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Becoming Syntactic
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Psycholinguistic research has shown that the influence of abstract syntactic knowledge on performance
is shaped by particular sentences that have been experienced. To explore this idea, the authors applied
a connectionist model of sentence production to the development and use of abstract syntax. The model
makes use of (a) error-based learning to acquire and adapt sequencing mechanisms and (b) meaning—form
mappings to derive syntactic representations. The model is able to account for most of what is known
about structural priming in adult speakers, as well as key findings in preferential looking and elicited
production studies of language acquisition. The model suggests how abstract knowledge and concrete
experience are balanced in the development and use of syntax.
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How do we learn to talk? Specifically, how do we acquire the
ability to produce sentences that we have never said or even heard
before? This question was central to the famous challenge from
Chomsky (1959) to Skinner. Chomsky’s view was iconoclastic:
Speakers possess abstract syntactic knowledge, and the basis for
this knowledge is in the human genes.

A system with abstract syntax is capable of producing novel and
even unusual utterances that are nonetheless grammatical. Such
knowledge is typically described in terms of syntactic categories
(e.g., noun or verb), functions (e.g., subject or object), and rules
(e.g., determiners precede nouns). The knowledge is abstract in the
sense that it is not tied to the mappings between particular mean-
ings and words. We accept the existence of abstract syntax, but in
this article, we emphasize what is learned over what may be innate.
We claim that the syntactic abstractions that support production
arise from learners’ making tacit predictions about upcoming
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words in what they hear. If those predictions are erroneous, the
learner makes changes to the system that generated the predictions.
These ideas are made concrete in a connectionist model of the
acquisition of production skills, one that accounts for data that
reveal how experience adaptively alters these skills, most impor-
tant, data concerning structural or “syntactic” priming in
production.

Error-based learning algorithms in connectionist networks use
the difference between a predicted output and the correct or target
output to adjust the connection weights that were responsible for
the prediction. One type of error-based learning, back-
propagation, can be used to adjust the weights to hidden units in
a network, units that are neither input nor output, thus allowing the
model to learn arbitrary pairings of inputs and outputs (Rumelhart,
Hinton, & Williams, 1986). One kind of back-propagation-trained
network, called a simple recurrent network (SRN), has been par-
ticularly important in theories of language and sequence process-
ing because it accepts inputs, and predicts outputs, sequentially
(Elman, 1990). An SRN is a feed-forward three-layered network
(input-to-hidden-to-output). It also contains a layer of units called
the context that carries the previous sequential step’s hidden-unit
activations. By carrying a memory of previous states (akin to
James’s, 1890, notion of the “just past”), the system can learn to
use the past and the present to anticipate the future.

SRNs provide some of the best accounts of how people extract
generalizations in implicit sequence learning tasks (e.g., Cleere-
mans & McClelland, 1991; Gupta & Cohen, 2002; Seger, 1994). In
these tasks, people learn to produce training sequences, such as a
sequence of keypresses, and then are tested on novel sequences,
showing that they have abstracted generalizations from the train-
ing. These models can easily be applied to language. SRNs that
predict the next word at output given the previous word at input are
able to learn syntactic categories and relationships from the se-
quential structure of their linguistic input (Christiansen & Chater,
1999, 2001; Elman, 1990, 1993; MacDonald & Christiansen,
2002; Rohde & Plaut, 1999). More complex models based on
SRNs have been developed for comprehension, where meaning is
predicted from word sequences (Miikkulainen, 1996; Miikku-
lainen & Dyer, 1991; Rohde, 2002; St. John & McClelland, 1990),
and production, where word sequences are predicted from meaning
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(Chang, 2002; Chang, Dell, Bock, & Griffin, 2000; Dell, Chang, &
Griffin, 1999; Miikkulainen & Dyer, 1991; Rohde, 2002).

Our model is a variant of the dual-path model of Chang (2002),
a connectionist treatment of the acquisition of production skill. The
original dual-path model augmented SRN approaches to language
with architectural assumptions that enabled the network to acquire
syntactic abstractions. Armed with these abstractions, the model
was able to generalize in a symbolic fashion. It could accurately
produce novel sentences, something that SRN-based models of
production cannot reliably do (Chang, 2002). At the same time,
though, because it used error-based learning in a recurrent net-
work, it was, at least in principle, compatible with connectionist
accounts of distributional learning in linguistic (e.g., Elman, 1990)
and nonlinguistic (e.g., Gupta & Cohen, 2002) domains. Here, we
ask whether the model withstands psycholinguistic scrutiny.

The model learns to produce by listening. When listening, it
predicts (outputs) words one at a time and learns by exploiting the
deviations between the model’s expectations and the actually
occurring (target) words. Outputting a word sequence is, of course,
a central aspect of production, and so our version of the dual-path
model can seamlessly transfer its knowledge gained by predicting
during listening to actual production. We do not explicitly model
comprehension, that is, the extraction of meaning from word
sequences. However, we do assume that prediction is occurring
during listening and that this affects processing and learning.
Evidence for prediction during input processing comes from em-
pirical demonstrations of the activation of the grammatical and
semantic properties of upcoming words during comprehension
(Altmann & Kamide, 1999; Federmeier & Kutas, 1999; Kamide,
Altmann, & Haywood, 2003; Wicha, Moreno, & Kutas, 2003,
2004).

The model accounts for data from three experimental paradigms
that purportedly test for adults’ and children’s use of syntactic
representations: structural priming, elicited production, and pref-
erential looking. The most central of these is structural priming.
Structural priming creates structural repetition, which is a tendency
for speakers to reuse previously experienced sentence structures
(Bock, 1986). Of importance, the influence of a previously pro-
cessed sentence, or prime, on the production of a rarget sentence
persists over time and in the face of intervening sentences. Because
of this persistence, it has been argued that structural priming is a
form of implicit learning (Bock & Griffin, 2000) and that error-
based learning is a way to model it (Chang et al., 2000).

In addition, we show that the model accounts for two other kinds
of data that are important in the study of language development,
data from elicited production and preferential-looking tasks. Re-
sults from these tasks have been at the center of a debate about the
abstractness of syntax in children and the innate endowment for
syntax. The issue concerns the abstractness of early transitive and
intransitive structures. If these structures become abstract late in
development, it supports late-syntax theories that posit that syntax
becomes abstract through accumulated experience (Bowerman,
1976; Braine, 1992; Tomasello, 2003). If they are shown to be
abstract early in development, then it is possible that experience
alone is not enough for abstraction, and that would support early-
syntax theories that assume that children have some innate linguis-
tic propensity for abstract syntax (Gleitman, 1990; Naigles, 2002;
Pinker, 1984). The debates arise in part because of experimental
methodologies. Elicited production studies have tended to support

the late-syntax view (Tomasello, 2000), whereas preferential-
looking studies show evidence for early structural abstraction
(Naigles, 1990). We aim to resolve this debate by showing that the
model, which acquires syntax gradually from prelinguistic archi-
tectural and learning assumptions, can account for the data from
both methods.

The model presented here is ambitious, because there are no
explicit, unified theories of the domains that it addresses. In syntax
acquisition, there are no explicit theories that can explain structural
priming; in sentence production, there are no explicit theories that
can account for preferential-looking data; in language acquisition,
there are no explicit theories that can deal with the problems of
combinatorial behavior in neural systems (Fodor & Pylyshyn,
1988; Marcus, 1998, 2001; Pinker, 1989). The model attempts to
provide a computational account of all of these phenomena. We
present this account in four sections. The first (The Dual-Path
Model) outlines the model architecture, the language that the
model was trained on, and the accuracy of the model after training.
The second section (Structural Priming) describes the testing of the
trained model on structural priming results. The third section
(Language Acquisition) deals with the model’s account for lan-
guage acquisition results in different tasks. In the fourth section
(Successes and Limitations of the Model), we review and critique
the model’s behavior.

