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Effects of eye movements on spectra of movies  
(with M. Rucci) 
 
In v05, we add a section that focuses on single saccades NOT as point processes.  Also a comment about 
drifting gratings at end of “basic calculation” section. 
 
In v06, we add a section about fractional Brownian motion. 

Setup 
 
The goal is to calculate the effects of eye movements on the autocorrelation of a spatiotemporal stimulus.  
That is, given a spatiotemporal stimulus ( , )S x t  (with mean 0) with known autocorrelation SC , we want 

to calculate MC , the autocorrelation of the spatiotemporal pattern on the retina, after considering eye 

movements. 
 
Say the eye movement process has displacements ( )t , characterized by a known 

1 1 0 0( ( ) | ( ) )p t x t x   . 

 
We assume that the eye movements described by ( )t  are independent of the image.  But to allow for the 
possibility that saccades occur at “special” times in the image sequence, we assume that a saccade has 
occurred at time 0, and allow for the possibility that the saccades may depend on image statistics.  We 
formalize this dependence by characterizing the stimulus by its autocorrelation at a time  0t  after the 

saccade: 

0
0 0 0 0 0( , ; ) ( , ) ( , )S x

C x t S x t S x x t    . (1.1.1) 

The autocorrelation on the retina is then 

0
0 0 0 0 0 0 0( , ; ) ( ( ), ) ( ( ), )M x

C x t S x t t S x x t t          . (1.1.2) 

Averaged over all times, the autocorrelation is 

0 0
0 0 0 0 0 0 ,

( , ) ( ( ), ) ( ( ), )M x t
C x S x t t S x x t t t         . (1.1.3) 

We also expect that this will be the behavior of eq. (1.1.2) for large 0t .  For large 0t , or, averaged over all 

0t  (which is dominated by 0t  large), we anticipate that eq. (1.1.3) will depend only on the average 

autocorrelation of S(x,t), 

0 0
0 0 0 0 ,

( , ) ( , ) ( , )S x t
C x S x t S x x t    , (1.1.4) 

and that the time-dependent quantity (eq. (1.1.1)) won’t be necessary. 

Basic calculation  
We calculate eq. (1.1.2), and then consider its behavior for large 0t .  Eq. (1.1.2) can be written: 

0
0 0 1 0 0 2 0 0 1 0 2 0 1 1 2( , ; ) ( , ) ( , ) ( ( ) ) ( ( ) | ( ) )M x

C x t t S x x t S x x x t p t x p t x t x dx dx             ,(2.1.1) 

which states that the autocorrelation on the retina is a sum of contributions over all eye movement paths, 
in which the eye starts at position 1x  at time 0t , and ends up at position 2x  at time 0t t+ .  We re-express 

this in terms of an initial position on the image, 0 1y x x  , and the displacement due to the eye 

movement, 2 1x x x   : 
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0 0 0 0 1 0 1 0 1 1( , ; ) ( , ) ( , )) ( ( ) ) ( ( ) | ( ) )M y
C x t t S y t S y x x t p t x p t x x t x dx d x                .(2.1.2) 

 
Note that the S -terms and the p-terms are independent. The S-terms do not depend on 1x , which is the 

position of the eyes at time 0t  (because the movie is considered to be statistically spatially homogeneous).  

The p-terms, which describe the eye trajectory, do not depend on y, which is the initial position on the 
image – and the eye movements described by ( )t  are assumed not to depend on the image. (Maybe this 
is not true at the fovea.) 
 
What this means is that we can integrate out initial eye position, 1x , and replace that factor by a quantity 

that describes the eye movement distribution: 

0 0 1 0 1 0 1 1( , ; ) ( ( ) ) ( ( ) | ( ) )q x t p t x p t x x t x dx            ,  

 
which is the probability that the eyes move by x  between 0t  and 0t t    (summed over all starting 

locations at 0t ). Equivalently, making use of the relationship between a conditional and a joint 

probability, 

0 0 1 0 1 1( , ; ) ( ( ) , ( ) )q x t p t x x t x dx          . (2.1.3) 

 
Thus, eq. (2.1.2) becomes  

0 0 0 0( , ; ) ( , ) ( , ) ( , ; )M y
C x t S y t S y x x t q x t d x         . (2.1.4) 

 
Put another way, MC  and SC  are related by convolution in space: 

0 0 0( , ; ) ( , ; ) * ( , ; )M SC t C t q t      . (2.1.5) 

 
We use a single-tilde to indicate Fourier transform in the space domain, and a double-tilde to indicate 
Fourier transformation in space and time, or just in time. 
 

With 0 0( , ; ) ( , ; ) ikx
M MC k t C x t e dx 






  , 0 0( , ; ) ( , ; ) ikx
S SC k t C x t e dx 






  , and 

0 0( , ; ) ( , ; ) ikxq k t q x t e dx 






  , it follows that 

0 0 0( , ; ) ( , ; ) ( , ; )M SC k t C k t q k t     . (2.1.6) 

 
In the long-time limit, the dependence on 0t  can be neglected: 

( , ) ( , ) ( , )M SC k C k q k     . (2.1.7) 

The multiplication point-by-point in   is equivalent to convolving in temporal frequency,  . 
 

( , ) ( , ) ( , )M SC k C k q k        (2.1.8) 

where 
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( , ) ( , )exp( )q k q k i d   




    (2.1.9) 

and   indicates convolution in the temporal frequency domain. 

 
There’s a faster way to arrive directly at eq. (2.1.8), if we simply assume that the movie and the eye 
movements are independent.  We can calculate the ( , )k   representation for an instance of movie and eye 
movements – it is pointwise multiplication (since it is convolution in space, and multiplication in time), 
and then calculate the covariance over the set of movies and the set of eye movements, and, since these 
are independent, it factors. 
 

Comment re measuring spatiotemporal receptive fields with gratings 
A propos discussions with M. Rucci and B. Shapley, May 17, 2016. Note that if the stimulus consists of 

only a single spatiotemporal frequency, 0 0( , ) ( ) ( )SC k k k       , then (2.1.8) becomes 

0 0 0( , ) ( , ) ( , ) ( ) ( , )M SC k C k q k k k q k               . (2.1.10) 

This has implications for measuring a neuron’s spatial transfer function with drifting gratings.  Say the 
neuron is separable, i.e., that its transfer function is some ( , ) ( ) ( )L k K k W  .  The power in the 
response to a drifting grating is given by 
 

2

0 0

2

0 0 0

2 2

0 0 0

( , ) ( , ) ( , )

( , ) ( ) ( ) ( )

( ) ( , ) ( )

MR k C k L k dkd

q k k k K k W dkd

K k q k W d

   

    

   



  

 













  (2.1.11) 

 
 So even though the neuron itself is spatiotemporally separable, the measured response power, 0 0( , )R k  , 

is influenced by the coupling based on ( , )q k  . 
 

Some special cases 
We work out these equations for some simple models of image statistics and eye movements.  In both 
cases, we use common technology from the theory of renewal processes.  Say ( )p t  is the renewal density, 
i.e., ( )p t t  is the probability that the first event that follows an event at time T will occur between T  and 
T t t   . (In a renewal process, by definition, the event probability depends only on the time since the 
last event, and is independent of absolute time T.)  Our goal is to calculate ( )NK t , the probability that 

there are N events in an interval of length t, independent of whether or not there is an event at time 0. 

Distribution of the number of expected events for a renewal process 
We will do this in the Fourier domain, so we make heavy use of   

0

( ) ( )i tp e p t dt


  . (3.1.1) 

Note that (0) 1p   because of normalization, and that, since 
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0

( ) ( )i tp ite p t dt


   , (3.1.2) 

that 

0

(0) ( )ip tp t dt


   , (3.1.3) 

the mean interval. 
 
We will need ( )withinp t , the probability that a randomly-chosen time is within an interval of length t .  This 

is proportional to ( )tp t .  Because it must be normalized,  

0

( )
( )

( )
within

tp t
p t

p d  



. (3.1.4) 

 
For 0N  , ( )NK t  (the probability that an interval of length t contains exactly N events) has a 

contribution for each event sequence at times 10 Nt t t    .  For the intermediate intervals 

( 1( , )n nt t 1 n N  ), the probability of an event at time nt  given an event at time 1nt   is 1( )n np t t  .  For 

the first and last intervals, we need ( )firstp t , the probability that the first event after an arbitrary time 

occurs at a time t , and ( )lastp t , the probability that no event occurs within time t following an event.  And 

for 0N  , we need ( )nonep t , the probability that there is no event in a randomly chosen interval of length 

t. 
 
With these quantities, we have (for 0N  ) 

1

1 2 1 1 1( ) ( ) ( ) ( ) ( )
n

N first n n last n n

t t

K t p t p t t p t t p t t dt dt
 

    


   .  (3.1.5) 

This is a convolution, so 

  1
( ) ( ) ( ) ( )

N

N first lastK p p p   


       . (3.1.6) 

For the special case of 0N  , 

0( ) ( )noneK p    . (3.1.7) 

 
To calculate these quantities, it is easiest to begin with ( )lastp t .  It is the total probability that the next 

event is at least at a time t in the future.  Therefore, 

( ) ( )last

t

p t p d 


  . (3.1.8) 

Thus (noting that (0) 1lastp   but ( ) 0lastp t   for 0t  , so there’s a unit jump at 0t  ),  

( ) ( ) ( )lastp t t p t   . (3.1.9) 

Since  

0

1
( ) ( )

2
i tp t p e d 





   , (3.1.10) 

eq. (3.1.9) is equivalent to 

( ) ( ) ( )lasti p p        , (3.1.11) 
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And since ( ) 1   , it follows from (3.1.11) that 
1

( ) (1 ( ))lastp p
i

 


    . (3.1.12) 

From l’Hôpital’s rule, 

0
lim ( ) (0)firstp ip





   , (3.1.13) 

the mean interval, and, the Taylor expansion near 0 is 

( ) (0) (0) ...
2firstp ip i p
         . (3.1.14) 

 
To calculate ( )firstp t , we note that it is contains a contribution from all intervals of length tt ³ .  It is the 

probability that time 0  is inside such an interval times the probability that, conditional on being in this 
interval, that it is t t-  from the end.  The former is ( ( )withinp t , eq. (3.1.4))); the latter is 1/ t .  Therefore, 

0

( )
1

( ) ( )

( )

t
first within

t

p d

p t p d

p d

 
 


  





 





. (3.1.15) 

