to the
left, or to the right.
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Eigendecomposition

h, (Xt
Howdoes( (%)

h ( t)] evolve over time? Since it is linear, we can analyze it component by component.
X
L\

[hR(x,t)J h(kt) (5.4.3)
h.(x,0)) | h (K, t) ' o

In a time step At, there is a probability 1—aAt that the eye does not change direction, i.e., stays
rightward-drifting at velocity v. In this case, the rightward density goes from &** to e****" and the
leftward density goes from € to €*****Y _ There is a probability aAt that the eye does change direction,

and in this case, the density remains e**, but the rightward component becomes the leftward component,
and vice-versa. Thus,

(hR(X’t i At)j —(1- aAt)(rlR(k’t)e.l L aat [h (K, t)} . (5.4.4)
h, (Xt + At) h, (K, t)e" et h, (K, t)

Say

For small At,

(hR(x,tJrAt)j: (1 —arD) (l—ikvAt)flR(k,t) o 4 aAL [ (K, t)] ’ (5.45)
h (X, t+ At) (1+ikvAt)h, (k,t) h (K, 1)
SO
[hR(x,t+At)j_ hR(x,t)]
i(hR(x,t)thm h (xt+At) ) [ h (x1) (( a—ikv)hg(k, t)] a [h (K, t)} | (5.46)
dt\ h (x,t) ) a0 At (—a+ikv)h, (k,t) he (k,t)
Making use of eq. (5.4.3),
E(QR(k,t)j:(—a—ukv a j{@R(k,t)]:Mk[%(k,t)} (5.4.7)
dt{ h_(k,t) a —a+ikv J{ h (k,t) h, (k,t)
where
(—a—ikv a J
M, = . (5.4.8)
a —a +ikv

Eq. (5.4.7) shows how the density evolves in the 2-d space corresponding to the spatial frequency K .

To make this explicit, we find the eigenvalues and eigenvectors of M, . The eigenvalues of the matrix
(5.4.8) are solutions of its characteristic equation,

det|M, —1z|=2* +2az + k*v* =0, (5.4.9)
namely,
z, =—a+a’-k’v’. (5.4.10)
b,
Thus, given any eigenvector €, = (b ] of'eq. (5.4.9), there is a solution of eq. (5.4.7),
(K.t e
)| [ e“. (5.4.11)
L(k t) eL
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Without loss of generality, we can assume that the eigenvectors are associated with the eigenvalue z are of

1
the form [eR = [x

eL
that the eigenvectors are

1
. In order for M, [x

1 ..
= z[ ], we must have —a —ikv+ax =z, from which it follows
X

1

and , with

Xy

X, :l(z+ +a+ikv):Ik—vi\/I—kzvz/a2 . (5.4.12)
Ta a

At k=0,z=0 or z=—-2a and x, =+1. At k=a/v, z=-a and x, =i (a double root). Note that
X,X_=-1, independent of k.

We can superimpose solutions of the form (5.4.11) to obtain a general solution of eq. (5.4.6):

he (X,t) 1 7 1 2t 1 2t | ik
(hL(x,t)]:E_-[O(C*(k)(x+(k)je+ +c(k)(x_(k)je ]e dk . (5.4.13)
This has the initial condition
[hR()“O)J:LT(c (k)( 1 J+c (k)( : Be‘k*dk. (5.4.14)
h(x,00)) 277" x,(k)) x_(k)

Solution
The next step is to express our initial conditions (eq. (5.4.2)) in terms of the eigenvectors. Since

h.(X,0) =h (x,0) = %5(X) , we need to find coefficients ¢, and c_ for which

L _ : : 5.4.15
E[J—C* X +C_ ‘) (5.4.15)

where X, is given by (5.4.12). It follows that

¢ -7l (5.4.16)
200 —x))
and
c -1 X% (5.4.17)
2(x_—x,)
(where Cc,, C_, X,,and X_ could depend on k), and these reduce to
1 1—ikv/a
C, =—| 1+ ——|, (5.4.18)
40 V1-kv'/a’?
and
1 1—-ikv/a
C=—|1l-——m——=. (5.4.19)
4\ J1-k¥?/a?
Since X, X =-1,
—1-x 1 1+ikv/a
CX,=————=—| |+ ———— (5.4.20)
2(x =x,) 4( \/l—kzvz/azJ
and
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. :H_X-ZL(I_M], (5.421)

T 2(x-x) 40 J1-kWia?

Eq. (5.4.13) now provides the solution from our initial conditions:

(hR(x,t)]Z 1 w[[1+f(kv/a)Je(_a%/—az_kzvz)t{1—f(kv/a)je(_a_m)tJeikXdk
h (x,t)) 8z \\1+ f(-kv/a) 1-f(-kv/a)

oot 2 cosh((\/az —k*v? )t) + f(kv/a) sinh((\/a2 —k*v? )t) ’ (5.4.22)

ikx
= e dk
r =, cosh((\/az 1 )t) ot (—kv/a)sinh((\/az eV )t)
where
Fu)y=——" (5.4.23)
V1-u®
The right and left components (top and bottom) of (5.4.22) should be the same at long times, or, as
a — oo. In the latter case, u=vk/a— 0, f(u)—1 and both top and bottom of (5.4.22) become
—at % (AT w K
h.(x,t) =h, (x,t) = ¢ J'e( ‘ )te'kxdk _ L I g 22 te"‘xdk, (5.4.24)
dr ° dr

appropriate for Brownian motion provided that v* is proportional to a (which makes sense to maintain a
diffusion limit).

In the limiting case of a =0, we do not expect that the top and bottom will be the same, because the eye
direction never switches. That is, when the eye is moving right (top), it will always be to the right of the
origin, at position X =Vt, and when it is moving left (bottom), it will always be to the left, at position
—vt. Formally, for a=0, u=Kkv/a becomes infinite, f(w0)—> -1, f(—0)—> +1, and (5.4.22) becomes
(with sinh(iy) = isin(iy)

(hR(x,t)j 1 °°(cos(kvt)—isin(kvt)jeikXdk

h.(x.t)) 4z | cos(kvt)+isin(kvt)

0 —ikvt ) 0 ik(x—vt) 5 X — vt ?
L N T
4 I | et 4z | g 2\ S(x+vt)

00

(5.4.25)

as expected.

Effect on the input spectrum

To evaluate the effect of eye movements on an image, we are interested in the Fourier transform of the
probability of the eye position displacement. This is §(K,t) = ﬁR (k,t) + ﬁL(k,t) . From (5.4.22),

Gk, t)y=e™ [cosh((\/a2 —k*v? )t) + ﬁsinh((\/ a’—k*? )t)]

b
—Ja?-k?v?)t n 1 (e(—a+\/a2—k2v2)t _ e(—a—\laz—kzv2 )t)
J1-k*v?/a?
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for t > 0. For negative values of t, it is the same expression, with argument |t |. This is a sum of
exponentials in t. Using eq. (5.1.7),

a—+va’—k? a++a’—kv?