The Dual-Path Model

Sentence production requires learning how to map between
meaning (the message) and word sequences in a way that conforms
to the syntax of a particular language (Bock, 1995; Levelt,
1989). An important property of this system is that people are able
to use words in novel ways. For example, an editor of a celebrity
gossip Web site created a verb to refer to the ravenous way that
Catherine Zeta-Jones eats vegetarian food, as in “I had zeta-
jonesed one too many carb-loaded dinners at Babbo to fit into my
size zero skirt” (Safire, 2003; Spiers, 2003). This ability requires
that the author ignore her experience with the proper name “Zeta-
Jones” (e.g., occurs after “Catherine,” occurs in proper noun
positions) and treat it as a verb (after auxiliaries like had, can be
in the past tense).

Whereas humans naturally come by the ability to use words
flexibly, getting a learning system to do it is difficult. SRNs and
other distributional learning schemes (e.g., Mintz, 2003; Mintz,
Newport, & Bever, 2002; Redington, Chater, & Finch, 1998) are
able to learn lexical categories based on the distributions of the
words that they are exposed to. If an SRN is augmented with a
message, the resulting model can also be taught to produce sen-
tences, one word at a time, consistent with experienced messages
(e.g., Chang et al., 2000). Moreover, its internal states can repre-
sent syntactic—semantic categories that are useful for mapping
meaning onto particular words in particular positions.

Despite these merits, an architecture consisting of solely an SRN
with a message input has a limited ability to use words in novel
structural configurations, such as the verb “zeta-jonesed” (Chang,
2002; Marcus, 1998, 2001). For example, a model of this sort
tested by Chang (2002) was unable to generalize a noun to a novel
thematic role: If the model had not experienced the concept DOG
as a GOAL, it could not produce sentences expressing this mean-
ing. Moreover, the model was unable to produce adjective—noun
combinations that it had not been trained on, which people can
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readily do, as in the lyric by Echo and the Bunnymen “And an ugly
beauty [italics added] was my own invention.” In short, this
architecture was too bound by its training to exhibit the flexibility
of the human production system.

To address the need for a flexible production system within a
connectionist framework, Chang (2002) developed the dual-path
model. The essential features of the current model’s architecture
are the same as in the earlier work, but the input grammar had to
be augmented to handle new empirical domains, and the message
was simplified. Here we describe the basic properties of the
dual-path model and how it has been adapted to account for the
phenomena of interest in the present work.

Incremental Word Prediction

The model’s task is to predict words, one at a time, using the
immediately previous word and meaning as input (see Figure 1).
The output layer is designated the word layer, in which each unit
corresponds to a word in the model’s lexicon. The input layer is the
cword layer, where the c- prefix reflects the status of the previous
word as comprehended input, rather than predicted output. This
layer also has units for every lexical item. When the model’s word
output is erroneous (compared with heard next word; see the
double arrow at the top of Figure 1), its connection weights are
altered so as to reduce this error in the future.

The dual-path model adapted the word-prediction task to the
task of sentence production by including a representation of the
intended message. A message is a constellation of concepts orga-
nized by an event-semantic representation. When a message is
present, the sequence of predicted words becomes the produced
sentence, with each word output feeding back to serve as input for
the production of the next word (see the dashed line in the
dual-path model box in Figure 1). The message constrains the
sequence to express what is intended.

The model only learns when it can compare its predictions
against an externally generated utterance (and hence does not learn
when it produces). Sometimes this prediction of an external utter-
ance takes place when the message can be inferred from context
(called a situated input event) and sometimes when message
information is not inferable (called a messageless event).

External Environment
Next heard word “man”
I (compare with word units output)

‘word’ units

Dual-path Model

‘cword’,units d======

Previous heard word  “the”

Figure 1. Incremental prediction in the dual-path model. The model is a
device that takes the previous word as input and predicts the next word as
output, constrained by the message. The c- prefix in cword reflects the
status of the previous word as comprehended input, rather than predicted
output.

The Sequencing and Meaning Systems

The model’s architecture has two pathways for influencing the
prediction—production of each word, one that maps from the con-
cepts in the message, called the meaning system, and one that maps
from the model’s sequencing system (see Figure 2). Both systems
ultimately converge on the model’s word output layer, ensuring
that message-consistent words are produced at the right time.

The sequencing system (see Figure 3) was designed to learn
information that would ensure sentences were sequenced in a
syntactically appropriate manner. The system had a SRN architec-
ture, which has been used in other models for acquiring aspects of
syntax (Elman, 1990, 1993; Rohde & Plaut, 1999). It mapped from
the previous word in a sequence (cword units) to the next word in
a sequence (word units) through a set of compression units (ccom-
press and compress) and a set of hidden units. The hidden units
copied their activations into a set of context units, and these
activations were passed as inputs to the hidden units. The com-
pression units kept the hidden layer from directly sequencing
particular words and instead forced it to create word classes
(Elman, 1993). This made the network more syntactic, because the
word classes that were the most useful for sequencing lexical items
were syntactic categories.

For the sequencing system, the cword layer represents the pre-
viously predicted and/or heard word in the sequence. When a
sentence is heard rather than produced, the cword units are set to
the sum of the predicted word output and the actual heard input
(normalized so that the sum does not exceed 1). In essence, the
model’s cword “perception” is a blend of what it expects (previous
predicted word) and what it hears (previous heard word). Because
the cword units include predicted activation, the knowledge gained
from heard input transfers readily to production, that is, when there
is no heard input. In production, the cword activations are just the
previous word output. This feeding back of produced output is
particularly important for production because it helps the model
keep track of the kind of sentence that it is producing and where it
is in the sentence (Jordan, 1986).

The meaning system contains the message. The most important
part of the message consists of concepts and event roles, and the
bindings between the concepts and roles. Typically, these bindings
are represented in connectionist models by using separate units
that represent the binding between role and concept, such as
DOG-AGENT and DOG-PATIENT (Chang et al., 2000; McClel-
land & Kawamoto, 1986; St. John & McClelland, 1990). Fodor
and Pylyshyn (1988) criticized this approach, because in these
networks, the ability to know or say that “John loves Mary”
(JOHN-AGENT, MARY-PATIENT) is completely independent
of the ability to know or say the related idea of “Mary loves John”
(MARY-AGENT, JOHN-PATIENT). This increases the diffi-
culty of language learning, because the system must individually
learn that DOG-AGENT and DOG-PATIENT are both dogs and
DOG-AGENT and CAT-AGENT are both agents (Pinker, 1989).

A similar problem exists in vision, because the retinal input is a
two-dimensional image where object information is embedded in
location-specific retinal fields (e.g., the flower and dog are not
separately represented in the top part of Figure 4). During spatial
processing, objects are individuated and linked to their location in
space (e.g., middle section of Figure 4). The brain can do this
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Figure 2. Two pathways in the model: a meaning system and a sequenc-
ing system. The sequencing system is an simple recurrent network.

because it has specialized pathways that separately process object
properties, called the what system, and location properties, called
where system (Milner & Goodale, 1995; Mishkin & Ungerleider,
1982) and the ability to temporarily bind these concepts to their
locations (Karnath, 2001). Thus, it is likely that the spatial system
gives a language learner a location-independent notion of the
concept DOG before language learning begins (see the what side
of the middle part of Figure 4).