The numerator is ( )lastp t  and the denominator is the mean interval, (3.1.3).  Therefore, 

 
( ) 1 ( ) 1 ( )

( )
(0) (0)(0)

last
first

p p p
p

ip pi ip

  


 
  

 

       
. (3.1.16) 

We could also have seen the relationship of ( )firstp t  to ( )lastp t  (i.e., ( ) / ( )last firstp t p t  is the mean interval) 

by recognizing that the time series is invertible, and that the only difference between ( )firstp t  and ( )lastp t  

is that ( )lastp t  is conditioned on the occurrence of an event, which has probability per unit time of 

(1/mean interval).  Note that  

0
lim ( ) 1firstp





 . (3.1.17) 

 
A similar argument yields  ( )nonep t .  Given that a randomly-chosen time is within an interval of length t , 

the probability that the following t seconds stays within the interval (and therefore, contains no events) is 
( ) /t t t- .  Therefore, 

0

( ) ( )

( ) ( )

( )

t
none within

t

t p d
t

p t p d

p d










 





  
  


  
. (3.1.18) 

 
From this it follows that 

( ) ( ) ( )none firstp t t p t    (3.1.19) 

and that 

2

1 1 ( ) 1
( ) (1 ( ))

(0)none first

p
p p

i i p i

 
  


   



   
. (3.1.20) 

From the first part of eq. (3.1.14) and L’hopital’s rule, it follows that 
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0

1
lim ( ) (0) (0) (0)

2 2none first

i
p ip i p p





        . (3.1.21) 

 

Eq. (3.1.20) can be checked from (3.1.6) and (3.1.7), since we should have 
0

1
( )N

N

K
i








    (the Fourier 

transform of the Heaviside function): 

  1

0 1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 ( )

( ) ( )1 1 1
( )

1 ( )

N first last
N none first last none

N N

first last
first

p p
K p p p p p

p

p p
p

i i p i

 
     


 


   

  

 

   


   


 
             

   

, (3.1.22) 

with the last equality following from (3.1.12). 
 

Poisson process 
For a Poisson process with rate  , the renewal density is 

( )Poisson tp t e   , (3.2.1) 
its Fourier transform is 

1
( )

1 /
Poissonp

i


 



 , (3.2.2) 

and 
(0) /Poissonp i    . (3.2.3) 

From eq. (3.1.12), 
1 1 1

( ) ( )
(1 / )

Poisson Poisson
lastp p

i i
 

     
  

 
   . (3.2.4) 

From eq. (3.1.16), 
1

( ) ( )
1 /

Poisson Poisson
firstp p

i
 

 
 


   . (3.2.5) 

From eq. (3.1.20), 
1 1

( ) ( )
(1 / )

Poisson Poisson
nonep p

i
 

   
 


   . (3.2.6) 

Stimulus autocorrelation 
We consider a few model cases, and assume that the images are statistically homogeneous. We use ( )Sc x  

to denote the spatial autocorrelation of the image ensemble, i.e.,  

0
0 0( ) ( ) ( )S x

c x S x S x x  , (4.1.1) 

and 

( ) ( ) ikx
S Sc k c x e dx






  . (4.1.2) 

 

A single still image 
When the stimulus is a single still image, ( , ) ( )S x t S x= , then the spatiotemporal autocorrelation only 
depends on the spatial displacement.  So 
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( , ) ( )S SC x c   (4.2.1) 

and its Fourier transform is given by 

( , ) 2 ( ) ( )S SC k c k     . (4.2.2) 

For this, the convolution in eq. (2.1.8) becomes trivial: 

( , ) ( ) ( , )M SC k c k q k    . (4.2.3) 

 

Randomly changing snapshots 
Assume that the stimulus consists of a static image that changes according to a renewal process with 
renewal density ( )p t , and each image is uncorrelated. If there is no change in the image within the time 

lag of the autocorrelation, the result of the above section applies.  This happens with probability 0( )K  .  

Otherwise, since the images are uncorrelated, the autocorrelation is zero.  Thus (taking both positive and 
negative times into account) 

0 0( , ; ) ( ) ( )S SC x t c x K  . (4.3.1) 

The Fourier transform of ( )NK   contains a contribution ( )NK   for 0   and a contribution ( )NK   

for 0  , 

 ( , ) ( ) ( ) ( )S S none noneC k c k p p         . (4.3.2) 

We can view this either as changes in the image, or as saccades at times determined by ( )p t .  For the 
latter, one can use a gamma distribution  

  1( )
( )

a

gamma a a ta
p t t e

a
  


. (4.3.3) 

This has a mean rate  , a mean interval 1/ , and a variance for the mean interval of 21/ a .  Since it is 
the a-fold convolution of a Poisson process of rate a , its Fourier transform is  

1
( )

1 /( )

a

gammap
i a


 

 
   

 . (4.3.4) 

 

The eye movement process 
 

One dimension, Brownian 
For a Brownian process, 0( , ; )q x t  is independent of 0t .  We assume that the eye position corresponds 

to a diffusion governed by 

 
2

2
( , ) ( , )Brownianq x t D q x t

t x

 


 
. (5.1.1) 

 
Via standard techniques, this leads to  

2( , ) exp( )Brownian Brownianq k k D   . (5.1.2) 

 
That is, the eye position, after time  , has a probability distribution whose variance is 2 BrownianD  , 

namely, 
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21
( , ) exp( )

44 BrownianBrownian

x
q x

DD


 
  . (5.1.3)  

Since ( , ) ( , ) ikxq k q x e dx 






  ,  

2
2 2

2 0
( , ) ( , )

k
x x q x dx q k

k
 







  

  . (5.1.4) 

Thus, the variance after time   can be directly found from eq. (5.1.2):  
2 2 Brownianx D  . (5.1.5) 

 
To see the effects on static images, we apply eq. (2.1.8).  We need the spatiotemporal transform of eq. 
(5.1.2):  

2
1 ( , ) exp( ) exp( )Brownian D Brownianq k k D i d c   






    (5.1.6) 

A standard result is 

2 2

2
exp( )exp( )

b
b i d

b
  







  
 . (5.1.7) 

So with 2
Brownianb k D , 

2

1 4 2 2
( , ) 2 Brownian

Brownian D
Brownian

k D
q k

k D


 


  (5.1.8) 

For b  , i.e., / Browniank D ,  
2 2

1 ( , ) 2Brownian D Brownianq k k D 
  , (5.1.9) 

which (in eq.(4.2.3)) neutralizes a power spectrum of 2k  . 
 

The optimal D 
 
With the idea of asking whether fixational eye movements can be tuned to task,  let’s find the value of D 

where 
2

4 2 2
( , ) 2 Brownian

Brownian

k D
q k

k D






  is maximal. 

 

   

2

4 2 2

4 2 2

4

4 2 2

log ( , ) log 2

log

1 2

k D
q k

D D k D

D k D
D D

k D

D k D








  
     

 
  
 

 




. (5.1.10) 

 

So ( , ) 0q k
D





  occurs when 4 2 4 2 22k D k D   , i.e., when 4 2 2k D  , i.e., when 2/D k . This 

means we predict that partial stabilization will improve sensitivity if 2/D k . 
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One dimension, Brownian, with drift 
 
Let’s say that the mean eye position moves at a fixed velocity c . So now 

0 0( , ; ) ( , ; )BrownianDrift Brownianq x t q x c t       (5.1.11) 

 
where Brownianq  is given by eq. (5.1.1).  Then 

 

( )

2

( , ) ( , )

( , ) ( , )

( , ) exp( )

ikx
BrownianDrift BrownianDrift

ikx ik u c
Brownian Brownian

ikc ikc
Brownian Brownian

q k q x e dx

q x c e dx q u e du

e q k e k D



 

 

  

 






 
  

 

 



  

  



 





. (5.1.12) 

 
Calculating as above, 

2
1

2
1

2

4 2 2

( , ) exp( )exp( )

exp( )exp( ( ) ) ( , )

2
( )

BrownianDrift D Brownian

Brownian Brownian D

Brownian

Brownian

q k ikc k D i d

k D i kc d q k kc

k D

k D kc

    

    













   

     


 







 . (5.1.13) 

The no-drift asymptotic analysis (for / Browniank D , that the second term in the denominator 

dominates) still holds provided that also  
 

2
Browniankc k D   . 

 
 (5.1.14). 
Not surprisingly, in the neighborhood of 0kc   , i.e., when /k c  , which corresponds to 
spatiotemporal components that move synchronously with the drift, there is a “resonance:” 

1 2

2
( , )BrownianDrift D

Brownian

q k kc
k D   . 

  

Two dimensions, Brownian 
To match the 1-D case, we set this up so that the variance at time   is 2D  (expected distance squared in 
the plane). Since this is a sum of an x-variance and a y-variance, we’d want the x-variance and y-variance 
each to be D .  So, the relationship to the one-dimensional problem is / 2BrownianD D , and the diffusion 

law is 
2 2

2
2 2

1
( , , ) ( , , ) ( , , )

2Brownianq x y t D q x y t D q x y t
t x y

   
       

. (5.1.15) 

Diffusion along each coordinate is independent. So, eq. (5.1.2) yields  
2 2( ) / 2( , , ) x yk k D

x yq k k e     (5.1.16)   
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and eq. (5.1.3) yields 
2 2 2 21 1 1

( , , ) exp( ) exp( ) exp( )
2 2 2 22 2

x y x y
q x y

D D D DD D


       
   

      
  

, (5.1.17) 

 
and we can check that  

2 2
2 2

2 2 0
( , , ) 2x y k

x x

x y q k k D
k k

 


  
       

 . (5.1.18) 

Again using eq. (5.1.7) with 
2 2

2
x yk k

b D
 

  
 

, the spatiotemporal transform is 

2 2

2 2 2 2 2 2

( )
( , , ) ( , , )

( ) / 4
x yi

Brownian D x y x y
x y

k k D
q k k q k k e d

k k D
  










 

   . (5.1.19) 

For  small k  or short times, i.e., for 2 2 2 /x yk k D   (equivalently, / Browniank D ) this is 

approximately 
2 2 2

2 ( , , ) ( )Brownian D x y x yq k k k k D 
   , (5.1.20) 

which (in eq.(4.2.3)) also neutralizes a power spectrum of 2k  . 
 