+
(a—al -k’ ) +e® (a+va’—kV?) +a

(k. @) = [ G(k,|t e dt =

1 a—+a’ -k’ a++va’ -k’ G420
JI-k*v? /a2 (a—x/a2 —kV*) + &’ B (a+\/a2 k) + &’
This simplifies dramatically via straightforward algebra:
- 1
q(k7a)) = 2 2 :
((a—\/a2 —~ kzvz) +a)2j((a+\/a2 —~ kzvz) +w2j
. (5.4.28)

2 24,2
[Za(kzv2 + @) +M(k2v2 — )J

JI-k*v?/a*

1
(a _mf + a)z)((a ++/a’ —k*v? )2 + wzj _ (5.4.29)

(Za(kzv2 +a')+2a (kv - wz))

q(k, ) = (

2,,2
G(k, ) = 4ak’v . (5.4.30)
4p’a’ + (k2V2 - a)z)
Contact with Brownian case
To make contact with the one-dimensional Brownian case, we consider the large-a limit (rapid
switching), and choose
v =2aD. (5.4.31)
This is dimensionally correct; v is length/time, D is length®/time, and a is time™. Eq. (5.4.30) becomes
2,2
ak, ) = Ska D = (5.4.32)
4w’a’ +(2k’aD - o)
In the regime of k’aD >> @’ , this becomes
q(k, ) = _2kD (5.4.33)
’ o’ +k*'D’ o

which matches (5.1.8), and yields the k> behavior needed to neutralize the power spectrum of natural

scenes for sufficiently high temporal frequencies @. In the regime of k’aD << @’ or k*v* << 2@’
(temporal frequencies faster than the typical reversal), this becomes

- 8k’a’D

q(k, w) =——,

Ak, @) 4o’a’ + o'

which also yields the k* behavior needed to neutralize the power spectrum.

(5.4.34)
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Contact with constant-velocity motion

For steady smooth motion (a =0), eq. (5.4.30) is zero except when @ = kv, as expected: a spatial
frequency is translated into a temporal frequency.

Constant-velocity, gamma-process reversal rates

Note that more elaborate “state-space” models can readily be handled. For example, say the distribution
of times to reverse direction are goverened by a gamma-process of order g =4. That is, there’s a hidden

Poisson process of rate a, and, after four of these hidden events occur, the eyes reverse direction. In this

o
case, h, is replaced by Em , similarly for h , and eq. (5.4.8) is replaced by
R,3
HR,4
—a—ikv a 0 0 0 0 0 0
0 —a—ikv a 0 0 0 0 0
0 0 —a —ikv a 0 0 0 0
0 0 0 —a —ikv a 0 0 0
M, = i (5.5.1)
0 0 0 0 —a +ikv a 0 0
0 0 0 0 0 —a+ikv a 0
0 0 0 0 0 0 —a +ikv a
a 0 0 0 0 0 0 —a +ikv
Eigenvalues
To calculate its eigenvalues, we consider M =al + M, . This is a matrix like
-ikv. a 0 O 0 00

0 -ikv a 0 0 e 0 0

0 0 0 -kv a 0 0 0
M = ) ) (5.5.2)
0 0 +ikv a 0 0

O 0 O 0 +ikv a o0

o
o

a 0 0 0 0 0 0 +ikv
All of its invariants except the determinant do not depend on a. When a = 0, the matrix is diagonal, with
g eigenvalues —ikv and g eigenvalues +ikv. One can also see (by direct expansion) that

det(M;) = (—ikv)? (+ikv)® —a*® =k*9v*¢ —a* (5.5.3)
Therefore,
det(M; —yl) = (y +ikv)?(y —ikv)? +a*% = (y* +k*v*)? —a’?. (5.5.4)

The eigenvalues of M are roots of det(M; —yl) =0, namely,
Y. = +alp! —kV?, (5.5.5)

Page 19



where ¢ is a nontrivial g th root of unity and j € {0,1,---,9 —1}, and the eigenvalues of M =-al + M|

z, ,=—a+y,,=—atya‘pl —-kV?, (5.5.6)

arc

generalizing (5.4.10).

Eigenvectors

The initial conditions, generalizing (5.4.2), are

he,(X,0)

: 5(x)
hRg(X70) 1 .

: L 55.7
h ,(x,0) | 2g 500 437
hL,g(x,O)

we need to express this in terms of the eigenvectors.

As a warm-up, we re-express the results of the g =1-analysis of egs. (5.4.15) to (5.4.21) (writing the
initial conditions as a sum of eigenvectors) in a way that better respects the symmetry of the problem.
That is, we seek coefficients b, and b for which

11_b 1 b r 558
(o))

It follows that
1 1—ikv/a
b, =c¢, =—| 1+ ————|, (5.5.9)
4( \/l—kzvz/aZ]
r+:x+=|k—v+x/1—k2v2/a2, (5.5.10)
a
1 1+ikv/a
b =cX =—|1-——= |, (5.5.11)
4( \/l—kzvz/azj
and

r-t o =N Teva, (55.12)
X_

a
and one can verify that b.r =c_.

To find the eigenvectors, we note that for a general matrix of the form

b G O O
0 0

m= . PR (5.5.13)
qN—l 0 O pN*l
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then an eigenvector W =

(with subscripts interpreted cyclically mod N), which means that

.

g,=a
and the eigenvalues z are given by eq. (5.5.6). So,

vl
a
—'k—VJ_r«/goj -k**/a*, n=g,..,29 -1

Here,

Qs

WNl

Zj— P _

and eigenvalue z must satisfy

an = ann + qan+1

w

a

:Z_an

n+1

n-

—a—ikv, n=0,...,g-1
—a+ikv, n=g,...,.20 -1,

Note that the product of the two alternatives in eq. (5.5.17) is

a
So, with

(”(—Vi\/go" —k*?/a?

U, =—-+

]

2,,2

j(—'k—vi«/goj —kzvz/azj: K (o' kvt ) =gl
a a
\/goj —k*v*/a*,

we can write a matrix whose columns are the eigenvectors:

0,..,g 1

where we have taken w, =1 for the first set of g columns (z

w, =1 for the second set of g columns (z

To express the initial conditions in terms of the eigenvectors, we want to solve

ch =

1 (_“j)g
uj o' (-u)"
b (¢')" (-u))
u.® 1
‘/’jujjg_1 i

((pj)g_l U;

(-y, )gil

+1
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(5.5.14)

(5.5.15)

(5.5.16)

(5.5.17)

(5.5.18)

(5.5.19)

(5.5.20)

ineq. (5.5.17), j=0,...,9-1), and
- ineq. (5.5.17), j=0,...,g-1).

