
Michele Cox

Graduate Student

Maier Lab

Agenda

• Review of Git
• 6 slides you’ve seen before

• Collaborating with Git
• Some review

• Examples from my own experience

• A “model workflow”
• Gitflow

What is Git?
version control software

• Simply, version control is
a way of logging changes
to a file
• What was changed

• When it was changed

• Who changed it

• A lot of us already do this!

How does Git work?
on a conceptual level

Working
Directory

Git, this is
were I want
you to keep
track of files

>> Git INIT
• shell/terminal
• GUI program
• Matalb 2014b+

How does Git work?
on a conceptual level

Working
Directory

Git, this is a file
for which I want

you to track
changes into

the future

>> Git ADD “file”
>> Git COMMIT

File

How does Git work?
on a conceptual level

Working
Directory

Git, I made
changes to the

file you were
tracking.

>> Git ADD “file”
>> Git COMMIT

FileChanged
File

How does Git work?
on a conceptual level

In Git, the process of logging changes
—including adding new files—

involves 2 steps (i.e., 2 commands):

>> Git ADD
>> Git COMMIT “commit”

https://www.atlassian.com/git/tutorials/saving-changes

Basic Git Concepts

Basic Git Concepts

• Key instruments:
• ADD – tells Git that you have made a change

• COMMIT – tells Git to log changes with a message

• PUSH – tells Git to transfer those changes to remote

• Commits contain:
• A record of changes (line by line, new items, etc.)

• Your notes (i.e., message) about the change

• Date/time/person making the commit.

Collaborating with Git
• Commits are the basic “change unit” in Git

• Commits are also the basic unit of collaboration

Collaborating with Git

• Git’s key collaboration instruments are:
• Branching / Forking

• Merging

Collaborating with Git

http://nvie.com/posts/a-successful-git-branching-model/

Collaborating with Git

• Can have many branches
for different purposes

• Can switch between them
during development

• Can push to a remote
repository without effecting
other branches

• Eventually, can merge back
into a main branch (often
called the master branch).

• Forks allow all the same,
but with repositories you
don’t control

http://nvie.com/posts/a-successful-git-branching-model/

Collaborating with Git

• Commits are the basic unit of Collaboration

• Git’s key collaboration instruments are:
• Branching / Forking

• Merging

• Git is intended to be extremely flexible as a
both a source control and collaboration tool
• In practice, this means that you can setup pretty

much whatever type of workflow that you want.

Working with Git
how git helps me do my job

https://www.atlassian.com/git/tutorials/comparing-workflows

Example Workflows

Working with Git
how git helps me do my job

https://www.atlassian.com/git/tutorials/comparing-workflows

Example Workflows

By Myself

With Outsiders

Case #1: My Analysis Code
Centralized Workflow

• Matlab code that I have
written to analyze data

• Nobody else
contributes

• Repository is Private on
GitHub

Taking advantage of:
• Git to record changes over time.
• GitHub as an online Backup

Case #1: My Analysis Code
Centralized Workflow

Stimulus
Parameters:

- Eye
- Orientation
- (Contrast)

Case #2: Our Vision Experiments
Feature-Branch Workflow

Case #2: Our Vision Experiments
Feature-Branch Workflow

• Binocular stimulation suite
developed by the Maier Lab

• Kacie Dougherty and I
collaborated on code

• Multiple iterations over
several months

• Worked on different and
sometimes the same
features.

Taking advantage of:
• Ability for multiple people to

coordinate working on a project
• Branching and Merging for feature

development

efforts of
2 people

Case #2: Our Vision Experiments
Feature-Branch Workflow

• Several months into the project, we decided to add
motion as a stimulus parameter
• Static gratings -> drifting gratings

• Kacie took the lead on this
• Branched the current “stable” version
• Made changes across many files (10+)

• In the meanwhile, I continued to collect data with the
“stable branch”

• When Kacie was done (including testing), she merged
her “feature branch” into the “stable branch”.

• On that same day, I was able to pull the update to the
“stable branch” and run an experiment with the new
code.