Because concept—location bindings are required for spatial pro-
cessing, similar mechanisms could be used for concept-role bind-
ings in message encoding (see the bottom part of Figure 4). Chang
(2002) implemented concept—role binding in messages by tempo-
rarily increasing weights between concepts (what units) and roles
(where units). For example, setting the weight from DOG to
AGENT to a high value identifies a dog as the agent. The dynamic
binding used in the dual-path model’s weight-based message could
be seen as a general feature of relational processing (Hummel &
Biederman, 1992; Shastri & Ajjanagadde, 1993). Alternately, the
message system could be a specialized part of the spatial system,
which might help explain data showing tight links between spatial
and language processing (e.g., Altmann & Kamide, 1999; Bloom,
Peterson, Nadel, & Garrett, 1996; Clark & Carpenter, 1989; Grif-
fin & Bock, 2000; Jackendoff, 1983; Lakoff, 1987; Lakusta &
Landau, 2005; Landau & Jackendoff, 1993; Langacker, 1987). Our
account is consistent with either approach.

The what—where character of the model’s message works
together with its dual-path nature to promote generalization in
sentence production. The sequencing system has only limited
contact with the meaning system. Specifically, it does not
connect directly to the concepts bound to the roles, but only to
the roles. Therefore, when it learns to sequence, say, “dog” in
“The dog carries the flower,” the sequencing system really only
learns how to order the role that is linked to the dog concept. It
does not sequence “dog” directly. Later, when the model is
asked to produce “The cat carries the rose,” the cat concept is
linked via fast-changing weights to the same role. Conse-
quently, what the model learns about how to sequence this role
transfers fully to cat. More generally, Chang (2002) showed that
the dual-path model successfully generalized nouns to novel
thematic roles and sentence structures and produced novel
adjective-noun pairs in contrast to SRN-based models that
lacked both the dual-path architecture and the what—where
message structure. Moreover, the dual-path model’s generali-
zation with verbs turned out to be constrained in a manner
similar to what has been found with children (C. L. Baker,
1979; Gropen, Pinker, Hollander, Goldberg, & Wilson, 1989).

In addition to its ability to generalize in a humanlike manner, the
model also accounted for neuropsychological data related to its
assumptions of two paths. As the model learned, the meaning and
sequencing pathways became differentially sensitive to particular
word categories (content and function words, respectively). This
allowed lesioned versions of the model to mimic double dissoci-
ations in aphasia related to the distinction between agrammatism
and anomia, which are classically associated with syntactic and
semantic lesions, respectively (Gordon & Dell, 2002, 2003). Thus,
the model’s separation of meaning and sequencing receives some
motivation from the aphasia literature and, more generally, from
theoretical treatments of brain function that separate procedural
(e.g., sequential) from declarative (e.g., semantic) properties of
language (e.g., Cohen & Eichenbaum, 1993; Ullman, 2001).

Detailed Assumptions About Messages

Figure 5 shows the full structure of the implemented model,
including additional assumptions about the message. Here, we
describe the meaning system in terms of its three parts: the
meaning-to-word component, the word-to-meaning component,
and the event semantics.

The meaning-to-word component of the meaning system in-
volves three layers of units: where, what, and word units (see
Figure 6). As already mentioned, the where units represented event
roles in the message. These are denoted with single capital letters
(e.g., A, X,Y,Z,D) and are explained later in the next section. The
what units represented the lexical semantics of words (e.g.,
SLEEP, MARY, DOG). The links between the where and the what
units are dynamic, set before the production of each sentence to
represent a particular message. The connections between the what
and the word units, in contrast, were learned as the model expe-
rienced particular words and concepts. These connections corre-
spond to concept-to-lemma links in theories of lexical access in
production (e.g., Caramazza, 1997; Dell, 1986; Dell, Schwartz,
Martin, Saffran, & Gagnon, 1997; Levelt, Roelofs, & Meyer,
1999; Rapp & Goldrick, 2000).

For example, to represent the message for “Mary sleeps,” the
where unit for the action role (role A) would be weight-linked
to the what unit that represented the lexical semantics for sleep.
The where unit for the role Y would be weight-linked to the
what unit for Mary. Because of the fast-changing weights (see
the thick links in Figure 6), whenever the system activated a

context

I ccompress l |
A

| M
I cword |4 ............. mam— H
&

Previous heard word

Figure 3. Sequencing system (simple recurrent network, right side of
Figure 2); ccompress and compress are a set of compression units.
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Visual Input
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of a single flower-dog object.

Spatial System
Dog and flower have been
individuated and bound to their

locations.

Message

Dog and flower have been
dynamically bound to roles to
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flower (e.g., carrying).
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Figure 4. Visual input is translated into object (what) and locational (where) representations in the spatial
system. The message makes use of this segmentation and dynamic binding mechanisms to assign objects to roles.

where unit, such as A or Y, the appropriate lexical-semantic
content in the what units (SLEEP or MARY) would also be-
come activated. (Control of activation of the where units resides
in the sequencing system; see the connection in Figure 5 from
hidden to where.) Because of the learned connections between
the what and word layers, the activated what unit then biases for
the output of the word that was learned in association with that
unit (“sleep” or “Mary”).

The second part of the meaning system represents the word-
to-meaning component (see Figure 7). It was used to relate
incoming or already produced words (cword layer) to the mes-
sage so that the model knows which components of the message
have already been heard or produced. This mapping was just a
reverse of the lexical meaning for output component of the
message.

This reversal of the meaning-to-word component mapped a
previous word (cword) to its lexical semantics (cwhat) and then to
its role (cwhere). At the same time that the production message
was set, the message links between cwhat and cwhere were set in
the reverse direction (see the thick links in Figure 7, e.g., SLEEP
— A, MARY —Y). If the cword unit for “Mary” was activated,

this would lead to the activation of the cwhat unit for MARY.
Then, because of the message links (e.g., MARY — Y), the model
would know that the Y role had been produced, and that informa-
tion could be used in turn by the sequencing system to determine
what to produce next. To facilitate memory of the roles that have
been previously produced, the previous cwhere activations were
copied into a cwherecopy layer that collected a running average of
these previous states (see the dashed lines in Figure 7). The cwhere
and cwherecopy units influence sequences through their connec-
tions to the hidden layer (see Figure 5).