(5.5.21)



The nth element of C indicates the weight of the n th eigenvector Z, (the nth column of Z )

corresponding to an eigenvalue z,, and exponential timecourse e™ . Here, we use n € {0,...,g —1} as
equivalent to the pair (+, j), and n €{g,...,29 —1} as equivalent to the pair (-, j),Determining the
contribution to the density requires that we sum over all 29 sheets, i.e., that we multiply this element of

C by the sum of the elements of this eigenvector, namely, computing 1' Z .

To solve (5.5.21), we will make use of the fact that the row eigenvectors of M and the column

eigenvectors are orthogonal. That is, say R is a matrix whose rows are the row eigenvectors of (5.5.20),

g
and that A is a diagonal matrix whose diagonal elements list the 2g eigenvalues of M. Then,

R,Z,A=R,M,Z, =ARZ,. (5.5.22)

This means that R;,Z, and A commute. Provided that the eigenvalues of M are distinct (which is

generic, see eq. (5.5.6)), then this in turn means that each row eigenvector is orthogonal to all column
eigenvectors, except the one with the same eigenvalue.

We can now write (from eq. (5.5.21)):

B
RngC = ERQ] . (5523)
SO
| -1 =
C:E(Rgzg) R, T, (5.5.24)

where the matrix inversion is trivial since R Z is diagonal. Finally, the weight of the exponential
corresponding to the n th eigenvalue is the nth component of this expression, multiplied by the sum of
the values in the nth column eigenvector, namely, 1’ Zg . Thus, this coefficient is

d, =%((Rgzg )1) (R,) (T"Z,), - (5.5.25)

Thus, the next step is to compute the matrix R; of row eigenvectors. We use the method of egs. (5.5.13)

to (5.5.20). For a general matrix of the form (5.5.13), a row eigenvector V' = (V0 VN—I) with

eigenvalue Z must satisfy
Vnz = pnvn + qnvn—l (5526)

(with subscripts interpreted cyclically mod N), which means that
2Py (5.5.27)

n-1 n

Oy
p, and @, are again given by eq. (5.5.16), and z by eq. (5.5.17). Thus,

v
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g-1 i\9! iy g1 g
uj uj 1 ((/)) uj (puj u.

i s
o) o o (| e

,jineq.(55.17), j=0,..,g-1),and v, _, =1
ineq. (5.5.17), j=0,..,9-1).

where we have taken v, | =1 for the first set of g rows (z

for the second set of g rows (Z_

The diagonal elements of R, Z; are given by

(RZy),,=9(u + (o) 0 ) =gu? (u 4 (0 ) (5.5.29)
and

(RZygur0 =9 ((~u)" +(0))" ()" )= =g (1)) (4, + (0 70))) (5.530)
(with je{0,..,g—1}).

We determine 1" Z, from eq. (5.5.20). The result follows easily by summing geometric series:

1"z = I . (5.5.31)

Since the values in a row of R, are the same as the values in the corresponding column of Z; (but in

reverse order), it follows that

R, 1" =(1"2,) . (5.532)
Finally, we can obtain the coefficient of the n th exponential decay mode from eq. (5.5.25), using (5.5.29)
through (5.5.32):
1 1 1-u? Y (¢ -u? Y
S — ) 2 oo
9% uf(u "+ uy) 1-uy ) L @' -y,

and
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with j€{0,...,0—1}.

Note that

@ +u=2u\p' -k’ /a’

So there’s an alternate form for (5.5.33) and (5.5.34):
. 2 : 2
d =1 uje’ 1-u? (o' -u/
j 2 g i 2 i
297y, (gp +U, ) 1-u; ¢ U,
_ 1 ¢’ 1-uf 2 ' -u’ 2
49 Ujg\/(Dj —kv?/ar | 1-u; ¢’ —U;

. g 2 j 2 2
g -t ¢’ 1-(-y;) ¢ Y
B R T N e S AL o' +u,

To check for g=1 (with j=0): Eq. (5.5.33) becomes

2
d —l(l—'—uo) :l 1.}.& :l 1+ 1

2 ul+1 20 ul+1) 20 Viskdvvisal )

t

and

the coefficient of e in (5.4.26). For the other eigenvalue, eq. (5.5.33) becomes

g L0-w) 12 Y 1f, 1

2 oul+r 20 ul+1) 20 iokai/ar )

the coefficient of e*'both as required for (5.4.26).

Synthesis of the solution

The eigenvalues z, ; are related to the u’s by (see egs. (5.5.19) and (5.5.6)):
z,;=-at(au; —ikv),
So

b

g+]

g1 _
qd(k,t) = e‘e‘tZ(dje(a“j_'kv)t +d

e(—auj +ikv)t )
j=0

d. +

a2¢j — kA2

~ “< ) g-1
d(k,0) = [ a(k,|the ™ dt=2)"

The denominator will clear; the common denominator is
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a_
; i ; g+]j
j—O{(a— a’p! —kV') + o’ (a++a*p' —kV* ) + @’

(5.5.34)

(5.5.35)

(5.5.36)

(5.5.37)

(5.5.38)

(5.5.39)

(5.5.40)

(5.5.41)

J. (5.5.42)



Dj=((a— a2¢j—k2V2)2+w2)((a+W)2+w2)=
o'+’ ((a— a’p! —k*v?)? +(a+\/m)2)+
R (5.5.43)
o' +20° (a7 +a’p’ —k2v2)+(a2 ~(a’p’ —kzvz))2 =
o' +20" (@2 (1+9") k) + (2 (1- ) + KV ) =
40'a> +(0” —a* (1- ') —K*V?)

Note the resonances that appear for j>1,1.e., g>2.

The numerator:

N, :(a—\/m)((a+\/m)z +a>2)o|j +

(a+\/m)((a— a2¢j—k2V2)2+a)z)dg+j
:((a+\/m)(az—a2¢j+k2v2)+a)2(a—\/m))dj+ . (5.5.44)
((a—\/az(,o"W)(a2 ~a’p! +k2V2)+a)2(a+\/m))dg+j

= a(a2 —a’p! +k*V? +a)2)(dj +dg, ) +a‘p! -k (a2 —a’p! +k*V? —a)z)(dj -dg, )
From (5.5.36) and (5.5.37),

S 2 2 2 9\’ :
j— Mg+ 492 Ujg\/¢j—k2V2/a2 l—Uj (DJ—UJ- - 1+Uj ¢J+Uj

: 2 0\’
_ ¢’ w2 () iy V
49’ u o' —kv?/a’ [l—ujj (o +u) () { L1+u; (0 -u) . (5.5.45)

]

1 Q

" ag? ujg(l—ujz)zm‘
[0y (o) oo (07 1 (o -0 (0?0

For g even:
d+d =1 o(1-u’) ((1+u.)2(¢j+u.)2$(1—u.)2(gpi—u.)2) (5.5.46)
A e (1m0 ol KV et : : : Y -

For g odd:
Error! Objects cannot be created from editing field codes.. (5.5.47)
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Ornstein-Uhlenbeck Process

We consider the one-dimensional case first.

