
Random walk probability distributions

Murat Aytekin

Let δ be the distance a walker makes either to the right or to the left with equal probability within a unit period

time τ . The probability that a walker will be at a distance

Taking the limit δ, τ → 0 such that δ
2
/τ = 2D, where D is the constant known as di�usion coe�cient, the pdf for

the location of the walker after time t is given as

p(x, t) =
1√
4πDt

e

(
−x2

4Dt

)

This equation is also the solution of the di�usion equation, ∂p∂t = D∇2p.

The second raw moment of position

E
(
X2
t

)
=

ˆ
x2p (x, t) dx = 2Dt

For 2-dimensional random walk the probability distribution is

p(x, y, t) =
1

4πDt
e

(
−(x2+y2)

4Dt

)

The mean squared distance is

E
(
R2
t

)
=

ˆ
(x2 + y2)p (x, y, t) dx = 4Dt

1

Biased random walk

Lets u be the average drift velocity (representing the bias) in 2-dimensional space and ∇ is the gradient vector.

∂p

∂t
= −u∇p+D∇2p

The pdf is then

p(x, y, t) =
1

4πDt
e

(
−((x−ut)2+(y−ut)2)

4Dt

)

The mean squared distance

E
(
R2
t

)
= ‖u‖2 t+ 4Dt

Matlab script 1 A Matlab script to generate 2-dimensional random walk process samples with a desired di�usion

coe�cient and directional bias.

function [x , y] = generate2DRandomWalk (D_given , samplingFreq , Ntrace , nT,

BiasDir , BiasSpd_mean , BiasSpd_std)

% D_given : Desired d i f f u s i o n c o e f f i c i e n t

% nT: Number o f samples per t race

% Ntrace : Number o f t r a c k s

% BiasDir : Bias d i r e c t i o n (deg)

% BiasSpd_mean : Bias speed (un i t / s)

% BiasSpd_std : Bias speed (un i t / s)

dimensions = 2 ; % time i n t e r v a l in seconds

tau = 1/ samplingFreq ;

k = sqrt (D_given ∗ dimensions ∗ tau) ; % standard de v i a t i on o f each dimension

dx = k ∗ randn(Ntrace ,nT) ; % x component o f in s tan tenous d i sp lacement

dy = k ∗ randn(Ntrace ,nT) ; % y component o f in s tan tenous d i sp lacement

% For d i r e c t i o n a l b i a s

i f nargin == 7

BiasSpdX = cosd (BiasDir) . ∗ (sqrt (BiasSpd_std) .∗ randn(Ntrace ,nT) + . . .

2

BiasSpd_mean) ;

BiasSpdY = sind (BiasDir) . ∗ (sqrt (BiasSpd_std) .∗ randn(Ntrace ,nT) + . . .

BiasSpd_mean) ;

dx = (BiasSpdX∗ tau) + dx ;

dy = (BiasSpdY∗ tau) + dy ;

end

x = cumsum(dx , 2) ; % x component o f d i sp lacement

y = cumsum(dy , 2) ; % y component o f d i sp lacement

Estimation of di�usion coe�cient

Lets assume that we have samples {xk(t) and yk(t) s.t tε[0, Tk]}k=1,...N from the random walk process. An estimate

of E
(
R2
t

)
can be obtained by computing mean distance squared across all samples for a given t; R̂2

t =
〈
x2t + y2t

〉
.

If we assume that our random walk model has no bias

D =
R̂2
t

4t
(1)

This relationship constitutes the direct method of estimating di�usion coe�cient with the strict assumption that

there is no directional bias in the process.

Relation with normal distribution

At each time period [0, t] the simple random walk positions are distributed as a Gaussian function:

p(x, y, t) =
1

4πDt
e

(
−(x2+y2)

4Dt

)

Lets assume that the standard deviation of the process at each dimension is σx = σy = σ. The distances squared are

distributed as so called Rayleigh distribution. The mean distance squared corresponds to this distribution's second

raw moment which is µ2 = 2σ2. Consequently, if one knows the standard deviation of the Gaussian distribution at

all times t, the di�usion coe�cient can be computed as

D =
R̂2
t

4t
=
σ2

2t
(2)

3

In some applications one may have the are area of the Gaussian border on the xy plane. The area of the ellipsoid

corresponding to the radii of the standard deviations along the x and y axes then the di�usion coe�cient is

D =
R̂2
t

4t
=
σ2

2t
=

Area

4πt
(3)

Here Area = 2πσxσy. Note that with this de�nition now we can relax the assumption that the standard deviation

of the random walk process along the x and y axes do not have to be equal. Naturally, this situation can be

extended to the cases where the two Gaussian processes that de�ne x and y axes can be correlated. That is,

σ2 = σ2
x + σ2

y + ρσxσy, where ρ is the correlation coe�cient. In this case, it is always possible to �nd the two

independent axes that will allow us to write σ2 = σ2
1 + σ2

2 . Here, σ1 and σ2 represent the standard deviation along

the two principle component axes. Hence, the area can be written in a more generally form as Area = 2πσ1σ2.