Learning to link heard words and meaning in comprehension is
a basic problem in language acquisition, because of the multiple
possible semantic interpretations in a scene for a word (Gleitman,
1990). The model trains the cword—cwhat links by using the
previous what unit activations as a training signal on the cwhat
layer (see the double arrow in Figure 7). The model simply
associates the current cword input with all the active what features.
By experiencing enough situations in which, for example, the
cword “cat” was heard when the what feature CAT was active, the
correct connections can be established. Because activation of the
what units from inferred meanings controls both the learning of
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Figure 5. Dual-path model and environment; ccompress and compress
are sets of compression units. Single arrows are learned weights. Dashed
arrows are fixed copy connections. Thick gray lines are fast-changing
message weights. Double arrows are for target comparison (what layer
output as target for cwhat layer not shown).

words and cwords, this approach helps to ensure that the links in
the word production and comprehension systems are similar.'
The word-to-meaning component plays an important role in
bringing the model into line with incremental psycholinguistic
theories of production (Bock, 1982; Dell, Burger, & Svec, 1997;
Kempen & Hoenkamp, 1987; Levelt, 1989). For the dual-path
model to learn to produce sentences incrementally and deal with
syntactic alternations, events at the “choice point” in the sentence
are critical. This is the point at which a structural alternative is
uniquely determined (e.g., a double-object dative vs. a preposi-
tional dative is determined right after the main verb, as in “The girl
gave a flower to the boy/the boy a flower”). At the choice point,
information from previous words (cword input) interacts with the
message (the event semantics component of the message as de-
scribed later) to bias events in the sequencing system. The model
learns how to do this from predicting the sentences of others.
Recall that the cword inputs are always the normalized sum of the
previous predicted output activations and the external inputs. Dur-
ing prediction of another’s words during comprehension, the ex-
ternal input at the choice point provides the information for pre-
dicting the structure of the oncoming sentence. For example, in the
passive “The flower was carried by the dog,” the early production
of the word “flower” signals a passive, because in the target
message, the flower is the patient (cword “flower” activates cwhat

"«

I word

“sleep” “mary” |
learned connectionsT
| what SLE.EP MAIRY | (lexical semantics)

fast-changing weights (Figure 4)

Lwhere R Y I

Figure 6. Meaning-to-word component (top of meaning system in
Figure 5).

| cwhere é

| LS | cwherecopy Y

memory of previous produced roles 4 =

TR <

fast-changing weights (Figure 4) I

| === target from what units

[ cwhat  SLEEP MARY

: A
learned weights

l cword “sleep” “mary” |

Figure 7. Word-to-meaning component (bottom of meaning system in
Figure 5).

FLOWER, which is linked to the patient role in the cwhere units).
Because the cwhere units help to signal the structure of the rest of
the sentence, the sequencing system depends on this information to
activate roles in the where units when appropriate. In production a
similar process occurs, except there is no external input word.
Hence, at a choice point, the predicted output is the cword input,
and the model must use its previously learned representations to
sequence the correct structure.

The third part of the message is the event-semantics units, which
represents some of the relational information that the sentence
conveys (middle of meaning system in Figure 5). The distinction
between event semantics (functions—relations) and lexical seman-
tics (concepts) is assumed in most semantic frameworks (Grim-
shaw, 1990; Jackendoff, 1983, 1990; Pinker, 1989; Talmy, 2000).
Event semantics influences structure selection, whereas lexical
semantics influences word selection. Among other things, such an
arrangement helps to explain how speakers generalize nouns as
verbs (Clark & Clark, 1979). For example, the semantics of the
noun “Google” (the Web site) does not tell one which syntactic
frame is appropriate when one wants to use it as a verb. However,
because people normally use the Web site to search for something,
the typical action involves two arguments. Knowing that it takes
two arguments allows speakers in different languages to pick out
the appropriate frame if they want to use it as verb, as in English
“I googled myself,” German “Ich habe mich gegoogelt” (have-
auxiliary, verb-final), or Japanese “jibun-o guuguru shita” (omitted
subject, light verb).

In the implemented model, event-semantics represented the
number of arguments and features of tense and aspect and was
directly available to the sequencing system (and hence syntactic
decisions). Altogether, then, the message for a particular sentence
can be thought of as the combination of the where—what links,
cwhat—cwhere links, and event-semantics information. Whereas
these message links are set before each sentence, all the rest of the
links in the model are learned through back-propagation (i.e.,
cword — cwhat, what — word, event-semantics — hidden, hidden
— where, cword — ccompress, compress — word, and all internal

! Although our implementation uses different units and connections for
production and comprehension within the meaning system, we take no
stand on the issue of common versus separate representations for these
functions (see a similar approach to single-word production in Plaut &
Kello, 1999, where shared meaning—word links are implemented with
separate weights and units). It is simply easier to train and debug the model
when the use of the message for production purposes and its use for
determining the role of the last produced or input word are kept distinct.
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links within the sequencing system except for the process of
copying hidden unit activations onto the context units).

Before describing the results of the empirical tests of the model, it
is useful to summarize the model’s critical assumptions in tabular
form (see Table 1). These assumptions identify properties of the
human brain that constrain language acquisition, and they include
claims about learning mechanisms, architecture, and semantic repre-
sentations. Most were described in the previous section, except for the
XYZ roles assumption, which is described in the next section. We
assume that the brain’s learning and processing mechanisms function
throughout life (learning-as-processing assumption) and are sensitive
to the difference between expected input and the actual external input
(prediction error assumption). This approach to learning and process-
ing is present in many psychological models (e.g., Botvinick & Plaut,
2004; Gupta & Cohen, 2002; Plaut, McClelland, Seidenberg, &
Patterson, 1996). The dual-pathways assumption finds motivation in
neuropsychological and neurophysiological research. Studies of apha-
sia and other pathologies (e.g., Ullman, 2001) and functional imaging
studies (e.g., Indefrey & Levelt, 2004; Levelt, Praamstra, Meyer,
Helenius, & Salmelin, 1998) associate frontal and temporal—parietal
areas with distinct functions, frontal areas being associated more with
syntax and sequential output (Botvinick & Plaut, 2004; Keele, Ivry,
Mayr, Hazeltine, & Heuer, 2003; Petersson, Forkstam, & Ingvar,
2004), and temporal—parietal areas being the locus of stored lexical
representations (Rogers et al., 2004). The sequencing-by-SRN as-
sumption capitalizes on the known ability of SRNs to learn and
produce sequences in a manner consistent with human learning data
(Cleeremans & McClelland, 1991; Gupta & Cohen, 2002; Seger,
1994). The meaning assumptions in the model stem from mechanisms
that are also required for spatial processing. Multimodal spatial pro-
cessing requires the ability to individuate objects and bind them to
locations, and these abilities could also be used in message encoding
(what—where assumption). Moreover, scene processing requires an
algorithm for storing scene-based information, and this helps to mo-
tivate the model’s role representation (XYZ assumption; see the next
section and Chang, 2002, for evidence supporting this approach).

Table 1
Critical Assumptions of Dual-Path Model

Overall, we assume that the brain is organized during development
such that language develops in healthy individuals in similar ways
(architectural innateness as argued by Elman et al., 1996). This
organization is assumed to be a product of how the brain evolved to
support sequence learning and scene processing in contexts without
language (Conway & Christiansen, 2001; Milner & Goodale, 1995).
When language is learned in an individual, these neural systems
become at least somewhat specialized for language. The mature
system may then exhibit some degree of dissociation between lan-
guage and nonlanguage abilities (sequencing, spatial processing) if it
is damaged, as in aphasia that spares nonlinguistic processing of
scenes or sequences. Our claim, then, is that at the level of mechanism
(but not necessarily in terms of learned representations), there are
similarities between language and nonlanguage processing.

What is not assumed in our framework, but rather must be
learned, are the mappings and representations that are needed for
language-specific processing. The system must learn to produce
words (what — word) and comprehend words (word — cwhat). It
must forge syntactic categories (e.g., nouns, verbs) and construc-
tions (e.g., passive, double-object dative). It must also learn how to
select between alternative language-specific structures depending
on either event-semantics or previously selected words. Because
we view the critical assumptions as providing part of the universal
prelinguistic basis for language acquisition, we occasionally make
reference to typological patterns in the syntax of languages of the
world, because these patterns help to specify the space of possible
languages that are learnable and also suggest patterns that are more
or less frequent (M. C. Baker, 2005).

