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Estimation of D

12/27-31/13. I have some concerns regarding the estimation of the diffusion constant as reported
in the Curr. Biol. 2012 Appendix and its relation to the way MA estimates in this study. The
Appendix in CB states:

Eq.1 enables closed-form estimation of the input power spectrum when the eye move-
ment process is two-dimensional Brownian motion. In this case, the probability distri-
bution of retinal displacement obeys the diffusion equation:

∂

∂t
q(x, y, t) =

1

2
D∇2q(x, y, t) (9)

where D is the diffusion constant.

For the initial condition that q is concentrated at the origin at t = 0, the solution of
Eq. 9 is well-known:

q(x, y, t) =
1

2πDt
exp(−x2 + y2

2Dt
). (10)

This function has Fourier Transform

q(kx, ky, ω) =
(k2x + k2y)D

(k2x + k2y)
2 D2

4 + ω2
. (11)

Substitution of q(kx, ky, ω) from Eq. 11 into Eq. 1 gives the power spectrum of the retinal
stimulus, as plotted in Figs.2b−d. To obtain the value of D from the recorded eye move-
ment data, we measured the empirical standard deviation of the eye displacement as a
function of time, for intervals from 0 to 500 ms. We then chose the value of D for which
the standard deviation of the probability distribution q(x, y, t) in Eq. 10, namely

√
2Dt,

provided the least-squares best fit to the data. This yielded D = 40 arcmin2/s.

Eq. 10 is a bivariate normal distribution with the assumptions of (1) zero correlation between the
two variables and (2) equal standard deviation on the two axes σx = σy = σ. It implies Dt = σ2.
Therefore, I don’t understand the statement above: “We then chose the value of D for which the
standard deviation of the probability distribution q(x, y, t) in Eq. 10, namely

√
2Dt.” The standard

deviation of the distribution on each axis is
√
Dt, not

√
2Dt.

√
2Dt would be the standard deviation

of the variable x+ y, but I doubt that is what is meant here. An oversight?

MA noted also that one has to be careful in using the term “diffusion coefficient”, because the D
in Eq. 9 is not the standard way to define the diffusion coefficient of Brownian motion DB. This
is explained in JV’s notes. In general, a random walk in any dimensions is defined by the diffusion
equation:

∂q

∂t
= DB∇2q (12)
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where the second term becomes ∂2q
∂x2 in the one-dimensional case. Note the difference with Eq. 9,

where D = 2DB. This equation leads to the power spectrum, which seems to be valid in all
dimensions:

2|k|2DB

|k|4D2
B + ω2

(13)

For consistency with the 1-D case, we defined D in 2-D as in Eq. 10, so that the mean of the
squared distance is 2Dt in both 1-D and 2-D. But one should remember that the D in Eq. 10 is
NOT the standard 2-D diffusion coefficient of Brownian motion: DB = D/2. MA’s data are the
values DB, and this has created confusion in comparing to previous data from CB.

CB 2012: XK estimated the D value in Eq. 9, NOT DB, as consistently pointed out in the paper.
He estimated D by calculating the σ of the best fitting circular 2D Gaussian as in Eq.10 (function
fit prob gaussian2d). The D value was then given by linear regression of σ2, D =< σ2/t >.
Since σ2 = Dt, this correctly gives D. Indeed the CB Appendix concludes “This yielded D = 40
arcmin2/s” and everything seems consistent.

One should not be confused by the fact that, in order to compare the power spectrum of Brow-
nian motion to that obtained by Welch, XK decided to use DB. In the function plotPSStat-
Dyn RW paper XK set DB = D/2 = 20 and then used the DB formula in Eq. 13, which—he
noted—could be directly integrated to give the total power above ωo (function powerintegral):

∫

∞

ω

2|k|2DB

|k|4D2
B + ω2

dω = π − 2 arctan(
ω2

|k|2DB

)

So, everything is consistent in CB, and the value D = 40 refers to the D defined as in Eq. 9, not
DB.

This paper: MA decided to estimate DB using the standard equation Eq. 12, as explained in the
file MuratComments Jan6-13, following Berg’s notation (book chapter on file). He has been using
an approach based on the mean of d2 = x2+y2, the squared 2D distance. Under the assumption of
zero means and independence, E(d2) = 2σ2

x. In a random walk with σ2
x = Dt = 2DBt, we obtain

E(d2) = 2Dt = 4DBt. MA takes the linear regression of this divided by 4: E(d2)/4t, therefore
obtaining DB = 2D.

What is not clear is MA’s direct comparison of his values to XK’s previous values. From XK’s
D = 40, I expect DB = 40/2 ∗ 1.422 ∼ 43, not 82 as MA claims. This is a large discrepancy. I have
been trying to understand how this is possible, but so far without success.

1/7/13. MA explains the discrepancy with two errors. The first one from XK in the procedure
of fitting, possibly caused by discretization of space before fitting a Gaussian. According to MA
(MuratComments Jan6-13) analysis of XK’s data with the E(d2)/4t method gives: DB = 29.4
which converts on the retina to DB = 63. So according to MA, D = 40 in the CB paper should
have been D ∼ 60. The second issue, MA noted an error in his own code, revising the average DB

estimate for the head-free paper to 260, a bit lower than before.
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Methods for estimating D. This has implications on the estimate of D from a simulated trace. One
approach is to estimate D via the individual σx and σy. This involves calculating the distributions
of displacements {xt} and {yt} at all delays t and estimating the standard deviations as a function of
delay. In a random walk the product of these two standard deviations should increase linearly asDt.
The value of D will be given by linear regression of this function. I have implemented this approach
in a simple simulation that compares the spectra obtained via Welch to those given by the formula
for a random walk. The code is in CompareWelchTheory BM in Martina/Projects/PowerSpectrum.

MA has been using an approach based on the mean of d2 = x2 + y2, the squared 2D distance.
Assuming zero means and independence, E(d2) = 2σ2

x. In a random walk with σ2
x = Dt, we obtain

E(d2) = 2Dt. Therefore, an alternative approach to estimate D is to compute the linear regression
of E(d2)/2. The two methods are obviously equivalent.

Methods for estimating DB. Since DB = 2D, the previous methods obviously apply to the estima-
tion of DB followed by multiplication by 2. MA has been using two main methods: (1) The mean
of the squared 2D distance, d2 = x2 + y2. Since E(d2) = 2Dt and D = 2DB, E(d2) = 4DBt and
DB = E(d2)/(4t). (2) Use PCA to estimate the standard deviations on the two uncorrelated axes:
σx and σy. Since σxσy = Dt = 2DBt, we obtain DB = σxσy/2t.


