
Managing source code with
git

Janis Intoy
But mostly stolen from a presentation by

Louis-Emmanuel Martinet

What is version control?

• Tracks changes to files over time so that you can recall specific
versions later (+ other more advanced tools)

• Bad idea #1: quick and dumb
• my_awesome_function_v1.m
• my_awesome_function_v2.m
• my_awesome_function_v3.m

• Why?
• After a few days/weeks, your project is a mess
• What did you change between v1 and v3?
• Really hard to collaborate with other people

What is version control?

• Bad idea #2: using only dropbox (better but still very limited)
• Why?

• Doesn’t save all the versions (or save versions that you don’t really want to
save)

• What did you change between versions?
• No advanced tools (very limited collaboration)

What is version control?

• Options!

software website

+

Subversion,…

How does it work?

• Gitlab.com
• Serves as a central repository to store our group’s code
• At least one online backup of our code
• Nice visual interface to navigate your code and its history
• Easily invite people to download your code and collaborate
• And much more!

• Not for storing data or images!!!

How does it work?

• https://www.mathworks.com/help/matlab/matlab_prog/set-up-git-
source-control.html

Your previous changes kept here

You work here
Everyone’s
changes kept here
(on gitlab.com)

I love it. How do I start?

• Create an account on gitlab.com if you don’t have one
• Tell a group administrator (i.e. Janis – jintoy@bu.edu) what e-mail you

signed up with so she can add you to the @aplabBU group
• Download and install git on your computer (google “git download”)

mailto:jintoy@bu.edu

Step 0: Configure git on your computer

• Open up a terminal:
• Microsoft: (using gitbash (preferred) or cmd)
• Unix systems: your preferred terminal
• Matlab command line: start every line with “!git”

• git config --global user.name "Your Name”
git config --global user.email "your_email@whatever.com"

• Add SSH keys (follow instructions at
https://gitlab.com/help/ssh/README)

Step 1: Start a new project on gitlab.com

• New Project

Step 1: Start a new project on
gitlab.com
• For now, start a

personal project
(select your username)

• When you’re ready you
can add a project to
the aplabBU group!

Step 1: Start a new project on gitlab.com

• The link to your new project!

Step 1: Start a new project on gitlab.com

• In your terminal
• cd your_code_folder
• git clone git@gitlab.com:USERNAME/PROJECTNAME.git

• Creates a folder PROJECTNAME with the repository files inside (empty if
it’s new)

• Run
• cd PROJECTNAME
• Ls

• The folder .git contains all the
information about your code history

Add a
readme file
to your
project!!!!

Later:

mailto:git@gitlab.com:USERNAME/PROJECTNAME.git

Step 2: add a file to the repository

• Create a new file inside the project folder, for example file1.m (if touch doesn’t
work create a file the way you usually would)

• touch file1.m
• Check the status of the repository

• git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

file1.m

nothing added to commit but untracked files present (use "git add" to track)

Step 2: add a file to the repository

• git add file1.m
git status

On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: file1.m
• Note: you can add multiple files using for example

git add *.m

Step 3: Store the changes locally

• Ask git to store the changes in the database
git commit -m "New file added"

• Look at the history of the code
git log

commit 40cb55276c08756418e3cf16c81d78b31e4e5223
Author: Janis <jintoy@bu.edu>
Date: Wed Oct 26 17:18:00 2016 -0400

New file added

Write useful commit messages!
This will make it easier to know
what changed with each
commit.

Step 3: Store the changes locally

commit 2f77391614c61be5f3dc74a67131c3ca13e91242
Author: Louis-Emmanuel Martinet <louis.emmanuel.martinet@gmail.com>
Date: Tue Oct 18 01:26:40 2016 -0400

New file added

commit 1d13264d6d21fb3f8f81af121c893603b6fc1198
Author: lemartinet <lemartinet@users.noreply.github.com>
Date: Tue Oct 18 00:59:31 2016 -0400

Initial commit

Identifier (hash)

Step 4: Send the changes to gitlab

git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

nothing to commit, working directory clean

git push
• Check your repository on github.com
• When you work with other people, you need to run

git pull
before you push to get the last code updates (more later)

Step 5: edit file1, commit and push

• Add something within file1.m, e.g.:
function out = file1(in)
out = in;
end

• What does git think about it?
git status

On branch master
Your branch is up-to-date with 'origin/master'.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: file1.m

no changes added to commit (use "git add" and/or "git commit -a")

Step 5: edit file1.m, commit and push

• Ask git to store those edits
• With two commands

git add file1.m
git commit -m "Added some code"

• Using only one command
git commit -am "Added some code"

Step 6: more edits, difference between
versions
• Edit file1.m, for example change line 2:

out = in + 1;
• Ask git to show the difference with the last committed version

git diff
diff --git a/file1.m b/file1.m

index 94c4e4a..d1f9ba0 100644

--- a/file1.m

+++ b/file1.m

@@ -1,4 +1,4 @@
function out = file1(in)
-out = in;
+out = in + 1;
end

• Note: you can compare any commits using their identifiers (found in the log), e.g.:
git diff 1d13 9da5

Step 7: cancel the edits

• Try
git checkout -- file1.m

• File1.m is back to its previous state stored in the last commit

Step 8: creating a new branch

• What is a branch?
• You can picture your code in git as a tree
• It starts from the trunk called the master branch
• From there you can create a different version of the code in a different branch

(commits)

Master C1 Æ C2 Æ C3
versionA C4 Æ C5

Step 8: creating a new branch

• Create a new branch in git
git branch versionA
git branch

• Work in the new branch (i.e. HEAD points to versionA)
git checkout versionA

• Make some edits (change line 2 again for example)
• Commit the changes

git commit -am 'Edited file1'
• Return back to the master branch

git checkout master
• What happened to file1.m?