The probability distribution evolves according to
2

0 0 0
006D = 0(X0(X.0) + Do = A(KD). (5.6.1)

a generalization of eq. (5.1.1). It is well-known that with the initial condition ¢(X,0) = 6(X), the solution

1S
2

1 X
X, T = exp(— . 5.6.2
A(X, 7)oup \/272’\/ 0 p( Y (2’)) ( )
where
V(r) = %(1 _e0y, (5.6.3)
(One verify this by substituting (5.6.2) into (5.6.1).) For 7 >>1/6,
V(7)=2Dgp7 - (5.6.4)
Since (5.6.2) is a Gaussian, standard techniques yield
~ k?
q(K, 7)oup-10 = CXp(—EV (|7'|)) ) (5.6.5)
i.e.,, V plays the same role as <X2> =2Dg,oumian -
So,
=~ K kzDOUP ,2,9‘1‘ .
Goupip (K, @) = j exp| = 2E(1-e ") exp(—iwr)dr (5.6.6)

OUP asymptotics, Brownian range
. |k|2 DOUP
Asymptotics for Y large. Then the

approximation that (1 — e_w"‘) ~ 20|z‘| is good, since the only contribution to the integral is when the

quantity is small. This is the limit that the “pull” of the OUP does not matter very much. Here, the
symptotics for the Brownian analysis apply. That is, provided |k| <<\J®/Dgy,p (€., @>> |k|2 Doue) as

well as |k|2 Doy >> 6, then Goyp_p (K, @) = 2k*Dyp@ > .

K[ Do

Further analysis when is small: Break the integral (5.6.6) into two parts: one part

corresponding to the asymptotic behavior when 6?|z'| is large, and the rest. So
aC)UP—ID(ki'a)) = adc(k’a))—l—aac(k’a)), (5.67)

where
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2
&jexp(—ia)r)dr = 27r5(a))exp(—kD&j , (5.6.8)

b 20
and
0,.(k,0) = T (exp(—k;)%(l e_wr)] exp(—%nexp(—ia)z’)dr (5.6.9)
or B
Goe (K, @) = exp{—%} T (exp K% ez“”j E 1] exp(-iwr)dz (5.6.10)

Breaking it down into a DC component and an AC component makes sense: the DC component reflects
the fact tht because of the Hookes’-law force, the walk never wanders too far from 0. So there’s a steady-
state component, and this leads to a §(w) -term.

OuP asymptotics, Hooke’s law force dominates

26
For KDowe g 200

P small: approximate exp[ K" Doue ezerj o

2 K2
0, (K, a))Nexp( K DOUPJJ‘ E Ue o2 exp(~iwr)dr

—00

2 2
= K Doue. exp[——k DOUP] J g 20 exp(—ior)dr

260 20
5 ) (5.6.11)
:%exp _ k DOUP 40
20 20 )40’ + o’
_ 2k2Doup exp| — I(2Doup
460° + 20
k'D
So, for H% small,
= = = 2k’D, k’D
Gour_ip(K, @) = Gy (K, @) + G, (K, @) = (27[5(60) + ﬁj exp[—%] , (5.6.12)
which is not separable. The final factor should be deleted for consistency with “order of smallness™:
Goup_io (K, @) = [27r5(w) + 2k Doy j (5.6.13)
460° + &’

For @ that is sufficiently large (@ >> 26), aOUP_ID(k,a)) ~2k’Dg @, even in the large- & regime.

OUP asymptotics, full range
At the transition, e.g., for | | near 1 (k=c¢,/0/Dy,p =Ck,, ®=aw,=2a8):
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- » © —26‘1‘ )
Gour_1p (Ks @) = Goup_ip (CKy, a0, ) = .[ exp(—c2 5 Jexp(—laﬁr)dr (5.6.14)

—0

or

~ @ _ —26‘1"
Gour-10(CKy, 80, ) = J- cXp (—Cz leT] exp(—iadr)dr

= %]iexp(—cz !

_ 2

Jexp(—iau)du

(5.6.15)
17 ,1—eM c? . 2rexp(—c>/2)
=— || exp| —C —exp(——) |exp(—iau)du + o(a
0]{ p[ : p(—=) |exp(-iau) 7 (@)
2
=% fa.c)+ 2rexp(—Cc/2) 5(a)
See eyemov_spec v2oup demo.m and figure below, which calculates
) _ —Z‘U‘ 2
f(a,c)= I (exp(—c2 ! ; ]— exp(—%)] exp(—iau)du (5.6.16)
which, for small c, is given by
2¢’
f(a,c) = 5.6.17
(a,c) PRE ( )
When c is large, the first term in the integrand in is approximated by 1- ¢ |u| until it gets close to 0. So
for large c,
% 5 . 2¢°
f(a,0)~ [ exp(—c|u])exp(-iau)du = ——— (5.6.18)
oo c +a
A useful approximation over the entire range of C combines egs. (5.6.17) and (5.6.18):
2¢’
f(a,c) ——— 5.6.19
() 4+c*+a’ ( )

This approximation holds provided that C is either small or large. See illustration below; it is not a bad
approximation over the whole range. This leads to a full approximation for the OUP result:

aOUP—lD (k,w) = aoup,m (ck,,aa,)

_ 2
:é f(a,c)+272'exp( c/2) 5(a)
1 AC(Dep/0) | 27exp(-K'Dg/20) s 0. (5.6.20)
OK'Dyyp /0> +4+ 0160 0 0
2k*D

= s, e+ 27exp(~K Doy 120)5(w)
OoupP

The relationship to the Brownian case is seen with & — 0. From the large-C approximation (5.6.18) with
c=k/\0/Dyyp , a=w/6,and

= 1
qoup_lo(Ckoa aa)o) ~ 5 f (aa C) (5621)
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so (using only the large-C approximation):
1 2k*(Dgyp/0) 2k’Dgyp (5.622)

1
—f(a,c)~— = ,
0 @) OK'Dyyp’ /0*+@° 160° K'Dyp’ + @
as in eq. (5.1.8), confirming the Brownian limit. This also follows directly from (5.6.20) with 8 — 0.
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A more general formulation with saccades as point processes

Here we work out a more general formulation for q(AX,7;t,), the probability that the eyes move by an
amount AX between t, and t =t; + 7, (summed over all starting locations at t; ), given that the last
saccade was at time 0.