Note that had we considered a separate xD  and yD , we’d have found 

2 2 2
2 ( , , ) ( )Brownian D x y x x y yq k k k D k D 

   , (5.1.21) 

so, not surprisingly, if diffusion only occurs in one dimension ( 0yD  ), the neutralization only applies to 

Fourier components that vary in the other dimension. 
 

Fractional Brownian motion 
 
Generalize (5.1.16) to 
 

2
/2

( , )
 




h
k D

q k e . (5.1.22) 

 
We’d like to compute, or at least estimate,   
 

( , ) ( ) 






 
   i

fbrq k q k e dt . (5.1.23) 

 

Put 
2




b k D .  Then /2( , )
hbq k e  


  and ( , ) ( , ) 

 fbrq k Z b , where   

/2( , )  


 



 
h

b iZ b e e dt . (5.1.24) 

 
Note a kind of scaling: 

1//2 /21/ 1/ 1/( , ) (1, )    


 
     

 

   
h h hb ti h i b t h hZ b e e d b e e dt b Z b . (5.1.25) 
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We hypothesize (based on eyemov_spec_fbm.m) that for large   (  b ),   

 
1( , ) ~ ( , )  hZ b A b h . (5.1.26) 

This makes sense from the kind of “fractional derivative” discontinuity that (5.1.22) has near 0.  
Assuming this is the case, then looking at (5.1.25) for large  : 
 

2
1/ 1/ 1/ 1/ 1 1 1( , ) (1, ) (1, )( ) (1, ) (1, )               


h h h h h h hZ b b Z b b A h b A h b A h k D . (5.1.27) 

 
That is, for sufficiently large temporal frequencies   

2
1( , ) (1, )  

   h
fbrq k A h k D , (5.1.28) 

which yields whitening, since, integrating over the same (high) range of  ’s yields results that are 

proportional to 
2

k . 

 
Bazant (“Lecture 22”, https://ocw.mit.edu/courses/mathematics/18-366-random-walks-and-diffusion-fall-
2006/lecture-notes/lec22_neville.pdf) in eqs. 23 to 29 shows that 
 

1

( )sin1 2( , )
2

 
 

 


 








  a ix

a
L a x e e d

x
 (5.1.29) 

so 

1

( )sin
2( , ) 2 ( , )

2



  
 


 h h

h
bh hb

Z b L . (5.1.30) 

So the hypothesis (5.1.26) holds with  
 

( , ) ( 1)sin
2


  

h
A b h b h . (5.1.31) 

 
The validity of the asymptotic is illustrated in eyemov_spec_fbm.m. 
 

Abrupt refixations within random steps 
We can use the renewal process analysis to analyze another case:  saccades with renewal density ( )p t , 

and in which the step is drawn from a random distribution ( , )r x y  with Fourier transform ( , )x yr k k .  If 

exactly N steps are taken (which has a probability ( )NK  ), then the distribution of displacements has 

Fourier transform  ( , )
N

x yr k k .  Therefore (with “c.c.” for complex conjugate, i.e., substituting   for 

 ), 

 2
0

( , , ) ( ) ( , ) . .
N N

refix D x y N x yq k k K r k k c c        (5.2.1) 

or, 
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   1

2
1

( , , ) ( ) ( ) ( ) ( ) ( , ) . .
N N N

refix D x y none first last x yq k k p p p p r k k c c    


              (5.2.2) 

or, 

2

( ) ( ) ( , )
( , , ) ( ) . .

1 ( ) ( , )
first last x y

refix D x y none
x y

p p r k k
q k k p c c

p r k k

 
 

   


       
 (5.2.3) 

or, 

 
 

2

2 2 2

1 ( ) ( , )1 ( )
( , , ) . .

(0) (0) 1 ( ) ( , )

x y

refix D x y

x y

p r k kp
q k k c c

i p i p p r k k


  


  

  

        
 (5.2.4) 

or, 

 
 

2

2 2 2

1 ( ) ( , )1 ( )
( , , ) . .

(0) (0) 1 ( ) ( , )

x y

refix D x y

x y

p r k kp
q k k c c

i p i p p r k k


  


  

  

        
 (5.2.5) 

or, 

 
 2 2

1 ( ) ( , )1 ( )
( , , ) 1 . .

(0) 1 ( ) ( , )

x y

refix D x y

x y

p r k kp
q k k c c

i p p r k k


 

 
   
   

      
 (5.2.6) 

or, 

 2 2

1 ( , )1 ( )
( , , ) . .

(0) 1 ( ) ( , )
x y

refix D x y

x y

r k kp
q k k c c

i p p r k k


 


 

 

     
 (5.2.7) 

 
To see the behavior for small k, say ( , )r x y  has variances xV  and yV , so that  

2 2

( , ) exp( )
2

x x y y
x y

V k V k
r k k


  . (5.2.8) 

For 
2

1k V  , eq. (5.2.7) becomes, 
2 2

2 2

1 ( )
( , , ) . .

(0) 2
x x y y

refix D x y

V k V kp
q k k c c

i p




 
    

 
 (5.2.9) 

 
For a gamma-process, spec_renewdec_demo.m for a plot of the  -factor (for 1   and 

1,2,4, 128a   ). 
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For a Poisson process, this reduces to 

 2 2
2 2 2

( , , )refix D x y x x y yq k k V k V k


   


 . (5.2.10) 

Note that the k-term neutralizes a power spectrum of 2k   (provided x yV V ). 

Abrupt refixations within a window 
Another example is that of saccades with renewal density ( )p t , but the saccades always land somewhere 
within a Gaussian window (so they never accumulate a large deviation from the starting position). Let the 
autocorrelation of this window be ( , )r x y  with Fourier transform ( , )x yr k k .   This is just like the previous 

case, except that for 2N   steps, the decorrelation is no more than for 1N  . 
 

  1

2
1

( , , ) ( ) ( ) ( ) ( ) ( , ) . .
N N

window D x y none first last x yq k k p p p p r k k c c    


              (5.3.1) 

or, 

2

( ) ( ) ( , )
( , , ) ( ) . .

1 ( )
first last x y

window D x y none

p p r k k
q k k p c c

p

 
 

   


      
 (5.3.2) 

or, 

 
2 2 2

1 ( ) ( , )1 ( )
( , , ) . .

(0) (0)
x y

window D x y

p r k kp
q k k c c

i p i p


 


  

 

     
 (5.3.3) 

or, 

 2 2

1 ( )
( , , ) 1 ( , ) . .

(0)window D x y x y

p
q k k r k k c c

i p





  


 
 (5.3.4) 

 
For a Poisson process, this reduces to 
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 2 2 2

2
( , , ) 1 ( , )window D x y x yq k k r k k


   


  . (5.3.5) 

 

For a Gaussian ( , )x yr k k  and 
2

1k V  , the asymptotic behavior is the same as that of (5.2.7).  But note 

that this case factors exactly; the case in which saccadic movements can accumulate only factors 
asymptotically. 
 

Constant velocity, Poisson direction-interchanges (one dimension) 
 
This is a model of eye movements that is not intended to be physiologic; instead, it is a highly non-
physiologic model, to look at what happens if eye movements are very different from the normal.  
 
I think we can anticipate that this will have the same effect as Brownian motion at sufficiently slow 
frequencies (but only for orientations that are approximately perpendicular to the movements).   
 
It also might serve as a starting point for analyzing nystagmus. 
 
The model is that eye movements drift with a constant velocity v , but the velocity changes direction 
randomly (according to a Poisson process), with rate a .   
 
To analyze the process, we note that eye movements evolve in a “state space”, in which the state consists 
of the current direction of the eye movement (L or R), and, the current displacement, x.  That is, we can 

describe the state at time t by a pair 
( , )

( , )
R

L

h x t

h x t

 
 
 

, where ( , )Rh x t  is the probability that the eyes are at a 

displacement x and are moving to the right, and ( , )Lh x t  is the probability that the eyes are at a 

displacement x and are moving to the left.  
 

We’d like to find eigenvectors for the operator that determines how 
( , )

( , )
R

L

h x t

h x t

 
 
 

 evolves in time.  To do 

this, we start with a Fourier basis, for a reason that will become quickly clear:   
 

 
1

( , ) ( , )
2

ikx
j jh x t h k t e dk







   , (5.4.1) 

for j R  or j L .  That is, ( , )Rh k t  is the projection of the probability distribution onto ikxe  of the right-

drifting component, and similarly for ( )Lh k .  Note that evolution in time can mix ( , )Rh k t  and ( , )Lh k t  at 

the same spatial frequency k, but cannot mix components at different spatial frequencies. So the Fourier 
transformation determines two-dimensional subspaces in which the probability density evolves, and 
therefore, these must contain the eigenvectors.  Our initial conditions are  

 
( ,0) ( )1
( ,0) ( )2

R

L

h x x

h x x




   
   

  
, (5.4.2) 

since the eyes start at the origin, and can be assumed to have equal probability of starting to drift to the 
left, or to the right.  
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Eigendecomposition 

How does 
( , )

( , )
R

L

h x t

h x t

 
 
 

 evolve over time?  Since it is linear, we can analyze it component by component.  

Say  

 
( , ) ( , )

( , ) ( , )
R ikxR

L L

h x t h k t
e

h x t h k t

  
   

   


 . (5.4.3) 

In a time step t , there is a probability 1 a t   that the eye does not change direction, i.e., stays 
rightward-drifting at velocity v.  In this case, the rightward density goes from ikxe  to ( )ik x v te   , and the 
leftward density goes from ikxe  to ( )ik x v te   .  There is a probability a t  that the eye does change direction, 
and in this case, the density remains ikxe , but the rightward component becomes the leftward component, 
and vice-versa. Thus, 

 
( , ) ( , ) ( , )

(1 )
( , ) ( , ) ( , )

ikx ikv t
R ikxR L

ikx ikv t
L L R

h x t t h k t e h k t
a t a t e

h x t t h k t e h k t

 

 

      
              

 
  . (5.4.4) 

 For small t , 

 
( , ) (1 ) ( , ) ( , )

(1 )
( , ) (1 ) ( , ) ( , )

R ikx ikxR L

L L R

h x t t ikv t h k t h k t
a t e a t e

h x t t ikv t h k t h k t

       
                

 
  , (5.4.5) 

so  

 
0

( , ) ( , )

( , ) ( , ) ( , ) ( ) ( , ) ( , )
lim

( , ) ( ) ( , ) ( , )

R R

R ikx ikxL L R L

t
L L R

h x t t h x t

h x t h x t t h x t a ikv h k t h k td
e a e

h x tdt t a ikv h k t h k t 

    
                             

 
  , (5.4.6) 

 
Making use of eq. (5.4.3),  

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )
R R R

k

L L L

a ikv ah k t h k t h k td
M

a a ikvdt h k t h k t h k t

       
              

  
   , (5.4.7) 

where 

 k

a ikv a
M

a a ikv

  
    

. (5.4.8) 

Eq. (5.4.7) shows how the density evolves in the 2-d space corresponding to the spatial frequency k .  
 