Input Environment: Message—Sentence Pairs

The model was trained by exposing it to sentences and their
meanings. These message—sentence pairs were generated by an
input environment grammar, designed to teach the model about a
variety of sentence types including those used in structural priming
and language acquisition studies. Table 2 presents examples of all

Assumption

Description

Learning (L) assumptions

(L1) Learning as processing

The mechanisms through which language processing skill is initially

acquired during childhood continue to function throughout life.

(L2) Prediction error

During both comprehension and production, learning occurs when a

predicted word deviates from a target word.

Architectural (A) assumptions

(A1) Dual pathways

There are separate meaning and sequencing systems, with restricted

communication between them. The prediction-production of each
word reflects the convergence of the outputs of the systems.

(A2) Sequencing by simple recurrent
network

Sequential prediction-production is enabled by a context or short-
term memory that changes as each word is predicted-produced.

Representational (R) assumptions

(R1) What-where

Message representations consist of dynamic bindings between

concepts (what) and roles (where).

(R2) XYZ roles

The participants in an event are associated with particular abstract

roles, and these roles must distinguish transitive and intransitive

agents.
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Table 2
Sentence Types in Input Environment Grammar

Sentence type Example sentence

Animate intransitive a dog sleep -ss.

Animate with intransitive a cat was bounce -ing with the big brother -s.

Inanimate intransitive a small flower is fall -ing.

Locative transitive the cat is run -ing around me.

i kick a cup. (active voice)

it was bake -par by him. (passive voice)

she surprise -ss a cat. (active voice)

she is hurt -par by you. (passive voice)

john put -ss the bread on the new mother.

mary send -ss a mother the apple. (double
object dative)

a sister is give -ing the water to a man.
(prepositional dative)

it bake -ss her a cake. (double object dative)

a aunt bake -ss the apple for the grandma.
(prepositional dative)

mary carry -ed the orange for the grandma.

a uncle is fill -ing the sink with beer.

a aunt spray -ed beer on the bath. (location-
theme)

the sister -s shower a bad bottle with water.
(theme-location)

Theme-experiencer

Cause-motion
Transfer dative

Benefactive dative

Benefactive transitive
State-change
Locative alternation

of the constructions present in the grammar. Because the grammar
is complex and, technically speaking, independent of the model,
we only summarize it here and present the details in the Appendix.

The input environment consisted of messages and sentences
from a simplified grammar of English single-clause sentences.
Here is an example:

Message: A=JUMP,
Y =BIRD, DEF
Event-Semantics:

AA=0.5 XX=0.5 PROG=0.5

Sentence: The bird is jump -ing.

Each message was composed of slot—filler combinations, where
each slot was individuated by a capital letter identifying the type of
slot (e.g., A, X, Y, Z, D), and each filler consisted of one or more
concepts (e.g., BIRD, JUMP) and event-semantics features (e.g.,
AA, XX, PROG). The sentence associated with the message was
an ordered set of words (e.g., “bird”) and inflectional morphemes
(e.g., “-ing”). Notice that the message—sentence pair did not in-
clude a syntactic frame. The model had to develop its syntactic
knowledge through learning.

In order to train the model on message—sentence pairs, the pairs
had to be turned into inputs to the model. The sentence part of the
pair is straightforward. When the model is exposed to the pair,
each word—morpheme of the sentence is designated, in turn, as the
“target” or desired output of the model. Exposing the model to a
message was more complicated. Explaining it requires more de-
tails about, in turn, elements of messages in the grammar, the kinds
of events associated with message information, and message rep-
resentations in the model.

Elements of messages in the grammar. The letters X, Y, and Z
designate abstract thematic roles. The particular set of roles as-
sumed here is called the XYZ role representation. The XYZ role

representation was developed by testing a variety of representa-
tional schemes in the dual-path model. (A similar role scheme,
called the “spatial message”, was described in Chang, 2002.)
Although it does not correspond to any single linguistic theory, the
XYZ system combines linguistic approaches to meaning (Dowty,
1991; Goldberg, 1995; Jackendoff, 1983, 1990; Levin & Rappa-
port Hovav, 1995; Van Valin & LaPolla, 1997) with conceptions
of the nature of attention in event perception. Given that attention
to spatial locations influences and is influenced by comprehension
(Altmann & Kamide, 1999; Kamide, Altmann, & Haywood, 2003;
Kamide, Scheepers, & Altmann, 2003; Knoeferle, Crocker,
Scheepers, & Pickering, 2005) and production (Bock, Irwin,
Davidson, & Levelt, 2003; Griffin & Bock, 2000), it seemed
appropriate to develop an approach to assigning thematic roles that
might be easily mapped onto visual scene analysis. Such an ap-
proach also meshes well with our assumption that the role—concept
binding mechanism is akin to the mechanism binding locations and
objects in spatial representations.

In order to learn language, children must have an algorithm for
assigning thematic roles. How does the child know, when viewing
a scene where a doll falls off a table, that the doll is an agent (as
in “The doll jumped”) or a theme (as in “The doll fell”)? Given the
subtlety of even basic distinctions such as these (Levin & Rappa-
port Hovav, 1995), it is not clear what algorithm children use to
assign roles during online visual scene analysis. The XYZ roles
alleviate this problem by forcing role assignment into a fixed order
that approximates the way that scenes are viewed. The first role
that is assigned is the “central” Y role. This role should be linked
to the element of the scene that is most saliently changed or
moved, or affected by the action (“doll” in both of the preceding
examples). This typically includes the subject of unergative and
unaccusative intransitives (“The bread floated,” “Marty jumps”)
and the object of transitives (“drink the milk,” “hit Marty”). If the
action on Y is caused by another element of the scene, whether this
element is volitional (“The girl eats the bread”) or not (“The noise
surprised the girl”), the causal element is assigned to the X role. If
an action on Y involves movement to a location indexed by
another element, as in transfer scenes (“The boy gave the girl the
dress”) or in caused-motion events (“The boy hit the ball to the
girl”), that element is assigned to the Z role. The Z role also
indexes adjunct relationships to Y, for example adjuncts in with
intransitives (“John jumps with Mary”) or locations (“John is
walking near Mary”). In terms of traditional roles, X subsumes
agents, causers, and stimuli; Y subsumes patients, themes, expe-
riencers, and figures; and Z subsumes goals, locations, ground,
recipients, and benefactors.

The most unusual aspect of the XYZ format is that it uses the
same role for intransitive agents and transitive patients. There is,
nonetheless, evidence for such a treatment. Goldin-Meadow and
Mylander (1998) found that children without a language model
(deaf children of nonsigning parents) treat these two elements in
similar ways in the sign language that they invented with their
parents. They tend to gesture about these elements before produc-
ing the gesture for the action, suggesting that there is a prelinguis-
tic basis for treating them as the same role. Typologically, this
ergative pattern in mapping appears in one fourth of the world’s
language (Dixon, 1994). By assuming that messages have an
ergative structure, one helps to motivate the existence of this
mapping pattern. The sequencing system, on the other hand, is
biased toward accusative mappings (e.g., where transitive agents
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and intransitive subjects have similar surface features, as in En-
glish), because it learns sequences of syntactic categories that will
tend to map the most prominent arguments (transitive agents and
intransitive subjects) into similar positions. The model has these
biases but must also learn how these biases work for individual
verbs within different constructions in particular languages (Levin
& Rappaport Hovav, 1995; Palmer, 1994).