We assume that the probability of a saccade and the probability distribution of its displacement on the
time since the last saccade.

The point process of saccadic occurrences is governed by a renewal process, with renewal density p(t).
(More general history-dependences can be handled too.)

The saccades themselves are described by z(s;7), which is the probability that a saccade which occurs
after an intersaccadic interval 7 has a displacement of s.

Once the saccade occurs, the fixational eye movement process begins. Fixational eye movements are
characterized by g(AXx,z;t,), the probability that the eyes move by an amount AXx between t, and t, + 7,

given that the last saccade was at time 0.

We calculate q(AX,7;t;) by summing over the number of saccades between t; and t =t, + 7. g, (AX,7;t,)
is the contribution from trajectories with n saccades:

qforward (AX,T;tO) = an(AX,T;tO) (611)

n=0

We use (¢ rather than g to indicate that it only is defined for 7 >0 (and can be set to 0 for 7 <0).

No saccades

Qo (A%, 731)) = Prone (731)) 9 (AX, 731,) , (6.1.2)
where p....(7;t,) is the probability that there are no saccades between t;, and t =t + 7, with the last
saccade at time 0.

One saccade, at time t, + 7, (7, <7 ), assuming that there is a saccade at time 0, and no saccades from then
until t;, and t, <7,:

q, (AX,7;t)) =J' Piirst (T1380) Prone (7 — 715000 (X, 7,5)2(S;5 8, +7,)9(AX = X, —S,, 7 —7,;0)d 7 ds,dx, ,  (6.1.3)
where pg(7,;t,) is the probability that the first saccade is at time 7, > t,, given that the last saccade at

was at time 0.

For (6.1.3), the spatial component is a convolution of the displacement moved before the first saccade
(%), the displacement moved by the first saccade (s,), and the displacement moved after the first saccade

(AX—=X, —5,). So we can rewrite (6.1.3) as:

ql(k’r;to) :I pfirst(rl;to)pnone(r_TI;O)G(k:Tl;to)z(k;tO +TI)G(k’T_Tl;O)dT] . (614)
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For two saccades, at times t,+7, and t, +7, (7, <7, <7), again assuming that there is a saccade at time

0, and no saccades until t;:

qz(kaf;to) =I pfirst(TI;tO) pfirst(Tz - z-1;0) pnone(r - 2-2;0) ’

, (6.1.5)
Gk, 7,5t Z(ksty +7)G(K, 7, —7,;0)Z(k; 7, — 7,)G(K, 7 — 7,;0)d 7,d 7,
And in general for n saccades, at times t,+7; (7, <7, <...<7, <7), again assuming that there is a
saccade at time 0, and no saccades until t; (n>1):
n—1
qn(kﬂf;to) = j pfirst(fl;to)(]:[ pfirst(TiH - Z-i;())j pnone(r - Z-n;O) ’
1 B o , (6.1.6)
Z(k;t, + 7, [H Z(k;z,,, — J g(k,z;t, )(H gk,z,,, — Ti;O)j g(k,7—7,;0)dz,...dz
=1 i=1
and for n=0,
0o (K, 73t)) = Prone (731) G (K, 731,) , (6.1.7)

The p-term describes the process of saccadic times, the z-term describes saccadic lengths, and the g-term
describes the fixational eye movements. Note that Z(0,7) = §(0,7;t) =1 since z(e,7) and g(e,7;t) are

probability distributions.

To make eq. (6.1.1) into a geometric series, define

F(k,73ty) = P (T3 2(Kst, + )G (K, 758, (6.1.8)
and
Frone (KsT3t)) = Proe (731G (K, 731,) (6.1.9)
Then, eq. (6.1.6) becomes
6,(k,75t,) = [ f(k,rl;to)[H f(k,z.,, —ri;O)J f (k,z—7,;0)dz,...d7,, (6.1.10)
i=l
a convolution in 7, and eq. (6.1.7) becomes
Gy(k,75t) = fone(kozst,) (6.1.11)
With the Fourier transforms with respect to ¢ given by
fkaty) = [ F(k.zt,) exp(-ior)ds 6.1.12)
and
foe(koty) = [ ezt exp(-ion)dz (6.1.13)
the convolutions become products:
6, (k. wit,) = ?(k,a);to)(?(k,a;;O)) £ (ka0), (6.1.14)
and
Go (K, @3ty) = none(k ;t,) . (6.1.15)
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So, the Fourier transform of eq. (6.1.1) becomes

- . © i~ n-1
Grormara (K- @5t0) = DG, (K, 3ty = F o (K, st +) f(k,a);to)(f(k,a);O)) f (K0
n=0 n=1

- . (6.1.16)
2 f(k,;t)) o0 (K, @;0)

(k, w;t,) + =
1- f(k,;0)

fnone

To determine the autocorrelation, we need to do two things: first, consider all possible previous times of
the last saccade, and second, consider time intervals 7 that are both positive and negative. To do the first,
we compute a weighted sum of (6.1.1) over all values of t;, weighted by the chance that a random time is

t, after the last saccade, which we denote p,,(t,). This yields

qforward (AX’ T) = I pprev (to)q forward (AX’ 7;t0 )dto ’ (6 1. 17)
0
so that
&forward (k’ a)) = I pprev (to)aforward (k’ ; t0 )dto . (6 1.1 8)
0

If the quantities that make up 0.q (AX, 7;t,) are independent of t;, the above step is trivial, as p,, is

unit-normalized. Otherwise, the above can be done by Fourier transform, as it is essentially a convolution
in t,. To calculate p,.,(t,), we use the same logic as used for py(t) (above, see (3.1.15)). That s,

Porer (o) contains a contribution from all intervals of length 7' >1,. It is the probability that time t, is

inside the an interval from a saccade at some time t to the next saccade, at time t+ 7', times the
probability that, conditional on being in this interval, that it is t, —7 from the end. So it is exactly equal

to Py (t,), and, according to eq. (3.1.16),

2 1- P(@)
p rev(a)):T. (6119)
i ~0p'(0)
Finally, since
q(AX’ T) = q forward (AX’ T|) = qforward (AX’ Z-) + qforward (AX’ _T) 4 (6 1 20)
we obtain the desired quantity:
q(k9 a)) = qforward (k9 a)) + qforward (k9 _a)) = 2lie(qforward (k9 (0)) . (6121)

Some special cases

Simplified history dependence

In the case that the quantities f:(k, ;t,) and f
of t,, we have (from eq. (6.1.16)):