It is important to emphasize that, for a random walk with correlated dimensions, the principle axes are not expected

to change direction for di�erent time intervals. If such a change is observed, then it is natural to assume that the

processes that give rise to the random walk are not stationary, but have additional time dependent terms, which

by itself may be an interesting descriptive feature of the underlying natural phenomenon.

Matlab script 2 Matlab script to estimate di�usion coe�cient with 3 di�erent ways described.

function [D1 , D2 , D3 , b i a s] = e s t ima t eD i f f C o e f f i c i e n t s (x , y , samplingFreq)

% x , y : h o r i z on t a l and v e r t i c a l t r a c e s o f d r i f t samples

% D1: d i f f u s i o n c o e f f i c i e n t ob ta ined from the s l o p e o f the r e g r e s s i on

% l i n e between <d^2> and de l taT .

% D2: d i f f u s i o n c o e f f i c i e n t ob ta ined from the s l o p e o f the r e g r e s s i on

% l i n e between Gaussian area and de l taT .

% D3: d i f f u s i o n c o e f f i c i e n t ob ta ined from the s l o p e o f the r e g r e s s i on

% l i n e a f t e r removing b i a s term us ing PCA.

% BiasMeanX , BiasMeanY : D i r e c t i ona l b i a s

%

% example :

% [x , y] = generate2DRandomWalk (41 , 1000 , 100 , 1000 , 60 , 10 , . 02) ;

% [D1, D2, D3, b i a s] = e s t ima t eD i f fC o e f f i c i e n t s (x , y , 1000) ;

% % p l o t e s t imated b i a s d i r e c t i o n

% p l o t (atan (b i a s . biasMeanY ./ b i a s . biasMeanX) .∗180/ p i) %

dimensions = 2 ;

[Ntrace , nT] = s ize (x) ;

tm = (0 :nT−1) . / samplingFreq ; % crea t e a time vec to r f o r p l o t t i n g

4

Dx = c e l l (nT, 1) ;

Dy = c e l l (nT, 1) ;

for dt = 1 :nT−1
dx = x (: ,1+ dt : end) − x (: , 1 : end−dt) ;
dy = y (: ,1+ dt : end) − y (: , 1 : end−dt) ; % poo l d i sp lacement s

Dx{dt+1} = [Dx{dt+1} dx (:) '] ;

Dy{dt+1} = [Dy{dt+1} dy (:) '] ;

end

% disp lacement s at zero time

dispSquared (1) = 0 ;

dispSquared (1) = 0 ;

area_unbiased (1) = 0 ;

for dt = 2 :nT

% method−1
dispSquared (dt) = mean(Dx{dt }.^2 + Dy{dt } .^2) ;

% method−2 f i n d i n g s t d a long the p r i n c i p l e axes

n = length (Dx{dt }) ;

mat = [Dx{dt } ; Dy{dt }] ;

s igmas = sqrt (eig (mat∗mat ') . / n) ;

area (dt) = 2∗prod (sigmas) ;

% method−3 (removing the mean (b i a s))

b ia s . biasMeanX (dt−1) = mean(Dx{dt }) ;

b i a s . biasMeanY (dt−1) = mean(Dy{dt }) ;

b i a s . biasStdX (dt−1) = std (Dx{dt }) ;

b i a s . biasStdY (dt−1) = std (Dy{dt }) ;

mat = [Dx{dt} − b ia s . biasMeanX (dt−1) ; . . .

Dy{dt} − b ia s . biasMeanY (dt−1)] ;

s igmas = sqrt (eig (mat∗mat ') . / n) ;

area_unbiased (dt) = 2∗prod (sigmas) ;

end

% compute d i f f u s i o n c o e f f i c e n t

ind = 1 : round(nT∗ . 5) ;

5

s l p1 = r e g r e s s (dispSquared (ind) ' , tm(ind) ') ;

D1 = s lp1 /(2∗ dimensions) ;

s l p2 = r e g r e s s (area (ind) ' , tm(ind) ') ;

D2 = s lp2 /(2∗ dimensions) ;

s l p3 = r e g r e s s (area_unbiased (ind) ' , tm(ind) ') ;

D3 = s lp3 /(2∗ dimensions) ;

fpr intf ([' \n\nEstimated d i f f u s i o n c o e f f i c i e n t s are ' . . .

'D1=%4.2 f , D1=%4.2f , D1=%4.2 f \n\n '] , D1 ,D2 ,D3)

6