Kinds of events associated with message information. Before
describing how the message appears in the model, we must con-
sider the states of the world that yield message information in the
first place. Many theories of language acquisition (Gleitman,
Cassidy, Nappa, Papafragou, & Trueswell, 2005; Pinker, 1984;
Tomasello, 2003), assume that children can infer some extralin-
guistic meaning of heard utterances, thereby acquiring information
that is useful for learning the mapping between meaning and
linguistic forms. Of importance, there are many situations in which
the child knows aspects of intended meaning before hearing an
utterance, such as viewing a familiar picture book, playing known
games, or taking part in common daily rituals (e.g., meals) in
which the sequence of events and utterances is well-known. These
are represented to the model as situated events— events in which
the child can infer the message and hears a word sequence that
expresses it. When the model experiences a situated event, learn-
ing results from the differences between the child’s predictions of
words (based on the inferred meaning and any prior words) and
each heard word.

In reality, children might only be able to infer a part of the whole
adult meaning. To simulate the noisiness of the inferable meaning, we
also have messageless events, which have no message, but which are
processed in the same way as situated ones. Learning occurs because
prediction occurs, albeit prediction unconstrained by inferred mean-
ing. What is important is not whether the message is all there or not
(as we have implemented), but rather the consistency of the relation-
ship between inferable parts of meaning and utterances.

The model experiences only situated and messageless events
during training. To simulate the composition of materials in par-
ticular experiments, we chose event types that correspond most
closely to the experimentally presented events. For example, to
simulate the production of a sentence from a pictured event by
adult participants in structural priming experiments, we used a
variant of a situated event called a production event. The speaker’s
intended meaning is represented by a corresponding message, just
like the situated event. Rather than using external input as cword
input, however, the model uses its own produced output as a cword
input. In this way, the output of a production event is a word
sequence constrained by a message but unconstrained by any
external input.

Message representation in the model. Now we are in a posi-
tion to describe how the message is instantiated in the model. Each
of the XYZ role units is represented in the message by a where and
cwhere unit. Each role-filler concept in the message has its own
what and cwhat unit. When the message specifies a role—concept
link (e.g., X = BIRD), the weight between the role unit in the
where layer (e.g., X) and the concept in the what layer (e.g., BIRD)
is set to an arbitrary value of 6, high enough to ensure that the
connected what unit was active when the host where unit was. The
same was done for the cwhat—cwhere connection. In this instance,
the link runs from concept to role, reflecting the fact that during
input processing, input words map to concepts and then to their
roles. These connections function the same as any other connection

in the model. They spread activation and backpropagate prediction
error. The only difference is that their weights are not learned but
are set anew for each message. Presumably, the message is set in
humans by an independent planning system that is devoted to
determining the appropriate communicative means for particular
situational goals (see Levelt, 1989, chapter 4).

The second part of the message was the event-semantics units.
Before a sentence is experienced in a situated event or formulated
in a production event, the activation of these units is set and kept
on during the entire sentence. The event semantics provides infor-
mation about the overall form of the event—most important, the
kinds of arguments present. This is accomplished by event-
semantic units for each of the argument roles (unit XX for the X
role, YY for the Y role, and ZZ for the Z role), one unit for the
action (unit AA), and one unit for any preposition (unit DD).

The activation of the event-semantics units encodes the relative
prominence of roles in the message (Goldberg, 1995; Grimshaw,
1990). When the YY unit was more activated than the XX unit,
then the Y role was more prominent than the X role. The relative
prominence of the roles influenced the model’s output by causing
words associated with more prominent roles to be placed earlier in
the sentence. The model learned to do this because the environ-
ment input grammar reflected such a correlation, and the model’s
architecture allowed event-semantics to affect the sequencing sys-
tem. In the message—sentence pairs from the grammar, the sen-
tence structure associated with a message placed prominent argu-
ments earlier. For example, a more prominent Y than X role would
be associated in the training input with a structure in which Y is the
subject (e.g., a passive). Hence, the event semantics helps the
sequencing system learn language-specific frames for conveying
particular sets of roles by giving the sequencing system informa-
tion about the number of arguments and their relative prominence.

Producing a Sentence in the Model: An Example

To illustrate how the model creates a sentence, here we give an
extended example of a production event. In a production event, a
message is present and the model’s ongoing output, rather than
heard input, drives the process. We assume that the model has been
fully trained, and so its production will be accurate. (The actual
training of the model is taken up in next section.)

The example sentence is “The boy is carried by the grandma.”
With our lexicon, this sentence consists of the sequence “the boy
is carry -par by the grandma” (-par being the past participle
morpheme). The message associated with this sentence is given in
Table 3, and the trace of the production process is shown in Table 4.

Before production begins, the message must be placed into the
model and the event-semantics set. Roles and fillers are linked in
the what—-where and cwhat—cwhere units. For instance, the X
where role unit is linked to the what concept unit for GRANDMA.
GRANDMA receives the X role because it is a transitive agent.
The X and Y roles are also linked to other modifying concepts.
Here, for example, both grandma and boy are definite, and this
feature is instantiated using a complex coding (see the Appendix
for details) that Table 3 annotates as the DEF what feature. The
event-semantics unit XX is set to 0.25, and YY is set to 0.5. Their
relative activations bias production of a passive structure, because
YY (corresponding to the Y role linked to BOY) is more activated
than XX. Tense and aspect information is also associated with the
event semantics. In this case, the event was not in the past and not
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Example Message for the Utterance “The boy is carried by the grandma”

Role Concept

Event semantics

A (action) CARRY
X (transitive agent)
Y (transitive patient)

zZ

BOY, DEF

AA=0.5 XX=0.25 YY=0.5

GRANDMA, DEF

progressive, so the past tense and progressive aspect units were not
activated. The model also initializes the activations of all of its
other units as described in the Appendix.

The production of the first word (Time Step 1 in Table 4) entails
the spread of activation from the event semantics and context layer
(the latter having been initialized uniformly to 0.5) to the hidden
layer. Because this is the first word, there is no input from the “c”
layers (marked with a dash in Table 4). From the hidden layer, the
activation contacts the role units in the where layer (e.g., X, Y),
and hence the concepts GRANDMA, BOY, and DEF all become
somewhat activated. Because the sequencing system has learned
that articles come before nouns in the input, the activation con-
verging on the output word layer favors “the” over “grandma’ and
“boy.” The word layer uses an approximate winner-take-all acti-
vation function (see the Appendix), and hence the word unit the
suppresses other activated word units.

At Time Step 2, “the” is copied back to the cword units—the
self-feedback property of production. Because both the agent and the
patient are definite, the model cannot use the “zhe” to signal which
structure to pursue, and the cwhere units are not strongly activated.
Because the sequencing system has not settled on an appropriate
structure, it again activates both the X and Y roles, which in turn
activate BOY, GRANDMA, and DEF. The knowledge that the article
“the” was produced can be used by the sequencing system (cword
input) to suppress all the articles and to activate nouns through the
syntactic categories in the compress units. This leaves the competition
for output between “grandma” and “boy.” Theoretically, either one
could win, but everything else being equal, there will be a bias for
“boy” to win because the model has experienced passive structures
when the YY event-semantics unit is more active than the XX one.
Therefore, we assume that “boy” is chosen at word layer. Its activation
is copied to the cword layer (Time Step 3), and the model moves on
to produce the next word.