(k,m;t,) that make up Qg (AX, 73t,) are independent

none
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= K o
Utorvarg (k, @) = qforward (k, w3t )—M
1-f(k,0)

(6.2.1)

Very large saccades
A limiting case is that saccades are so large so that they effectively move to a new image, uncorrelated,

image. Thus, the probability z(s,t) of a saccade displacement integrates to 1 (across S), but is arbitrarily
small at any nonzero spatial frequency. Since §(0,7;t) =1 (g(e,7;t) is a probability distribution),

ra pirs(r;t):kzo
f(k,r;to):{ “0 Eio . (6.2.2)

Poisson saccade occurrence

Saccades governed by Poisson process with rate A, and mean-squared distance (two-dimensional) is
R,*. So,

Prone (735,) = €77, (6.3.1)
pfirst(T;to) = ﬂ’se_lsr s (632)

and
7(k;r)=e MR (6.3.3)

where we can either (i) take R’ a constant, or, (ii) R,* = 2D,z , for a “diffusive” variant of eye

movements. Since everything is Poisson, there’s no dependence on t,.

For fixational eye movements, also characterized by a two-dimensional Brownian process,
g(k,z;t,) =e 002 (6.3.4)

So,

|ndep

k[ Ry
(K, 73t,) = Ae Astg k> Rg? /g Kk[*Dz /2 = A, exp{ (/13 +|k|2%jf_||Ts] (6.3.5)

(case (1), saccades don’t depend on previous interval) or

(k ot ) l e—lsre Ik’ Dsr/2e*‘k\ Dz/2 /1 exp( ( |k|2 D+ D )Z’j (636)

dlffuswe

(case (i1), “diffusive” dependence of saccade length on previous 1ntersaccadlc interval). For either
assumption about saccades,

f o (krt)=e ekl exp( (ls+|k|2%jrj. (6.3.7)

The next step is Fourier transformation with respect to 7. We only consider 7> 0.
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1

sz2 2
mdep(k a)t) 2’ CXp| — | | > ! =eXp| — :
4 D . 4 .D .
1+| k" =+ie |/ A
2
1 1
(k,m5t)) = A - ’
D+D, . )
A +|k[ +2 Stio 14{|k|2D+2Ds+la)]//1S

dlffuswe

and
1
none(k w;t)) = D :
As + K| ot i
The simpler case is the diffusive one. With (6.2.1),
foko) 1 1

= f
qforward,diﬁusive(k’ a)) - A 1
1- |ffu5|ve(k 0)) 2’5 +|k|2[2)+ia) (|k|2 D+DS +Ia)j/ﬁ“s

For saccades that are independent of the preceding intersaccadic interval, (6.2. 1) yields

D .
1 |k|2 —+ Ia)j /A
4 none K, 1 +[ 5
qforward,indep(k,a)) = ( ) _ 9

2p2
- '"dep(k a)) 4 +|k| +|a) 1+(|k|2[2)+ia)j//15—exp[—|k| Rs

4

As a check: for A, =0 (no saccades), both (6.3.11) and (6.3.12) become simply

(K,0)=——

q forward ,nosacc

|k| —+|a).

For Dy =0 or Ry =0 (ineffective saccades) both (6.3.1 1) and (6.3.12) also become

qforward,nullsacc(k’a)) = > D I+ D
As +|K| EHG) (|k|22+i60j//15
(|k|2D+ia)j/i+l
= D . D .
A +|k|2?+|a) (|k| +ij//1 |k|25+|a>

Applying (6.1.21) to either (6.3.13) or (6.3.14),
1 KD

__ ,

|k|2§+ia) K[ D*/4+0?

&nosacc (k’ C()) = anullsacc (k’ 60) =2Re

in agreement with the result for 2-D Brownian fixational eye movements (eq. (5.1.19)).
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Focusing on single saccades, not as point processes

Here we focus on single saccades, not as point processes — perhaps to model the Mostofi et al. work about
the transformations due to saccades of different lengths. Possible interest is, 1D vs 2D; the relevant
details of the velocity profile, and, understanding the “main sequence” relationship between saccade
duration and velocity.

Ramp velocity profile, one dimension

Along with Mostofi et al., we place the saccade in the middle of a time window of length T, , running

win »

from T, /2 to T, /2. The saccade has a duration of T, (where T <T,,) and fixed velocity is v

sac sac ?

and therefore an amplitude h,,, =v_ T . Whatis q(Ax,7;t,), the probability that the eyes move by an

sac ' sac *

amount AX between t, and t =t + 7 ? Set up three intervals: |_=(—oo,—T, /2], |, =[-T, /2, T, /2],
and |, =[T, /2,0).
We will assume that velocity is uniform, and given by the main sequence — which, according to

https://www.liverpool.ac.uk/~pcknox/teaching/Eymovs/params.htm, is given by ., duration
(ms)=2.2*amplitude(deg)+21, i.e.,

T, = MainSeqgSlope *v_, T,,. + MainSeqIntercept, (6.4.1)
where MainSeqgSlope = 0.0022 s/ deg and MainSeqlntercept =0.021s. So, T, =0.0022T_ v, +0.021,
1-0.021/T,,

1.e., Vg,
0.0022

, with typical T,  ranging from 0.0232 sec (1 deg) to 0.043 sec (10 deg).

First we consider the one-dimensional case; the saccade can go in either direction along the horizontal.
Then we average over all orientations with respect to the horizontal. Displacement as a function of time is

Sramp (1) = Vi (min(max(t + Ty, /2,0), T, ) - (6.4.2)

Then
Lo
O (AX, 75t,) :E(é(Ax—sramp (t + )+ Syamp (1) ) + 8 (AX+ S gy (b +7) = Spamy (to))). (6.4.3)

Our goal is to calculate
(ﬁlD (k,m3t)) = ” 0,0 (AX, 73 1)) exp(—1kAX) exp(—iw7)d AXd T
@ (6.4.4)
= [ Gp(k, 73t exp(-iwr)de
where

Gip (K, 75,) = [ 6o (A%, 751, ) *dAX, (6.4.5)

and to take a sensible average over t,, and take a sensible limit as the range of values increases without
bound.
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Approach 1. Explicit start time.