• During the checkout, git replaced file1.m with the last version stored in master!
• Compare master and versionA

git diff versionA

Step 9: Merging branches

• When you’re happy with your code developed in another branch, you can
merge it in the main branch, aka master
git checkout master
git merge versionA

(you can check that master and versionA are identical using git diff versionA)
Master C1 Æ C2 Æ C3 Æ C4 Æ C5
versionA C4 Æ C5

• You can delete the branch versionA now, since its changes are part of
master
git branch -d versionA

Master C1 Æ C2 Æ C3 Æ C4 Æ C5

Step 10: dealing with conflicts while merging

• If you make changes to the same line of a given file in two different
branches and try to merge them, you’ll get a conflict

• That can happen also when you work with other people on the same
repository and make edits to the same file that are not compatible

• You need to select the part of the code you want to keep

Step 10: dealing with conflicts while merging

• If you make changes to the same line of a given file in two different
branches and try to merge them, you’ll get a conflict

• That can happen also when you work with other people on the same
repository and make edits to the same file that are not compatible

• You need to select the part of the code you want to keep

Step 10: dealing with conflicts while merging

• Quick exercise: try to generate a conflict and then solve it
• Open file1.m, what do you see?

function out = file1(in)

<<<<<<< HEAD

out = in + 2;

=======

out = in + 3;

>>>>>>> versionA

End

• You need to edit the code to keep only what you want, and then commit: the
conflict is solved!

Step 10: dealing with conflicts while merging

• Quick exercise #2: try to simulate a conflict between two people
• Clone your github repository into 2 different folders
• Edit the same line of the same file in each local repository and commit
• Try to push both of them to github
• What happens?

• CONFLICT
• What to do?

• You need to pull first to download the conflicting update, merge it and then push again.
Try it!

Using git with Matlab

Modified

Unmodified

You can use git commands in matlab!

Other useful commands (1/2)

• To delete a file from the repository, two options
• Delete both from git and from your computer (the file still exists in previous

commits)
git rm FILE

• Delete only from git (i.e. the file is not tracked anymore)
git rm --cached FILE

• To move/rename files within the repository while keeping their history
git mv FILE1 FILE2

• Create a .gitignore file containing file names, folder names or type of file to
be ignored by git (one by line): for example
file_to_ignore.txt
folder_to_ignore/
*.m~

Other useful commands (1/2)

• You can give a name to your last commit using a tag
git tag NAME
or to any commits using their identifier
git tag NAME IDENTIFIER
Examples of use: tag the commit that you used to produce some results for
a conference, tag releases of a software you develop (v1.0, v1.1, v1.2)

• If you realize you made a mistake in your code just after committing, you
can edit your file and amend your commit as if it was right the first time:
git commit --amend -m 'Message’ (it won’t work if you’ve already pushed to github)

• When you push to github, only the master branch is sent. If you want to
also send a particular branch to github, use:
git push -u origin BRANCH (works also for tags)

Final comments (1/2)

• Recommended to have one repository by project, not a huge
repository with all the code you’ve ever created.

• Write meaningful comments for commits, your future you will be
thankful

• Don’t commit your code every 2 months! Try to commit as soon as
you have a significant addition

• It is possible to have a git repository inside your dropbox
• Provides another backup
• Gives you access to your last version of your files on another computer if you

forgot to commit/push to github

Final comments (2/2)

• Some GUI are available (from github or other ones)
• The most recent versions of Matlab integrate well with git
• Git and github are made for source code (i.e. text files) but you can

also add binary files like an image file from a figure or a matlab .mat
file. However, it is not optimized for that and space is limited on
github.com

• If you want to collaborate but are not invited to a github repository,
you can fork it and then send a pull request (more advanced topic,
see resources).

More resources

• Many, many resources on the internet
• Github cheat sheet to print

• https://services.github.com/kit/downloads/github-git-cheat-sheet.pdf

• Fun tutorial
• https://try.github.io/levels/1/challenges/1

• Play with branching to better understand
• http://learngitbranching.js.org/

• FAQ on stackoverflow
• http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide

• More advanced tutorials, for example
• https://www.atlassian.com/git/tutorials/advanced-overview/
• http://gitimmersion.com/

https://services.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://try.github.io/levels/1/challenges/1
http://learngitbranching.js.org/
http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://www.atlassian.com/git/tutorials/advanced-overview/
http://gitimmersion.com/