At Time Step 3, there is significant input to the cwhat—cwhere
layers from the cword, “boy,” leading to the activation of the

Table 4

cwhere unit Y, thus allowing the hidden units of the sequencing
system to know that the model has produced the patient first. This
information then leads, over the next several time steps, to learned
states consistent with production of a passive, including most
immediately a form of “fo be.” The correct form “is” occurs
because of the lack of plural features in the what layer for the
subject, and the reflection of this fact in the sequencing system,
and the lack of past-tense features in the event semantics. The
model’s treatment of singular as default is in keeping with ac-
counts of agreement in production (for a review, see Eberhard,
Cutting, & Bock, 2005). At Time Steps 4 through 6, the learned
sequence of states within the sequencing system biases for, first,
activation of the action role A in the where layer leading to
production of the verb stem, “carry,” followed by “-par” and “by.”
The cwherecopy information becomes important at Time Steps 7
and 8. These units retain the fact that the patient has already been
produced, and so it helps the sequencing system recognize that the
where unit for X should now be active. Because X is associated
with both DEF and GRANDMA, the sequencing system again has
to use its acquired knowledge that the article precedes the noun.
Finally, at Time Step 9, because the cwherecopy information and
cwhere activations show that all of the roles have been produced
that are active in the event semantics, the model generates an
end-of-sentence marker (a period).

In summary, production in the model involves incremental
competition between words that are activated by the message. The
sequencing system attempts to make a grammatical sequence out
of the winners of this competition, thereby constraining the pat-
terns of activation. Next, we address how the model was trained to
achieve this.

Training the Dual-Path Model

Connectionist models, like people, vary in their experiences and
in the knowledge they gain from their experience. To ensure that

Schematic Summary of Model Events During Incremental Production of Sentence

Time step Cword Cwhat Cwhere-copy Cwhere Where ‘What Word
1 — — — — X, Y BOY, GRANDMA, DEF the
2 the — — — X, Y BOY, GRANDMA, DEF boy
3 boy BOY — Y — — is
4 is — Y — A CARRY carry
5 carry CARRY Y A — — -par
6 -par — Y, A — — — by
7 by — Y, A — X GRANDMA, DEF the
8 the — Y, A — X GRANDMA, DEF grandma
9 grandma GRANDMA Y, A X — —
Note. Dashes indicate that units are strongly biased and can not be easily labeled.
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our modeling results are general, we created multiple model sub-
jects, allowing for statistical tests of model properties. The only
difference among the model subjects was their training experi-
ences. Twenty training sets of 8,000 message—sentence pairs were
generated and used to train 20 model subjects. As a means of
yielding efficient learning of the grammar, about three quarters of
the pairs on average were situated events and one quarter were
messageless events. Because children hear approximately 7,000
utterances in a day (estimated in Cameron-Faulkner, Lieven, &
Tomasello, 2003, from child-directed speech in corpora) and this
input refers to a limited set of people, objects, and events that are
part of the child’s world, the model’s input underestimates both the
amount of input and the semantic predictability of this input.

Each model subject experienced 60,000 message—sentence pairs
randomly selected from its training set, with weight updates after
each pair. To see how well the model generalized to novel sen-
tences, a testing set of 2,000 sentences was randomly generated
from the grammar. The tests were all production events, because
our empirical focus is on production and particularly generaliza-
tion in production. The message grammar can generate approxi-
mately 8.067158 X 10'° different messages,? and the overlap in
sentences between training and test was small (less than 1%
overlap).

Production accuracy can be indexed in many ways. We defined
two measures, grammaticality and message accuracy, which are
determined by analyzing the model’s output word sequences. For
example, consider the sequence “sally is hurt -par by a cat.” Each
such word sequence was augmented with syntactic information, to
yield a lexical-syntactic sequence: NOUN:sally AUX:is VTRAN:
hurt MOD:-par PREP:by DET:a NOUN:cat. Lexical-syntactic se-
quences were derived both for the model’s outputs and for the
sentences from the training or testing sets that the model was
trying to produce. The model’s output sequence was considered
grammatical if the whole syntactic sequence (“NOUN AUX
VTRAN MOD PREP DET NOUN”) matched the syntactic se-
quence for any sentence in the training set. The output sequence’s
message was accurate if its lexical-syntactic sequence and the
intended lexical-syntactic sequence mapped onto the same mes-
sage by a set of transformational rules set up for this purpose (e.g.,
NOUN:sally AUX:is VTRAN:hurt MOD:-par PREP:by DET:a
NOUN:cat — ACTION:HURT X=NOUN:CAT Y=NOUN:
SALLY). The message accuracy ignored differences in minor
semantic features such as definiteness, number, aspect, and tense.

Figure 8 shows the grammaticality and message accuracy of the
model for the training and testing sets every 2,000 epochs. An
epoch is a point during training when weights are actually altered.
Here, such alteration occurs at the end of every training sentence.
The figure shows two important convergences. First, at the end of
training, performance on the training and testing sets converges,
showing that the model treats novel sentences from the grammar in
the same way as trained exemplars (see the Appendix for why
grammaticality is initially higher for test). In other words, the
model generalizes extremely well. Second, at the end of training,
grammaticality and message accuracy converge. Because message
accuracy presupposes a grammatical lexical-syntactic sequence,
this convergence shows that the grammatical sentences produced
also tend to be the appropriate ones for the intended message. After
60,000 epochs, grammaticality is 89.1% and message accuracy is
82% on the test set. In summary, after training on just 8,000
examples (each example trained an average of 7.5 times), the

model can correctly produce the target utterance for most of the 80
billion meanings that can be expressed by the grammar. This is
clearly an example of effective learning from an impoverished
training set of positive examples, with no direct negative evidence.

Before we turn to the application of the model to empirical data,
it is useful to summarize the structure of the modeling work and to
preview its application to data. This summary is presented in
Figure 9. We started with a formal grammar of an English-like
single-clause language with a variety of constructions and gram-
matical phenomena. This grammar generated message—sentence
pairs, which were used to train the internal syntactic representa-
tions in the dual-path model. The model consisted of a connec-
tionist architecture with one part set up for sequencing items and
another for representing meaning, instantiating a set of assump-
tions about learning. The architecture and learning assumptions
were chosen to simulate a neural system that must sequence
behavior, represent states of the world, and relate the behavior and
the states to each other. For our purposes, these assumptions are
given; they can be viewed either as representing innate factors or
as arising from interactions between more basic innate factors and
early experience.

After training, the model was applied to psycholinguistic data.
Versions of the model with less training were applied to develop-
mental data, and well-trained versions were applied to structural
priming data from studies using adult participants. The next sec-
tion begins the presentation of these applications.