This might be the right way to go for detailed comparison with experimental data, but it is messy. Three
are many cases, with cutpoints depending on t;, and t, + 7. First subscript of | refers to beginning of

interval, second subscript refers to end. A means hasn’t yet moved, B means moving, C means no longer
moving.

|
AC
to+ =T, /2

lAB lBC

('Tsac/zl Tsac)
lCC

(T5ac/2,0)

® ot

(Tun/2,0)  Tsacl20) (T 2,0)

IAA |
CB

(T/z\r)\

IBA | t0+z:_Tsac/2
CA

la: If t, <-T /2, then s (t,)=0.
lge: If —T, /2<t, <T,. /2, then S (L) =V (t, + T /2).
lex: If T, /2<t,, then s (1) =V T

bea: If t,+7<-T, /2, then s (t,+7)=0.
leg: If T, /2<t,+7<T, /2,then s
lec: If T, /2<t,+7,then s

So,
Iaa: Q(AX, 75t,) =8 (AX) 5 G(k,75t) =1

(t,+7)=V,

sac

(t,+7+T,. /2).

ramp

ramp (to + Z-) VsacTsac

Ias: Q(AX, 73t,) = %(5(Ax—v (ty+ 7+ T /2))+ 8 (AX+ Ve (ty + 74T, /2)));

sac

Ak, 73t,) = cos (kv (t, + 7+ T, /2))

sac

Iac: q(Ax,r;tO)=1( S (AX =V Topo )+ 8 (AX+V, Topo ) ) s (K, 3ty ) = cos (kv T, )

sac ~ sac sac ~ sac sac ~ sac

lea: Q(AX, 73t0) = = (S (AX =V (ty + Toag / 2)) + S (AX Ve (t +Toae /2)))5 (K, 75y ) = 05 (KVoge (ty +Tpe /2))

sac

Ige: Q(AX,73t)) =

sac sac

|»—A [\)|»—

(8
(5 (AX =V 7)+ 5 (AX+V z‘)); Ak, z;t)) = cos (kv 7)
S(o(

lsc: Q(AX, 73t)) =—( 5 (AX =V (4, Tsac/2))+5(Ax+vsac(t0—TsaC/2)));
qk,z;t,) = cos(kvSac (ty—Tec /2))
lca: q(Ax,r;t0)=%( (AX =V T )+ 0 (AX 4V, T )5 A(K, 73 = cos (kv Teoe )

sac ~ sac sac ~ sac sac ~ sac
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lce: q(AX, 73t,) = %(5(Ax—vsac(to +7 =T /2))+ 5 (AX+ Vg (t) + 7T, /2)));

Ak, 73t)) = cos (kv (t, +7 - T, /2))
lec: A(AX,73t,) = 8 (AX) s 6(k, 73t,) =1

In tabular form:

qk,z;t,) valueof t, [ 5 5. [
-T T, T T
valueof t, + ¢ —o0, —38¢ —s& s & o
0 ( 5 ] [ 5y | [ 5 )
(N (—oo,%] 1 cos(kvSac (t, + T;‘C )j cos (kv T )
T.. T T, T,
L. -3 ] cos| kv, (t, + 7+ cos (kv T cos| kv, (t, +7——
B i CCREe ) BN R RS
lc T5—2'°‘°,oo) cos (KVg T ) cos (kvSac (t,— Tszac )j 1
(6.4.6)

Integrating over 7 breaks into three cases, depending on relation of t, to +T_ /2. We assume that we

have a finite window of data, from [T /2,T,, /2]. Thatis, both t, and t, + 7 must be within
[—Toin /2, Tin / 2]

1. For t, e[-T,,,/2,-T,. /2],

d(k, @;t,) = [ G(k, 75t,) exp(—ir)dz =contribs from 1, + 1, + 1,

—Teac /2t Tsac /21, T Twin/2-1,
= J‘ exp(—iwr)dr + j cos (kvsac (t,+7+ &)j exp(—iwr)dr + j cos (kv T, )exp(—iw7)dr
—Thin/2-ty —Teac /21 2 Teac /21,
oty (T, T
_ e elw 5 _ela) 5
lw
0y 52 g i+ g
l (ei(kvsac —0)(~Tgc/2-1)) _ ei(kvsac_a))(Tsac/z_to) ) + € (ei(kvsac+”))(Tsac/2+to) _ ei(kvsac+m)(_Tsac 12+ty) )
2 | (w—kvg,) I(@+kvg,)
i T, Tai
g% [ iplse  _jplun
2 2
+—1| e -e cos (kv T )
12)
i - T LT, iot, T . Ty
e'mo i-2in -2 e —i-3 —ip—n
=—|e 2 -e ? |[+—|e 2 —-e ? |cos(kvy,T,)
lw lw
g 1 i i 1 : T /2
_j’_ - (ela)TSaC/z — el( wTsac/erszacTsac) ) _"_ - (ela)TSaC/z — el( wTsac/z kvsacTsac) )
2 |i(@—kvy,,) i(@+kvg)
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Now have to work out the other intervals for t, .

Approach 2. No explicit start time.

Here the motivation is that have to average over t, anyway. Assume we are analyzing a large interval of
length T

win that contains only one saccade. As the length of this interval increases, we can neglect edge
effects. The probability that two points separated by 7 are affected by a saccade (i.e., that at least part of

the saccade occurs in the interval [t,,t, +7]) is proportional to T, +|7|, i.e., some B(T,, +|z|), where B is

a normalization constant. The probability that the total movement in this interval is v _T_ , the saccade

sac * sac ?

length, is proportional to the probability that the saccade lies entirely within the interval, i.e.,
B max(0, r| —T,.) - The probability that the total movement is less than the saccade length is proportional

to the difference, namely, B(T,, + |r| —max(0, r| -T,.))=B(2T, + |r| —max
B(T,, +|7]) if T, 27| or 2BT,, if T, <[7], i.c., T +min(T,

sac
in the interval is v, min(T,

ac

r|)) , 1.e., either

sac?

z'|) . The maximum that can be moved

ac ac 2

T

«»|7|)» and the time moved can be anywhere from 0 to min(T_,7), and all

values in this interval have equal probability.

So, for displacements AX up to v . min(T,

r|) (but for Ax on both sides of 0), the probability of a

ac ?
movement by this amount is

T +mi
o (0,7 = B2 T L

2Vsac mln(Tsac 2

and for the maximal displacement |AX| =V, min(T,

z'|)
r|)

), there is an additional point mass component,

dx, (6.4.8)

T

ac ?

: (6.4.9)

as the total probability must integrate to B(T, + |z'|) . Note that, properly, the point mass component is

sac

only present if T, < |r| In both cases, for AX =0, there’s also a point-mass component of size

l—B(T +|r), so that IqlD(AX,r)dAX=1.

sac

Thus, for |r| <Tee»
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ok, = [ a(axr)e " dax

+Vgqe min(Tgye ,‘T‘)
j (1 B (T, + |r|)) S(Ax)e ™ d Ax + [ g Lo + MM )]e““*d AX
o Vg min(Tage J2]) 2V, min(T,,|7))
~ Tsac + mln(‘r o ) e*iszac min(Tg |7)) _ eIkvsac min(Tg |7))
=1-B(T +[]) +B TR )( — . (6.4.10)

=1-B(T,, +|r])+ B(T,, +min(T, v min(T
mm

sin(kvg,, min(T,,
sac? |T|))( 7))

:

1- B( sac +|r|) ( < +|z'|)smc(kvsac |r|)

1- B( sac+|r|)(1 sinc(kv,, T|))
and for |T| >T

sac ?