To make this explicit, we find the eigenvalues and eigenvectors of kM . The eigenvalues of the matrix 

(5.4.8) are solutions of its characteristic equation,  
 2 2 2det 2 0kM Iz z az k v     ,  (5.4.9) 

namely, 

 2 2 2z a a k v     .  (5.4.10) 

Thus, given any eigenvector R
k

L

b
e

b

 
  
 

 of eq. (5.4.9), there is a solution of eq. (5.4.7),   

 
( , )

( , )
R ztR

LL

eh k t
e

eh k t

   
   
  


 . (5.4.11) 
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Without loss of generality, we can assume that the eigenvectors are associated with the eigenvalue z are of 

the form 
1R

L

e

e x

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç ÷÷ç è øè ø
.  In order for 

1 1
kM z

x x

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷è ø è ø
, we must have a ikv ax z- - + = , from which it follows 

that the eigenvectors are 
1

x+

æ ö÷ç ÷ç ÷ç ÷çè ø
 and  

1

x-

æ ö÷ç ÷ç ÷ç ÷çè ø
, with 

   2 2 21
1 /

ikv
x z a ikv k v a

a a       .  (5.4.12) 

At 0,k = 0z =  or 2z a=-  and 1x = .  At /k a v= , z a=-  and x i =  (a double root).  Note that 

1x x    , independent of k. 

 
We can superimpose solutions of the form (5.4.11) to obtain a general solution of eq. (5.4.6): 
 

 
( , ) 1 11

( ) ( )
( , ) ( ) ( )2

R z t z t ikx

L

h x t
c k e c k e e dk

h x t x k x k
 



 
 

      
       

      
 . (5.4.13) 

This has the initial condition 

 
( ,0) 1 11

( ) ( )
( ,0) ( ) ( )2

R ikx

L

h x
c k c k e dk

h x x k x k



 
 

      
       

      
 . (5.4.14) 

 

Solution 
The next step is to express our initial conditions (eq. (5.4.2)) in terms of the eigenvectors.  Since 

1
( ,0) ( ,0) ( )

2R Lh x h x x  , we need to find coefficients c  and c  for which  

 
1 111

12
c c

x x 
 

    
     

     
, (5.4.15) 

where x  is given by (5.4.12).  It follows that 

 
 

1

2

x
c

x x



 





 (5.4.16) 

and 

 
 
1

2

x
c

x x



 





. (5.4.17) 

(where c , c , x , and x  could depend on k ), and these reduce to 

 
2 2 2

1 1 /
1

4 1 /

ikv a
c

k v a


 
  

 
, (5.4.18)   

and 

 
2 2 2

1 1 /
1

4 1 /

ikv a
c

k v a


 
  

 
. (5.4.19)   

Since 1x x    ,  

 
  2 2 2

1 1 1 /
1

2 4 1 /

x ikv a
c x

x x k v a


 
 

   
     

 (5.4.20) 

and 
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  2 2 2

1 1 1 /
1

2 4 1 /

x ikv a
c x

x x k v a


 
 

  
     

. (5.4.21) 

Eq. (5.4.13) now provides the solution from our initial conditions: 
 

 

   

     
     

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( , ) 1 ( / ) 1 ( / )1
( , ) 1 ( / ) 1 ( / )8

cosh ( / )sinh

4 cosh ( / )sinh

a a k v t a a k v tR ikx

L

at
ik

h x t f kv a f kv a
e e e dk

h x t f kv a f kv a

a k v t f kv a a k v t
e

e
a k v t f kv a a k v t






     





       
                

    
  

    
 



xdk





, (5.4.22) 

where 

 
2

1
( )

1

iu
f u

u





. (5.4.23) 

The right and left components (top and bottom) of (5.4.22) should be the same at long times, or, as 
a  .  In the latter case, / 0u vk a  , ( ) 1f u   and both top and bottom of (5.4.22) become 
 

 
  2 2

2 2 2

21
( , ) ( , )

4 4

v kat ta v k t ikx ikxa
R L

e
h x t h x t e e dk e e dk

 

  

 

    , (5.4.24) 

appropriate for Brownian motion provided that 2v  is proportional to a  (which makes sense to maintain a 
diffusion limit). 
 
In the limiting case of 0a  , we do not expect that the top and bottom will be the same, because the eye 
direction never switches.  That is,  when the eye is moving right (top), it will always be to the right of the 
origin, at position x vt , and when it is moving left (bottom), it will always be to the left, at position 

vt .  Formally, for 0a  , /u kv a  becomes infinite, ( ) 1f    , ( ) 1f    , and (5.4.22) becomes 
(with sinh( ) sin( )iy i iy  

 
( )

( )

( , ) cos( ) sin( )1
( , ) cos( ) sin( )4

( )1 1 1

( )4 4 2

R ikx

L

ikvt ik x vt
ikx

ikvt ik x vt

h x t kvt i kvt
e dk

h x t kvt i kvt

x vte e
e dk dk

x vte e




 





  

 
 

   
     

     
           



 
, (5.4.25) 

as expected. 
 

Effect on the input spectrum 
 
To evaluate the effect of eye movements on an image, we are interested in the Fourier transform of the 

probability of the eye position displacement. This is ( , ) ( , ) ( , )R Lq k t h k t h k t   .  From (5.4.22),  

 

 
     

 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

( ) ( ) ( ) ( )

2 2 2

1
( , ) cosh sinh

1 /

1 1

2 1 /

at

a a k v t a a k v t a a k v t a a k v t

q k t e a k v t a k v t
k v a

e e e e
k v a



           

 
    

 
 

    
 



, (5.4.26) 
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for 0t  .  For negative values of t, it is the same expression, with argument | |t . This is a sum of 
exponentials in t.  Using eq. (5.1.7),  
 

 

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

( , ) ( ,| |)
( ) ( )

1

1 / ( ) ( )

i t a a k v a a k v
q k q k t e dt

a a k v a a k v

a a k v a a k v

k v a a a k v a a k v


 

 






   
   

     

    
         

 

. (5.4.27) 

This simplifies dramatically via straightforward algebra:  
 

 
   

 

2 2
2 2 2 2 2 2 2 2

2 2 2
2 2 2 2 2 2

2 2 2

1
( , )

2
2 ( )

1 /

q k
a a k v a a k v

a k v
a k v k v

k v a


 

 

 
         
  

 
     



. (5.4.28) 

 

    
  

2 2
2 2 2 2 2 2 2 2

2 2 2 2 2 2

1
( , )

2 ( ) 2

q k
a a k v a a k v

a k v a k v


 

 

 
         
  

  



. (5.4.29) 

 

 
 

2 2

22 2 2 2 2

4
( , )

4

ak v
q k

a k v


 


 
 . (5.4.30) 

Contact with Brownian case 
 
To make contact with the one-dimensional Brownian case, we consider the large- a  limit (rapid 
switching), and choose  
 2 2v aD . (5.4.31) 
This is dimensionally correct; v  is length/time, D  is length2/time, and a  is time-1. Eq. (5.4.30) becomes 

 
 

2 2

22 2 2 2

8
( , )

4 2

k a D
q k

a k aD


 


 
 . (5.4.32) 

In the regime of 2 2k aD  , this becomes 

 
2

2 4 2

2
( , )

k D
q k

k D






  (5.4.33) 

which matches (5.1.8), and yields the 2k  behavior needed to neutralize the power spectrum of natural 
scenes for sufficiently high temporal frequencies  .  In the regime of 2 2k aD   or 2 2 22k v    
(temporal frequencies faster than the typical reversal), this becomes 

 
2 2

2 2 4

8
( , )

4

k a D
q k

a


 



 , (5.4.34) 

which also yields the 2k  behavior needed to neutralize the power spectrum. 
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Contact with constant-velocity motion 
 
For steady smooth motion ( 0a  ), eq. (5.4.30) is zero except when kv  , as expected: a spatial 
frequency is translated into a temporal frequency. 

Constant-velocity, gamma-process reversal rates 
 
Note that more elaborate “state-space” models can readily be handled.  For example, say the distribution 
of times to reverse direction are goverened by a  gamma-process of order 4g  .  That is, there’s a hidden 
Poisson process of rate a, and, after four of these hidden events occur, the eyes reverse direction.  In this 

case, Rh  is replaced by 

,1

,2

,3

,4

R

R

R

R

h

h

h

h

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø






, similarly for Lh , and eq.  (5.4.8) is replaced by 

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a ikv a

a ikv a

a ikv a

a ikv a
M

a ikv a

a ikv a

a ikv a

a a ikv

  
   
  
   
  
 

  
  
 

  

. (5.5.1) 

Eigenvalues 

To calculate its eigenvalues, we consider g gM aI M   . This is a matrix like  

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

g

ikv a

ikv a

ikv a
M

ikv a

ikv a

a ikv

 
  
 
   
 
 

 
 
 

 




       

       

. (5.5.2) 

All of its invariants except the determinant do not depend on a.  When 0a  , the matrix is diagonal, with 
g  eigenvalues ikv  and g  eigenvalues ikv .  One can also see (by direct expansion) that 

 2 2 2 2det( ) ( ) ( )g g g g g g
gM ikv ikv a k v a        (5.5.3) 

Therefore,  
 2 2 2 2 2det( ) ( ) ( ) ( )g g g g g

gM yI y ikv y ikv a y k v a         . (5.5.4) 

The eigenvalues of gM   are roots of det( ) 0gM yI   , namely, 

 2 2 2
,

j
jy a k v    , (5.5.5) 
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where   is a nontrivial g th root of unity and {0,1, , 1}j g  , and the eigenvalues of g gM aI M     

are 

 2 2 2
, ,

j
j jz a y a a k v        , (5.5.6) 

generalizing (5.4.10). 

Eigenvectors 
 
The initial conditions, generalizing (5.4.2), are  

 

,1

,

,1

,

( ,0)

( )
( ,0) 1
( ,0) 2

( )

( ,0)

R

R g

L

L g

h x

x
h x

h x g
x

h x





 
 
            

  
  
 







; (5.5.7) 

we need to express this in terms of the eigenvectors. 
 