Case #2: Our Vision Experiments
Feature-Branch Workflow

Case #2: Our Vision Experiments
Feature-Branch Workflow

Case #2: Our Vision Experiments
Feature-Branch Workflow

• Bonus, we also have a record of
“daily changes” made during the experiments
• Individual setups / parameter choices for each day

• Now logged redundantly in GitHub

Case #3: Using Their Software
Forking Workflow

• MonkeyLogic

• Many diffent groups are developing
MonkeyLogic to suite thier own needs.

• A few groups host their stable and develpment
versions of MonkeyLogic on GitHub.
• Including us!

Case #3: Using Their Software
Forking Workflow

Case #3: Using Their Software
Forking Workflow

• One developer in particular who is adding lots
of new features I was curious about
• So I “forked” his GitHub repository

• Merged it with my own version of the software,
resolving any merge errors

• Continued to develop ”my version”
• By default, making my commits avaialbie on GitHub

for others (not an offical “release”)

Case #3: Using Their Software
Forking Workflow

• Two things happened:
1. The other developer continued to develop their

version, and as new features were released I was
able to “pull” those changes into my working
version
• I got a better version of the software without

undoing lab-specific customizations

• I didn’t have to do the work myself!

Case #3: Using Their Software
Forking Workflow

Case #3: Using Their Software
Forking Workflow

• Two things happened:
1. The other developer continued to develop their

version, and as new features were released I was
able to “pull” those changes into my working
version

2. The other developer pulled my bug fixes and
features to their version.

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

• In 2010, Vincent Driessen
blogged about a git
development model.
• He’d been using it for

about a year.

• First public discription

• Named “GitFlow”, Driessen‘s
model workflow took off in
the git community.
• Spawned the creating of a

set of git extensions to
more easily implement and
manage the workflow.

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

“Gitflow” as a Model

• master - branch where
code always reflects a
production-ready state.

• develop - branch where
the code reflects a state
with the latest development
changes

• WHEN the develop branch
reaches a stable point, all
changes should be merged
back into master

http://nvie.com/posts/a-successful-git-branching-model/

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

NOT special from a technical point of view.

Special in how you use them

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

“Gitflow” as a Model

http://nvie.com/posts/a-successful-git-branching-model/

Git Merge

clean merge

Git Merge

merge conflict!

Git Merge

• Remember, Git tracks all
changes on a line-by-line bases
• You can always reverse or revert a

change

• Git contains a variety of
merge tools and safety
checks

Git Merge
1. Get an error message
2. Get a merge conflict file

Git Merge
Strategies

You can also change
the way that git does
merges – i.e. it’s
merge strategy – to
avoid merge conflicts

https://git-scm.com/docs/merge-strategies#merge-strategies-resolve

Assembled Resources

Getting Started

• Download and Install Git: https://git-scm.com/
• Setup your first repository (git init)
• Add and commit your first file

• Sign up for GitHub: https://github.com/
• Setup a GitHub repository as the remote for your local repo
• Push to the remote

• Optional
• Request a free educational upgrade for GitHub as explained

here: http://www.inferencelab.com/free-github-private-
repos-for-academics/

• Download SourceTree: https://www.sourcetreeapp.com/
• Download DiffMerge: https://sourcegear.com/diffmerge/

“Try Git"
simulator

Resources for learning
Git and GitHub

https://try.github.io

Getting Started

https://help.github.com/articles/git-and-github-
learning-resources/

“Hello World”
Demo on GitHub
Resources for learning

Git and GitHub

https://guides.github.com/activities/hello-world/

“GitHub”
Channel on
YouTube

Resources for learning
Git and GitHub

https://www.youtube.com/git
hubguides

Source Tree
• Git and GitHub can

be used entirely
from the command
line.

• But, there are many
GUI implementations
of Git. The one I use
is called SourceTree

• Personally, I’m not a
fan of the GitHub
desktop application

Gitflow
git-flow are a set of git
extensions to provide
high-level repository
operations for Vincent
Driessen's (nvie)
branching model.

http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow/wiki/

Thank You