Gip(k,7) =1-B(T,, +|7]) + B(T,,, +min(T

sac sac?

sin(kvg, min(T,
1

))}+

e kv, min(T__,|7])
B |T| —min saco|T ) ..'5(|AX| —v,, min(Tsac, - ))e—ikAxd AX
=1-B(T,, +|7])+ B(T,, + min(T,, ))(SIIL(\TV”;;E?F(T 0 ))]+ , (6.4.11)

r

)) cos ( kv, min(T,

sac sac?

)

=1- B(T +|Z’|)+ZBT smc(kv T, ) (|| Sac)cos(kVS‘,jst‘,jm)

B (|z‘| —min(T,,

sac sac ~ sac

Saccades can occur in any direction. Say the angle w.r.t. the horizontal is . It suffices to consider
0 €[0,7/2]. After projection on the horizontal axis, the effective velocity is Vv, cos@. Therefore, for

|Z'|< «c and k=‘lz ,
I 27¢
G,o(K,7) =1-B(T,,, +|z]) + B(T.. +|f|); ! sinc(kv,,, |r|cos 6)d@, (6.4.12)
and for |z'| >Tees
7!/2 /2
Gop (K,7) =1-B (T, +|7])+2BT,, = I sinc (kv T,,, cos 0)d0+ B (|z] - T, )= 2 j co8 (KVy, T, cos 8)d @
T 0
,(6.4.13)

77/2

=1-B(T,,, +|7])+2BT,,. —J-smc (Vg T cos O)d O + B (]~ oo ) I (KVigo T )

sac ~ sac sac ~ sac

/2

where we have used — I cos(Ucos@)dd =J,(u).
T 0
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Reconsider the justification for the averaging over &. For saccades in the horizontal (X)-direction, we can
write G,p(AX,AY, 75V, ) = 0,5 (AX, 75V, )O(AY) . Its 2D transform is G, (K,, K, 75V, ) = Gip (K,, 75V, ) -

This is the relevant expression for all spatial frequencies, if all saccades were horizontal. In coordinate-

> “sac

free notation, qu(lz TV ) = qlD(‘ ‘cos@ 7;V,,. ), where @ is the angle between K and the saccade
velocity vector. Thus

oo (K. 73Vi) = (G (K] 73 Ve €03 0)) = (1o (Kc030,75v,,)) (6.4.14)

Now we need to find
d(k, w) = I q(k,7)exp(—iwr)dr (6.4.15)

This is done numerically for §,,(k,7) in eyemov_sac_demo.m.

Note that there is a problem with doing the integration in a straightforward way, since for large 7, both

Fourier integral diverge. Look instead at
Gipgoe (K. 7) = Gip (K, )+ BTy, +|7]) = 2BT,, sinc (kv T ) = B(|7] ~ Toae ) cos (kv Teo ) s (6.4.16)

sac ~ sac sac * sac

which removes the terms that cause divergence.

For |r| <Tee»
Oipioc (K, 7) =1+ B( c +|r|)s1nc(kvSac |7[)—2BT,, sinc(kv,T,,.)— B (|r| -T.. )Cos(kvsacTsac) (6417
=1+B (TSac + |r|)smc(kvSac |z'|) -B |r| €08 (KVy, Tope ) — 2BT, sine (kv T, ) + BT, cos (kv T, o
For |r| >T,.»
Gip, .oc(kaf) =1. (6.4.18)

The variable part of Gy, (K, 7) , Gp.arioc (K 7) = (qlD,OC(k 7)— 1) is, for |z'|< J

0 p-variec (K- 7) = (Sac+|r|)sinc(kvsac|r|)—|r|cos (KVqao Tea ) = 2T sinC (KV, T ) + T €08 (kv T, ) .(6.4.19)

sac ~ sac sac ~ sac sac * sac

and otherwise zero. So
.

sac

Givarioc (K> @) = j Gioarios (K> 7) exp(—iwr)d 7 = j Gioarios (K> 7) exp(—iw)d 7, (6.4.20)

-,

sac

and each term can be done in closed form.

Limiting case, infinitely fast saccades: saccade duration is crucial.

Let T, >0 and v, — o sothat T, v, =L . Theneq.(6.4.11) holds for all 7, and becomes

Gio(k,7) =1-B|r|+B|r|cos (kL ) (6.4.21)
Eq. (6.4.13)also holds for all 7, and becomes
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yo(k,7) =1-B|z|+Blz|J, (KL, ) - (6.4.22)
In both cases, the Fourier transform of the variable part (the multiplier of B, §,, (k,7) = (q(k, 7)— 1)/ B)

, 1.e., the Fourier transform of the formal integral of a

will be a constant times the Fourier transform of |r
Heaviside function. Heaviside Fourier transform is (ia))_l , so its integral So, the Fourier transform of
|| is(iw) " =—1/ &, yielding

Gipar (@,7) = (1—cos (kL. ))/ @’ (6.4.23)

and
aZD,var (0)9 T) = (1 - JO (kLsac )) / 0)2 . (6424)

In these cases, there is no spatiotemporal coupling. So saccade duration is crucial.

Some notes on alternative models

Model for eye movements with partial stabilization

Motivated by discussions with Michele and Xutao — one can model Kelly’s system by

Residual eye position(t)=eye position(t)-[A*eye position(t-delay)+B], where A is gain of system (ideally
1 but not really), delay is about 6 ms, and B is offset, but perhaps should be B(t) for some slower-drift-
rate Brownian process

Self-avoiding walk models

Roberts, Wallis, Breakspear, Sfn 2011: 379.07:random walk model for eye fixational eye movements:
Parameters are simulation interval, the forgetting time for previous location, and the rewsolution of the
previous location; a random step in a field with a penalty (Gaussian potential) for return to a recent
location — behavior is supra-diffusive when memory of previous locations causes self-avoidance; becomes
nearly Brownian (mean-squared disp prop to time) for times > 100 ms, once memory fades;

also probably becomes nearly Brownian for very short times, because of "thermal" behavior

Another SA walk: Engbert, Mergenthaler, Sinna, Pikovsy, An integrated model of fixational eye
movements and microsaccades, PNAS

Also, Markovian models based on a distribution of angles w.r.t. previous step (steps defined by sampling
at some short interval, e.g., 1 ms)
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