As a warm-up, we re-express the results of the 1g  -analysis of eqs. (5.4.15) to (5.4.21) (writing the 
initial conditions as a sum of eigenvectors) in a way that better respects the symmetry of the problem.  
That is, we seek coefficients b  and b  for which  

 
111

1 12

r
b b

r


 


    
     

    
. (5.5.8) 

It follows that 

 
2 2 2

1 1 /
1

4 1 /

ikv a
b c

k v a
 

 
   

 
, (5.5.9) 

 2 2 21 /
ikv

r x k v a
a     , (5.5.10) 

 
2 2 2

1 1 /
1

4 1 /

ikv a
b c x

k v a
  

 
   

 
, (5.5.11)   

and 

 2 2 21
1 /

ikv
r x k v a

x a 


       , (5.5.12)   

and one can verify that  b r c   . 

 
To find the eigenvectors, we note that for a general matrix of the form 

 

0 0

1 1

1 1

0 0

0 0

0 0N N

p q

p q
M

q p 

 
 
 
 
 
 

   
, (5.5.13) 
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then an eigenvector  
0

1N

w

w

w 

 
   
 
 

   and eigenvalue z  must satisfy 

 1n n n n nw z p w q w    (5.5.14) 

 
(with subscripts interpreted cyclically mod N), which means that 

 1
n

n n
n

z p
w w

q


 . (5.5.15) 

Here, 

 

, 0,..., 1

, ,...,2 1n

n

a ikv n g
p

a ikv n g g

q a

   
    


, (5.5.16) 

and the eigenvalues z  are given by eq. (5.5.6).  So, 
 

 

2 2 2

,

2 2 2

/ , 0,..., 1

/ , ,...,2 1

j

j

jn

ikv
k v a n g

z p a
ikvq

k v a n g g
a







      
    


. (5.5.17) 

Note that the product of the two alternatives in eq. (5.5.17) is 

  
2 2

2 2 2 2 2 2 2 2 2
2

/ / /j j j jikv ikv k v
k v a k v a k v a

a a a
               

  
. (5.5.18) 

So, with 

 2 2 2/j
j

ikv
u k v a

a
   , (5.5.19) 

we can write a matrix whose columns are the eigenvectors: 

 

 
 

   

   

1

11

1

1 1

1

1

g

j

gj
j j

gg j
j j

g
g

j
j g

j j

g gj
j j

u

u u

u uZ
u

u u

u u















 

 
 
  
 
 
   
 
  
 
 
  

   

   

 

   

   
   
  

   

, (5.5.20) 

where we have taken 0 1w   for the first set of g  columns ( , jz  in eq. (5.5.17), 0,..., 1j g  ), and 

1gw   for the second set of g  columns ( , jz  in eq. (5.5.17), 0,..., 1j g  ). 

 
To express the initial conditions in terms of the eigenvectors, we want to solve  

 
1

1
2gZ c

g



. (5.5.21) 
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The n th element of c


 indicates the weight of the n th eigenvector nz


 (the n th column of gZ ) 

corresponding to an eigenvalue nz , and exponential timecourse nz te . Here, we use {0,..., 1}n g   as 

equivalent to the pair ( , )j , and { ,...,2 1}n g g   as equivalent to the pair ( , )j ,Determining the 
contribution to the density requires that we sum over all 2g  sheets, i.e., that we multiply this element of 

c


 by the sum of the elements of this eigenvector, namely, computing 1T
gZ


. 

 
To solve (5.5.21), we will make use of the fact that the row eigenvectors of gM  and the column 

eigenvectors are orthogonal.  That is, say gR  is a matrix whose rows are the row eigenvectors of (5.5.20), 

and that   is a diagonal matrix whose diagonal elements list the 2g  eigenvalues of gM . Then, 

 g g g g g g gR Z R M Z R Z    . (5.5.22) 

 
This means that g gR Z  and   commute.  Provided that the eigenvalues of gM  are distinct (which is 

generic, see eq. (5.5.6)), then this in turn means that each row eigenvector is orthogonal to all column 
eigenvectors, except the one with the same eigenvalue. 
 
We can now write (from eq. (5.5.21)): 
 

 
1

1
2g g gR Z c R

g



. (5.5.23) 

so 
 

   11
1

2 g g gc R Z R
g





, (5.5.24) 

where the matrix inversion is trivial since g gR Z  is diagonal.  Finally, the weight of the exponential 

corresponding to the n th eigenvalue is the n th component of this expression, multiplied by the sum of 

the values in the n th column eigenvector,  namely, 1T
gZ


.  Thus, this coefficient is 

 

       1

,1 1,,

1
1 1

2
T

n g g g g
n nn n

d R Z R Z
g




 
. (5.5.25) 

 
Thus, the next step is to compute the matrix gR  of row eigenvectors.  We use the method of eqs. (5.5.13) 

to (5.5.20).  For a general matrix of the form (5.5.13), a row  eigenvector   0 1
T

Nv v v 
   with 

eigenvalue z  must satisfy 
 1n n n n nv z p v q v    (5.5.26) 

 
(with subscripts interpreted cyclically mod N), which means that 

 1
n

n n
n

z p
v v

q


 . (5.5.27) 

np  and nq  are again given by eq. (5.5.16), and z  by eq. (5.5.17). Thus, 
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 

         

11 1

1 1 1

1

1

gg j j g g
j j j j j

g

g g g gj j
j j j j j

u u u u u

R

u u u u u

 

 

 

  

 
 
 
 
   
 
     
  
 

     

 

     
     

 

     

, (5.5.28) 

where we have taken 1 1gv    for the first set of g  rows ( , jz  in eq. (5.5.17), 0,..., 1j g  ), and 2 1 1gv    

for the second set of g  rows ( , jz  in eq. (5.5.17), 0,..., 1j g  ). 

 
The diagonal elements of g gR Z  are given by 

      11 1 1
,( )

gg j g g j
g g j j j j j j jR Z g u u gu u u 

        (5.5.29) 

and 

            11 1 1
,( )

gg g gj j
g g g j g j j j j j jR Z g u u g u u u 

   
           (5.5.30) 

 
(with {0,..., 1}j g  ). 
 

We determine 1T
gZ


 from eq. (5.5.20). The result follows easily by summing geometric series: 

 

 

   
   

    
   

2

2

1

1

1

1

1

g j
j j

j
j j

T
g

g j
j j

j
j j

u u

u u

Z

u u

u u









 
 

  
   
 
 
 
 

   
 

  
 
 








. (5.5.31) 

 
Since the values in a row of gR  are the same as the values in the corresponding column of gZ  (but in 

reverse order), it follows that  

  1 1
TT T

g gR Z
 

. (5.5.32) 

Finally, we can obtain the coefficient of the n th exponential decay mode from eq. (5.5.25), using (5.5.29)
through (5.5.32): 

 
 

2 22

2 1

11 1

2 1

g j
j j

j jg j
j jj j j

u u
d

g u uu u u


 

    
            

. (5.5.33) 

and 
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   

 
2

22

2 1

11 1

2 1

g
j

j j
g j g jj

j jj j j

u u
d

g u uu u u




  

               
 (5.5.34) 

with {0,..., 1}j g  . 
 
Note that  

 2 2 2 22 /j j
j ju u k v a    . (5.5.35) 

So there’s an alternate form for (5.5.33) and (5.5.34): 

 
 

2 22

2 2

2 22

2 2 2 2

11

2 1

11

4 1/

j g j
j j j

j jg j
j jj j

g jj
j j

jg j
j jj

u u u
d

g u uu u

u u

g u uu k v a

    
            

    
            

 





. (5.5.36) 

and 

 
 

 
2

22

2 2 2 2

11

4 1/

g
jj

j j
g j g jj

j jj

u u
d

g u uu k v a






               
. (5.5.37) 

 
To check for 1g =  (with 0j = ):  Eq. (5.5.33) becomes  

 
2

0 0
0 2 2 2 2 2

0 0

(1 ) 21 1 1 1
1 1

2 1 2 1 2 1 /

u u
d

u u k v a

  
           

; (5.5.38) 

the coefficient of z te +  in (5.4.26). For the other eigenvalue, eq. (5.5.33) becomes 

 
 2

0 0
1 2 2 2 2 2

0 0

1 21 1 1 1
1 1

2 1 2 1 2 1 /

u u
d

u u k v a

   
           

,  (5.5.39) 

the coefficient of z te - both as required for (5.4.26). 

Synthesis of the solution 
 
The eigenvalues , jz  are related to the u ’s by (see eqs. (5.5.19) and (5.5.6)): 

 , ( )j jz a au ikv     ,  (5.5.40) 

So 

  
1

( ) ( )

0

( , ) j j

g
au ikv t au ikv tat

j g j
j

q k t e d e d e


  




  , (5.5.41) 

 
2 2 2 2 2 21

2 2 2 2 2 2 2 2 2 2
0

( , ) ( ,| |) 2
( ) ( )

j jg
i t

j g jj j
j

a a k v a a k v
q k q k t e dt d d

a a k v a a k v

 





    
   
       

   


   
  . (5.5.42) 

The denominator will clear; the common denominator is 
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  
 

    
   
 

2 2 2 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2
4 2 2 2 2 2 2 2 2 2

24 2 2 2 2 2 2 2

22 2 2 2 2 2

( ) ( )

( ) ( )

( ) ( )

2

2 (1 ) (1 )

4 (1 )

j j
j

j j

j j

j j

j j

j

D a a k v a a k v

a a k v a a k v

a a k v a a k v

a a k v a a k v

a k v a k v

a a k v

   

   

 

   

   

  

       

      

    

      

      

   

. (5.5.43) 

Note the resonances that appear for 1j ³ , i.e., 2g ³ . 
 
The numerator: 

  
  

     
     
   

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

( )

( )

( ) (

j j
j j

j j
g j

j j j
j

j j j
g j

j j j
j g j

N a a k v a a k v d

a a k v a a k v d

a a k v a a k v a a k v d

a a k v a a k v a a k v d

a a a k v d d a k v a a k v

  

  

   

   

    







      

    

        

      

          )j g jd d 

. (5.5.44) 

From (5.5.36) and (5.5.37), 

     

       

22 2 2 22
1

2 2 2 2

22
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111 1 1
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4 1 1/
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4 1 1/
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j j j jj
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g jj j j
j jg j

j jj

u uu
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g u u u uu k v a
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u u

g u uu k v a

 
 

  







                                      
                   

 

              
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22 2 22 21

1

4 1 /

1 1 1 1 1

j

g j
j j

ggg j j
j j j j j j

g u u k v a

u u u u u u





 



 
 

          
 

. (5.5.45) 

 
For g  even: 

 
 

        
2

2 22 2

22 2 2 2 2

11
1 1

4 1 /

j g
j j j

j g j j j j jg j
j j

u
d d u u u u

g u u k v a


 





     

 
 . (5.5.46) 

For g  odd: 
Error! Objects cannot be created from editing field codes.. (5.5.47) 
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Ornstein-Uhlenbeck Process 
 
We consider the one-dimensional case first. 
 
The probability distribution evolves according to 

 
2

2
( , ) ( ( , )) ( , )OUPq x t xq x t D q x t

t x x
  

 
  

, (5.6.1) 

 
a generalization of eq. (5.1.1).  It is well-known that with the initial condition ( ,0) ( )q x x , the solution 
is 

 
21

( , ) exp( )
2 ( )2 ( )

OUP

x
q x

VV


 
  . (5.6.2)  

where  

 2( ) (1 )OUPD
V e 


  . (5.6.3) 

(One verify this by substituting (5.6.2) into (5.6.1).) For 1/  , 
 ( ) 2 OUPV D  . (5.6.4) 

Since (5.6.2) is a Gaussian, standard techniques yield  

 
2

1( , ) exp( ( ))
2OUP D

k
q k V    , (5.6.5) 

i.e., V  plays the same role as 2 2 Brownianx D  . 

 
So, 

 
2

2
1 ( , ) exp (1 ) exp( )

2
OUP

OUP D

k D
q k e i d   









 
    

 
  (5.6.6) 

 

OUP asymptotics, Brownian range 

Asymptotics for 
2

OUPk D


 large.  Then the  

approximation that  21 2e       is good, since the only contribution to the integral is when the 

quantity is small. This is the limit that the “pull” of the OUP does not matter very much.  Here, the 

symptotics for the Brownian analysis apply.  That is, provided / OUPk D  (i.e., 
2 OUPk D ) as 

well as 
2 OUPk D  , then  2 2

1 ( , ) 2OUP D OUPq k k D 
  . 

 

Further analysis when 
2

OUPk D


  is small: Break the integral (5.6.6) into two parts:  one part 

corresponding to the asymptotic behavior when    is large, and the rest.  So   

 1 ( , ) ( , ) ( , )OUP D dc acq k q k q k         , (5.6.7) 

where 
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2 2

( , ) exp exp( ) 2 ( )exp
2 2

OUP OUP
dc

k D k D
q k i d    

 





   
       

   
 , (5.6.8) 

and 

 
2 2

2( , ) exp (1 ) exp exp( )
2 2

OUP OUP
ac

k D k D
q k e i d   

 






    
         

    
  (5.6.9) 

or 

 
2 2

2( , ) exp exp 1 exp( )
2 2

OUP OUP
ac

k D k D
q k e i d   

 






    
       

    
  (5.6.10) 

 
Breaking it down into a DC component and an AC component makes sense:  the DC component reflects 
the fact tht because of the Hookes’-law force, the walk never wanders too far from 0.  So there’s a steady-
state component, and this leads to a ( )d w -term. 
 

OUP asymptotics, Hooke’s law force dominates 

For 
2

OUPk D


 small: approximate 

2
2exp

2
OUPk D

e  


 

 
 

 by 
2

21
2

OUPk D
e  


 , so   
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


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 (5.6.11) 

So, for 
2

OUPk D


 small, 

 
2 2

1 2 2

2
( , ) ( , ) ( , ) 2 ( ) exp

4 2
OUP OUP

OUP D dc ac

k D k D
q k q k q k    

  

   
          

     , (5.6.12) 

which is not separable.    The final factor should be deleted for consistency with “order of smallness”: 
 

 
2

1 2 2

2
( , ) 2 ( )

4
OUP

OUP D

k D
q k   

 

 
   

  (5.6.13) 

 
For   that is sufficiently large ( 2  ), 2 2

1 ( , ) 2OUP D OUPq k k D 
  , even in the large-  regime.   

 

OUP asymptotics, full range 

At the transition, e.g., for 
2

OUPk D


 near 1 ( 0/ OUPk c D ck  , 0a a    ): 



Page 28 

 
2

2
1 1 0 0

1
( , ) ( , ) exp exp( )

2OUP D OUP D
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 
    (5.6.14) 

or 
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 (5.6.15) 

See eyemov_spec_v2oup_demo.m and figure below, which calculates 
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2 1
( , ) exp exp( ) exp( )

2 2

ue c
f a c c iau du

 



  
         
  (5.6.16) 

which, for small c, is given by  

 
2

2

2
( , )

4

c
f a c

a



 (5.6.17) 

When c is large, the first term in the integrand in is approximated by 21 c u  until it gets close to 0. So 

for large c, 

  
2

2
4 2

2
( , ) exp exp( )

c
f a c c u iau du

c a





   
  (5.6.18) 

A useful approximation over the entire range of c combines eqs. (5.6.17) and (5.6.18):  

 
2

4 2

2
( , )

4

c
f a c

c a

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 (5.6.19) 

 
This approximation holds provided that c is either small or large.  See illustration below; it is not a bad 
approximation over the whole range. This leads to a full approximation for the OUP result: 
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. (5.6.20) 

 
The relationship to the Brownian case is seen with 0  .  From the large-c approximation (5.6.18) with 

/ / OUPc k D , /a   , and 

  1 0 0

1
( , ) ( , )OUP Dq ck a f a c

   (5.6.21) 
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so (using only the large-c approximation): 

 
2 2

4 2 2 2 2 4 2 2

1 1 2 ( / ) 2
( , )

/ /
OUP OUP

OUP OUP

k D k D
f a c

k D k D


     

 
 

, (5.6.22) 

as in eq. (5.1.8), confirming the Brownian limit. This also follows directly from (5.6.20) with 0  . 
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A more general formulation with saccades as point processes 
 
Here we work out a more general formulation for  0( , ; )q x t ,  the probability that the eyes move by an 

amount x  between 0t  and 0t t   , (summed over all starting locations at 0t ), given that the last 

saccade was at time 0. 
 
We assume that the probability of a saccade and the probability distribution of its displacement on the 
time since the last saccade. 
 
The point process of saccadic occurrences is governed by a renewal process, with renewal density ( )p t . 
(More general history-dependences can be handled too.)  
 
The saccades themselves are described by ( ; )z s  , which is the probability that a saccade which occurs 
after an intersaccadic interval   has a displacement of s. 
 
Once the saccade occurs, the fixational eye movement process begins.  Fixational eye movements are 
characterized by 0( , ; )g x t , the probability that the eyes move by an amount x  between 0t  and 0t  , 

given that the last saccade was at time 0. 
 
We calculate 0( , ; )q x t  by summing over the number of saccades between 0t  and 0t t   . 0( , ; )nq x t  

is the contribution from trajectories with n saccades: 
 

 0 0
0

( , ; ) ( , ; )forward n
n

q x t q x t




     (6.1.1) 

 
We use forwardq  rather than q to indicate that it only is defined for 0t³  (and can be set to 0 for 0t< ). 

 
No saccades 
 0 0 0 0( , ; ) ( ; ) ( , ; )noneq x t p t g x t     , (6.1.2) 

where 0( ; )nonep t  is the probability that there are no saccades between 0t  and 0t t   , with the last 

saccade at time 0. 
 
One saccade, at time 0 1t   ( 1  ), assuming that there is a saccade at time 0, and no saccades from then 

until 0t , and 0 1t  : 

 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1( , ; ) ( ; ) ( ;0) ( , ; ) ( ; ) ( , ;0)first noneq x t p t p g x t z s t g x x s d ds dx                , (6.1.3) 

where 1 0( ; )firstp t  is the probability that the first saccade is at time 1 0t  , given that the last saccade at 

was at time 0.  
 
For (6.1.3), the spatial component is a convolution of the displacement moved before the first saccade 
( 1x ), the displacement moved by the first saccade ( 1s ), and the displacement moved after the first saccade 

( 1 1x x s   ). So we can rewrite (6.1.3) as: 

 

 1 0 1 0 1 1 0 0 1 1 1( , ; ) ( ; ) ( ;0) ( , ; ) ( ; ) ( , ;0)first noneq k t p t p g k t z k t g k d              . (6.1.4) 
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For two saccades, at times 0 1t   and 0 2t   ( 1 2    ), again assuming that there is a saccade at time 

0, and no saccades until 0t : 

 

 2 0 1 0 2 1 2

1 0 0 1 2 1 2 1 2 1 2

( , ; ) ( ; ) ( ;0) ( ;0)

( , ; ) ( ; ) ( , ;0) ( ; ) ( , ;0)

first first noneq k t p t p p

g k t z k t g k z k g k d d

     

         

   

   


   
, (6.1.5) 

 
And in general for n saccades, at times 0 it   ( 1 2 n       ), again assuming that there is a 

saccade at time 0, and no saccades until 0t  ( 1n  ): 
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1 1
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1 1
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i i i i n n
i i
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     
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




 

 
 

     
 

          
   



 



    
, (6.1.6) 

and for 0n  , 
 0 0 0 0( , ; ) ( ; ) ( , ; )noneq k t p t g k t    , (6.1.7) 

 
The p-term describes the process of saccadic times, the z-term describes saccadic lengths, and the g-term 
describes the fixational eye movements. Note that (0, ) (0, ; ) 1z g t    since ( , )z   and ( , ; )g t  are 
probability distributions. 
 
To make eq. (6.1.1) into a geometric series, define 

 0 0 0 0( , ; ) ( ; ) ( ; ) ( , ; )firstf k t p t z k t g k t       (6.1.8) 

and 

 0 0 0( , ; ) ( ; ) ( , ; )none nonef k t p t g k t    , (6.1.9) 

Then, eq. (6.1.6) becomes 
 

 
1

0 1 0 1 1
1

( , ; ) ( , ; ) ( , ;0) ( , ;0)
n

n i i none n n
i

q k t f k t f k f k d d       





    
 
     , (6.1.10) 

a convolution in  , and eq. (6.1.7) becomes 

 0 0 0( , ; ) ( , ; )noneq k t f k t   . (6.1.11) 

With the Fourier transforms with respect to   given by  

 0 0( , ; ) ( , ; )exp( )f k t f k t i d   




    (6.1.12) 

and 

 0 0( , ; ) ( , ; )exp( )none nonef k t f k t i d   




   . (6.1.13) 

the convolutions become products: 

   1

0 0( , ; ) ( , ; ) ( , ;0) ( , ;0)
n

n noneq k t f k t f k f k   


      , (6.1.14) 

and  

 0 0 0( , ; ) ( , ; )noneq k t f k t   . (6.1.15) 
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So, the Fourier transform of eq. (6.1.1) becomes 
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0 1

0
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  

 

  

 

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 


        

  


 (6.1.16) 

 
To determine the autocorrelation, we need to do two things:  first, consider all possible previous times of 
the last saccade, and second, consider time intervals t  that are both positive and negative. To do the first, 
we compute a weighted sum of (6.1.1) over all values of 0t , weighted by the chance that a random time is 

0t  after the last saccade, which we denote 0( )prevp t . This yields  

 

 0 0 0

0

( , ) ( ) ( , ; )forward prev forwardq x p t q x t dt


    , (6.1.17) 

so that 

 0 0 0

0

( , ) ( ) ( , ; )forward prev forwardq k p t q k t dt


     . (6.1.18) 

If the quantities that make up 0( , ; )forwardq x t   are independent of 0t , the above step is trivial, as prevp  is 

unit-normalized.  Otherwise, the above can be done by Fourier transform, as it is essentially a convolution 
in 0t .   To calculate 0( )prevp t , we use the same logic as used for ( )firstp t  (above, see (3.1.15)).  That is, 

0( )prevp t  contains a contribution from all intervals of length 0tt ¢ ³ .  It is the probability that time 0t  is 

inside the an interval from a saccade at some time t  to the next saccade, at time t t ¢+ , times the 
probability that, conditional on being in this interval, that it is 0t t-  from the end.  So it is exactly equal 

to 0( )firstp t , and, according to eq. (3.1.16), 

 

 
1 ( )

( )
(0)prev

p
p

p









 
. (6.1.19) 

 
Finally, since  
 ( , ) ( , ) ( , ) ( , )forward forward forwardq x q x q x q x           , (6.1.20) 

we obtain the desired quantity: 

  ( , ) ( , ) ( , ) 2Re ( , )forward forward forwardq k q k q k q k             . (6.1.21) 

 

Some special cases 
 

Simplified history dependence 
 

In the case that the quantities 0( , ; )f k t  and 0( , ; )nonef k t  that make up 0( , ; )forwardq x t   are independent 

of 0t , we have (from eq. (6.1.16)): 
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 0

( , )
( , ) ( , ; )

1 ( , )

none
forward forward

f k
q k q k t

f k

 


 



   

. (6.2.1) 

 

Very large saccades 
 
A limiting case is that saccades are so large so that they effectively move to a new image, uncorrelated, 
image. Thus, the probability ( , )z s t  of a saccade displacement integrates to 1 (across s), but is arbitrarily 
small at any nonzero spatial frequency. Since (0, ; ) 1g t   ( ( , ; )g t  is a probability distribution),  
 

 0
0

( ; ) , 0
( , ; )

0 , 0
firstp t k

f k t
k





  

 . (6.2.2) 

 

Poisson saccade occurrence  
 
Saccades governed by Poisson process with rate S , and mean-squared distance (two-dimensional) is 

2
SR . So,  

 0( ; ) S
nonep t e    , (6.3.1) 

 0( ; ) S
first Sp t e     , (6.3.2) 

and 

 
2 2 / 4( ; ) Sk Rz k e  . (6.3.3) 

where we can either (i) take 2
SR  a constant, or, (ii) 2 2S SR D  , for a “diffusive” variant of eye 

movements. Since everything is Poisson, there’s no dependence on 0t . 

 
For fixational eye movements, also characterized by a two-dimensional Brownian process, 

 
2 / 2

0( , ; ) k Dg k t e   . (6.3.4)   

 
So, 

 
2 22

2 2
2/ 4 / 2

0( , ; ) exp
2 4

SS k R k D S
indep S S S

k RD
f k t e e e k      

           

  (6.3.5) 

(case (i), saccades don’t depend on previous interval) or 

 
2 2 2/ 2 / 2

0( , ; ) exp
2

SS k D k D S
diffusive S S S

D D
f k t e e e k                 
 . (6.3.6) 

(case (ii), “diffusive” dependence of saccade length on previous intersaccadic interval). For either 
assumption about saccades, 

 
2 2/ 2

0( , ; ) exp
2

S k D
none S

D
f k t e e k             
 . (6.3.7) 

 
The next step is Fourier transformation with respect to  .  We only consider 0  . 
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1 1
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f k t
D D D Dk i k i

 
   

 
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 , (6.3.9) 

 
and 
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2

1
( , ; )

2

none

S

f k t
D

k i


 


 

 . (6.3.10) 

The simpler case is the diffusive one. With (6.2.1), 
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 (6.3.11) 

For saccades that are independent of the preceding intersaccadic interval, (6.2.1) yields 
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    

 
                                   


 

. (6.3.12) 

 
As a check:  for 0Sl =  (no saccades), both (6.3.11) and (6.3.12) become simply 

 ,
2

1
( , )

2

forward nosaccq k
D

k i






 . (6.3.13) 

For 0SD =  or 0SR =  (ineffective saccades) both (6.3.11) and (6.3.12)  also become 
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
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 

   

  
  
               

                         



. (6.3.14) 

Applying (6.1.21) to either (6.3.13) or (6.3.14), 

 
2

4 2 22

1
( , ) ( , ) 2Re

/ 4
2

nosacc nullsacc

k D
q k q k

D k Dk i
 


  


   , (6.3.15) 

in agreement with the result for 2-D Brownian fixational eye movements (eq. (5.1.19)). 
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Focusing on single saccades, not as point processes 
 
Here we focus on single saccades, not as point processes – perhaps to model the Mostofi et al. work about 
the transformations due to saccades of different lengths.  Possible interest is, 1D vs 2D; the relevant 
details of the velocity profile, and, understanding the “main sequence” relationship between saccade 
duration and velocity. 
 

Ramp velocity profile, one dimension 
 
Along with Mostofi et al., we place the saccade in the middle of a time window of length winT , running 

from / 2winT  to / 2winT .  The saccade has a duration of sacT  (where sac winT T ) and fixed velocity is sacv , 

and therefore an amplitude sac sac sach v T . What is 0( , ; )q x t ,  the probability that the eyes move by an 

amount x  between 0t  and 0t t   ? Set up three intervals: ( , / 2]sacI T    ,  0 [ / 2, / 2]sac sacI T T  , 

and  [ / 2, )sacI T   .  

 
We will assume that velocity is uniform, and given by the main sequence – which, according to 
https://www.liverpool.ac.uk/~pcknox/teaching/Eymovs/params.htm, is given by ., duration 
(ms)=2.2*amplitude(deg)+21, i.e.,  
 
 *sac sac sacT MainSeqSlope v T MainSeqIntercept  , (6.4.1) 

where 0.0022 s/ degMainSeqSlope   and 0.021sMainSeqIntercept  . So, 0.0022 0.021sac sac sacT T v  , 

i.e., 
1 0.021/

0.0022
sac

sac

T
v


 , with typical sacT  ranging from 0.0232 sec (1 deg) to 0.043 sec (10 deg). 

 
First we consider the one-dimensional case; the saccade can go in either direction along the horizontal.  
Then we average over all orientations with respect to the horizontal. Displacement as a function of time is 
 
  ( ) min(max( / 2,0),ramp sac sac sacs t v t T T  . (6.4.2) 

 
Then 
 

     1 0 0 0 0 0

1
( , ; ) ( ) ( ) ( ) ( )

2D ramp ramp ramp rampq x t x s t s t x s t s t               . (6.4.3) 

 
Our goal is to calculate 

 
1 0 1 0

1 0

( , ; ) ( , ; ) exp( ) exp( )

( , ; ) exp( )

D D

D

q k t q x t ik x i d xd

q k t i d

   

  




     

 








 (6.4.4) 

where 

 1 0 1 0( , ; ) ( , ; ) ik x
D Dq k t q x t e d x 


 



   , (6.4.5) 

and to take a sensible average over 0t , and take a sensible limit as the range of values increases without 

bound.  
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Approach 1.  Explicit start time. 
 
This might be the right way to go for detailed comparison with experimental data, but it is messy. Three 
are many cases, with cutpoints depending on 0t  and 0t  .   First subscript of I refers to beginning of 

interval, second subscript refers to end.  A means hasn’t yet moved, B means moving, C means no longer 
moving. 

t0



(‐Twin/2,0) (Twin/2,0)
(‐Tsac/2,0)

(Tsac/2,0)

t0+=Tsac/2

t0+=‐Tsac/2

IAA

IAB

IBB

ICB

IBA ICA

IAC

IBC

ICC

(‐Tsac/2,Tsac)

(Tsac/2,‐Tsac)

 
IA*: If  0 / 2sact T  , then 0( ) 0ramps t  . 

IB*: If  0/ 2 / 2sac sacT t T   , then 0 0( ) ( / 2)ramp sac sacs t v t T  . 

IC*: If  0/ 2sacT t , then 0( )ramp sac sacs t v T . 

 
I*A: If  0 / 2sact T   , then 0( ) 0ramps t   . 

I*B: If  0/ 2 / 2sac sacT t T    , then 0 0( ) ( / 2)ramp sac sacs t v t T     . 

I*C: If  0/ 2sacT t   , then 0( )ramp sac sacs t v T  . 

So, 
IAA:  0( , ; )q x t x    ; 0( , ; ) 1q k t   

IAB:     0 0 0

1
( , ; ) ( / 2) ( / 2)

2 sac sac sac sacq x t x v t T x v t T               ;

 0 0( , ; ) cos ( / 2)sac sacq k t kv t T     

IAC:     0

1
( , ; )

2 sac sac sac sacq x t x v T x v T         ;  0( , ; ) cos sac sacq k t kv T   

IBA:     0 0 0

1
( , ; ) ( / 2) ( / 2)

2 sac sac sac sacq x t x v t T x v t T           ;  0 0( , ; ) cos ( / 2)sac sacq k t kv t T    

IBB:     0

1
( , ; )

2 sac sacq x t x v x v           ;  0( , ; ) cos sacq k t kv   

IBC:     0 0 0

1
( , ; ) ( / 2) ( / 2)

2 sac sac sac sacq x t x v t T x v t T           ; 

 0 0( , ; ) cos ( / 2)sac sacq k t kv t T    

ICA:     0

1
( , ; )

2 sac sac sac sacq x t x v T x v T         ;  0( , ; ) cos sac sacq k t kv T   
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ICB:     0 0 0

1
( , ; ) ( / 2) ( / 2)

2 sac sac sac sacq x t x v t T x v t T               ;

 0 0( , ; ) cos ( / 2)sac sacq k t kv t T     

ICC:  0( , ; )q x t x    ; 0( , ; ) 1q k t   

 
In tabular form: 
 

 

 

0 0 * * *

0

* 0

* 0 0

( , ; )

( , ] [ , ] [ , )
2 2 2 2

( , ] 1 cos ( ) cos
2 2

[ , ] cos ( ) cos cos ( )
2 2 2 2

A B C

sac sac sac sac

sac sac
A sac sac sac

sac sac sac sac
B sac sac sac

q k t valueof t I I I

T T T T
valueof t

T T
I kv t kv T

T T T T
I kv t kv kv t





  


   

    
 

         
  



 * 0[ , ) cos cos ( ) 1
2 2
sac sac

C sac sac sac

T T
I kv T kv t




   
 

 

(6.4.6) 
 
Integrating over   breaks into three cases, depending on relation of 0t  to / 2sacT .  We assume that we 

have a finite window of data, from [ / 2, / 2]win winT T .  That is, both 0t  and 0t   must be within 

[ / 2, / 2]win winT T . 

 
1. For 0 [ / 2, / 2]win sact T T   , 

 

 
0 0 0

0 0 0

0 0

/2 /2 /2

0

/2 /2 /2

( , ; ) ( , ; ) exp( )

exp( ) cos ( ) exp( ) cos exp( )
2

sac sac win

win sac sac

AA AB AC

T t T t T t

sac
sac sac sac

T t T t T t

i t

q k t q k t i d contribs from I I I

T
i d kv t i d kv T i d

e 

   

      





   

    

    

         
 





  

 

   

0

0 0

0 0 0 0

0

2 2

( ) ( )
2 2

( )( /2 ) ( )( /2 ) ( )( /2 ) ( )( /2 )1

2 ( ) ( )

win sac

sac sac
sac sac

sac sac sac sac sac sac sac sac

T T
i i

T T
i t kv i t kv

i kv T t i kv T t i kv T t i kv T t

sac sac

Ti t
i

e e
i

e e
e e e e

i kv i kv

e
e

i

 

   

 



 



  

         



 
 

 
 
        

  

 

 

0 0

0

2 2

2 2 2 2

/2 ( /2 ) /2 ( /2

cos

cos

1 1

2 ( ) ( )

sac win

win sac sac win

sac sac sac sac sac sac sac sa
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   

 

 



 

   
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  (6.4.7) 
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Now have to work out the other intervals for 0t . 

Approach 2.  No explicit start time. 
 
Here the motivation is that have to average over 0t  anyway.  Assume we are analyzing a large interval of 

length winT  that contains only one saccade. As the length of this interval increases, we can neglect edge 

effects.  The probability that two points separated by   are affected by a saccade (i.e., that at least part of 
the saccade occurs in the interval 0 0[ , ]t t  ) is proportional to sacT  , i.e., some ( )sacB T  , where B is 

a normalization constant.  The probability that the total movement in this interval is sac sacv T , the saccade 

length, is proportional to the probability that the saccade lies entirely within the interval, i.e., 
max(0, )sacB T  . The probability that the total movement is less than the saccade length is proportional 

to the difference, namely, ( max(0, )) (2 max( , ))sac sac sac sacB T T B T T         , i.e., either 

( )sacB T   if sacT   or 2 sacBT   if sacT  , i.e., min( , )sac sacT T  .  The maximum that can be moved 

in the interval is min( , )sac sacv T  , and the time moved can be anywhere from 0 to min( , )sacT  , and all 

values in this interval have equal probability.  
 
So, for displacements x  up to min( , )sac sacv T   (but for x  on both sides of 0), the probability of a 

movement by this amount is  

 1

min( , )
( , )

2 min( , )
sac sac

D
sac sac

T T
q x dx B dx

v T







  , (6.4.8) 

and for the maximal displacement min( , )sac sacx v T   , there is an additional point mass component, 

  
 , (6.4.9) 
as the total probability must integrate to ( )sacB T  . Note that, properly, the point mass component is 

only present if sacT  .  In both cases, for 0x  , there’s also a point-mass component of size 

 1 sacB T   , so that   1 ( , ) 1Dq x d x   . 

 
Thus, for sacT  , 

 



Page 39 

   

  

 

1

min( , )

min( , )

min(

( , ) ( , )

min( , )
1 ( )

2 min( , )

min( , )
1

2 min( , )

sac sac

sac sac

sac s

ik x
D

v T
sac sacik x ik x

sac
sac sacv T
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, (6.4.10) 

and for sacT  , 
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, (6.4.11) 

 
 
 
Saccades can occur in any direction.  Say the angle w.r.t. the horizontal is  .  It suffices to consider 

[0, / 2]  .  After projection on the  horizontal axis, the effective velocity is  cossacv  .  Therefore, for 

sacT   and k k


, 

      
/2

2

0

2
( , ) 1 sinc( cos )D sac sac sacq k B T B T kv d



     


     


 , (6.4.12) 

and for sacT  , 
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2
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B T BT kv T d B T J kv T
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
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 

   


     
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 




,(6.4.13) 

 

where we have used  
/2

0

0

2
cos cos ( )u d J u



 


 .  
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Reconsider the justification for the averaging over  . For saccades in the horizontal (x)-direction, we can 
write 2 1( , , ; ) ( , ; ) ( )D sac D sacq x y v q x v y       .  Its 2D transform is 2 1( , , ; ) ( , ; )D x y sac D x sacq k k v q k v   .  

This is the relevant expression for all spatial frequencies, if all saccades were horizontal.  In coordinate-

free notation, 2 1( , ; ) ( cos , ; )D sac D sacq k v q k v  
 

  , where   is the angle between k


 and the saccade 

velocity vector.  Thus 

 2 1 1( , ; ) ( , ; cos ) ( cos , ; )D sac D sac D sacq k v q k v q k v
 

     
  

   . (6.4.14) 

 
 
Now we need to find 

 ( , ) ( , ) exp( )q k q k i d   




    (6.4.15) 

This is done numerically for 2 ( , )Dq k   in eyemov_sac_demo.m.   

 
Note that there is a problem with doing the integration in a straightforward way, since for large  , both 
(6.4.11) and (6.4.13) grow in proportion to  , and there’s a constant term in addition – making the 

Fourier integral diverge.  Look instead at 

        1 ; 1( , ) ( , ) 2 sinc cosD loc D sac sac sac sac sac sac sacq k q k B T BT kv T B T kv T          , (6.4.16) 

 
which removes the terms that cause divergence. 
For sacT  , 

   
       

       
1 ; ( , ) 1 sinc( ) 2 sinc cos

1 sinc( ) cos 2 sinc cos

D loc sac sac sac sac sac sac sac sac

sac sac sac sac sac sac sac sac sac sac

q k B T kv BT kv T B T kv T

B T kv B kv T BT kv T BT kv T

   

  

     

     


.(6.4.17) 

 
For sacT  , 

 
   1 ; ( , ) 1D locq k   . (6.4.18) 

The variable part of 1 ; ( , )D locq k  ,  1 ; 1 ;

1
( , ) ( , ) 1D varloc D locq k q k

B
    , is, for sacT  , 

        1 ; ( , ) sinc( ) cos 2 sinc cosD varloc sac sac sac sac sac sac sac sac sac sacq k T kv kv T T kv T T kv T        .(6.4.19) 

 
and otherwise zero. So  

 1 ; 1 ; 1 ;( , ) ( , ) exp( ) ( , ) exp( )
sac

sac

T

D varloc D varloc D varloc

T

q k q k i d q k i d      


 

       , (6.4.20) 

and each term can be done in closed form. 
 

Limiting case, infinitely fast saccades: saccade duration is crucial. 
 
Let 0sacT   and sacv   so that sac sac sacT v L .  Then eq. (6.4.11) holds for all  , and becomes 

  1 ( , ) 1 cosD sacq k B B kL     . (6.4.21) 

Eq. (6.4.13)also holds for all  , and becomes 
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  2 0( , ) 1D sacq k B B J kL     . (6.4.22) 

In both cases, the Fourier transform of the variable part (the multiplier of B ,  ( , ) ( , ) 1 /varq k q k B     ) 

will be a constant times the Fourier transform of  , i.e., the Fourier transform of the formal integral of a 

Heaviside function.   Heaviside Fourier transform is   1
i 

, so its integral  So, the Fourier transform of 

  is   2 21/i    , yielding 

    2
1 , ( , ) 1 cos /D var sacq kL     (6.4.23) 

and 
 

    2
2 , 0( , ) 1 /D var sacq J kL    . (6.4.24) 

 
In these cases, there is no spatiotemporal coupling.  So saccade duration is crucial. 
 

Some notes on alternative models 
 

Model for eye movements with partial stabilization 
 
Motivated by discussions with Michele and Xutao – one can model Kelly’s system by 
 
Residual eye position(t)=eye position(t)-[A*eye position(t-delay)+B], where A is gain of system (ideally 
1 but not really), delay is about 6 ms, and B is offset, but perhaps should be B(t) for some slower-drift-
rate Brownian process 

Self-avoiding walk models 
 
Roberts, Wallis, Breakspear, Sfn 2011: 379.07:random walk model for eye fixational eye movements: 
Parameters are simulation interval, the forgetting time for previous location, and the rewsolution of the 
previous location; a random step in a field with a penalty (Gaussian potential) for return to a recent 
location – behavior is supra-diffusive when memory of previous locations causes self-avoidance; becomes 
nearly Brownian (mean-squared disp prop to time) for times > 100 ms, once memory fades;  
also probably becomes nearly Brownian for very short times, because of "thermal" behavior 
 
 
Another SA walk: Engbert, Mergenthaler, Sinna, Pikovsy, An integrated model of fixational eye 
movements and microsaccades, PNAS 
 
Also, Markovian models based on a distribution of angles w.r.t. previous step (steps defined by sampling 
at some short interval, e.g., 1 ms) 
 