Structural Priming

One of the most convincing sources of evidence that people
make use of abstract syntactic representations while speaking
comes from the phenomenon of structural or syntactic priming.
Structural priming is a tendency for speakers to reuse the abstract
syntactic structures of sentences that they have produced before
(Bock, 1986; Bock & Loebell, 1990). Structural priming experi-
ments require people to produce meanings that can be conveyed in
at least two structures, that is, they require materials with structural
alternations. For example, the prepositional dative (e.g., The man
showed a dress to the woman) and the double-object dative (e.g.,
The man showed the woman a dress) convey a similar meaning.
When messages originate in a form that allows either of these
structures to be produced (e.g., a picture of the event MAN
SHOWS DRESS, WOMAN SEES DRESS), speakers can make a
tacit choice between these two sentence structures. When the event
description is preceded by a prepositional dative prime (e.g., The
rock star sold some cocaine to the undercover agent), speakers are
more likely to choose the prepositional dative structure than they
would be otherwise. Similarly, when the event description is

2To give an example of how the total number of possible sentences is
calculated, let us examine one of the largest frames in the language: the
cause-motion construction with adjectives in each noun phrase as in the
sentence “A bad girl push -ed the old car to the happy boy -s.” 6
(adjectives) X 22 (animate nouns) X 3 (number—definiteness) X 5 (tran-
sitive verbs for this frame) X 2 (tenses) X 3 (aspect—command) X 6
(adjectives) X 16 (inanimate nouns) X 3 (number—definiteness) X 10
(prepositions) X 6 (adjectives) X 34 (animate—inanimate nouns) X 3
(number-—definiteness) = 2.09392128 X 10'°. Doing this for each frame
and summing the results together yields the total number of possible
sentences.
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Figure 8. Average message and grammaticality accuracy during training for training and test sets.

preceded by a double-object dative structure (e.g., The rock star
sold the undercover agent some cocaine), the likelihood of a
double-object dative description increases. This greater tendency
to use the primed structure when expressing the target message has
been found for a variety of syntactic structures. It occurs in the
absence of lexical and conceptual repetition and in the face of
thematic role differences. It does not depend on similarities in
prosodic patterns. These things suggest that priming involves
abstract structural frames.

Two mechanisms have been offered to account for structural
priming: activation and learning. The activation account postulates
that structural priming is the result of the activation of a structural
frame, which makes the frame easier to access (Bock, 1986;
Branigan, Pickering, & Cleland, 1999). Activation-based phenom-
ena tend to have a short life span (lexical priming with semantic or
phonological primes typically lasts less than a few seconds; Levelt
et al., 1999), and so an activation account predicts that structural
priming should disappear over a delay or after other sentences are
processed. Contrary to this prediction, though, a variety of re-
searchers have found that structural priming persists undiminished
over time or the processing of other sentences (Bock & Griffin,
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2000; Boyland & Anderson, 1998; Branigan, Pickering, Stewart,
& McLean, 2000; Hartsuiker & Kolk, 1998; Huttenlocher, Vasi-
lyeva, & Shimpi, 2004; E. M. Saffran & Martin, 1997).

Bock and Griffin (2000) argued that the long-lasting nature of
priming, its lack of dependence on explicit memory (Bock, Loe-
bell, & Morey, 1992), and the fact that people are not conscious of
the priming manipulation (Bock, 1986) support the idea that struc-
tural priming is a form of implicit learning. Implicit learning has
been characterized as a change in the strength of the connections
in a neural network, unlike activation, which corresponds to the
firing of network units (Cleeremans & McClelland, 1991). Finding
that priming lasts over the processing of other stimuli means it is
unlikely that priming is due to continued activation in the networks
that support sentence production, and it suggests instead that the
mechanism is enhanced strength in the connections between rep-
resentational units that support the use of syntactic structure.

Because language learning also requires the ability to implicitly
learn syntax, it is possible that structural priming stems from the
same mechanisms. Chang et al. (2000) implemented this hypoth-
esis. They built a connectionist model based on an SRN and
trained it to produce a small English-like grammar. Then, they
gave it prime—target pairs that were similar to the experimental
conditions in some structural priming experiments (Bock, 1986;
Bock & Loebell, 1990). When the model processed the prime, its
learning algorithm continued to function, so that processing the
prime induced additional learning. This learning then affected the
way that the target was produced, creating structural priming.

The Chang et al. (2000) model, however, was more a model of
priming than a model of production. It was developed with the
priming data in mind and ignored crucial production functions.
Most important, like other pure SRN-based models (e.g., see
models in Chang, 2002), it could not routinely produce sentences
that it was not trained on. Because creativity in sentence produc-
tion and structural priming are both thought to depend on abstract
syntactic representations, solving the generalization problem might
provide a better account of structural priming.

We next describe the application of the dual-path model to
structural priming. In doing so, we outline and defend three im-
portant claims: First, structural priming is a form of error-based
implicit learning, with the same learning mechanism responsible
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both for syntax acquisition and for priming. Second, the model
acquires syntactic representations that are insensitive to thematic
role similarities unless role information is necessary for learning a
structural alternation. This property of the model enables it to
explain how structural selection occurs on the basis of thematic
role distinctions as well as cases in which structural priming
appears to ignore thematic role distinctions. Third, the model’s
syntactic representations lead to priming that is insensitive to
closed-class elements such as prepositions and inflectional mor-
phology. This is also in agreement with the data. To help support
these claims, the model’s internal representations are explored to
show how the model implements these results.

Testing Structural Priming in the Model

To make prime—target pairs to test priming, message—sentence
pairs were first generated by the input environment grammar.
These message—sentence pairs were put into prime-target pairs
such that the prime and target did not share message elements.
Because most lexical elements had corresponding message ele-
ments, reducing message overlap also helped to reduce overlap in
lexical items. For all of the priming tests, only three target struc-
tures were used: datives, transitives, and locative alternators. Each
structural priming test set took 100 prime—target message pairs and
crossed them with the two prime conditions and with two target
message preferences, yielding 400 total prime—target pairs. Exam-
ples of the crossing of prime sentences and target messages for
datives and transitives are shown in Tables 5 and 6, respectively,
including both the same-structure and different-structure primes
(in later examples, only the different primes are shown).

Target message preference refers to the way that event seman-
tics biased toward one or the other alternation. In Tables 5 and 6,
the event-semantics units XX, YY, and ZZ have activation values
(e.g., XX = 0.5) that bias toward particular structures. A
prepositional-dative biased dative target is one in which the YY
event-semantics unit is more activated than the ZZ unit, and a
double-object biased dative target is associated with the reverse.
There are corresponding differences in the activation of XX and
YY units for biasing actives and passives.

Structural priming in the models involved presenting the prime—
target pairs to the model with learning turned on. First, before each
prime—target pair the weights were set to the weights of the model
at the end of training (Epoch 60,000). Each prime sentence was

Table 5
Prime and Message Pairs for Dative Priming

then presented to the model word by word, and back-propagation
of error was used to calculate the weight changes for all the
weights in the network. After processing of the prime sentence, the
weights were updated, and the production of the target sentence
began. Then the target message was set, and the target sentence
was produced word by word. Finally, the resulting structure was
recorded.

Prime processing for the model consisted of the kind of training
event that is associated with hearing a contextually unsupported or
isolated sentence, a messageless event. This assumes that struc-
tural priming takes place during language comprehension. Bock
and Loebell (1990) first raised the possibility of structural priming
during comprehension, writing that

it is unknown whether priming is possible from comprehension to
production, or vice versa. Assuming that production mechanisms are
distinct from parsing mechanisms, a strict procedural view would
predict no intermodality priming. However, if the assumption [that
production and parsing are distinct] is wrong, even a procedural
account would predict intermodal effects. (p. 33)

Later, Branigan and colleagues found evidence for priming from
comprehension to production (Branigan, Pickering, & Cleland,
2000; Branigan et al., 1995), and further experiments have shown
that the magnitude of priming from comprehended primes is
similar to those that are comprehended and produced (Bock, Dell,
Chang, & Onishi, 2005). Accordingly, in the application of the
model to priming data, priming arises from the input processing of
a messageless event. In such an event, the cword input includes
external input and there is no message present during the predic-
tion process. The target, which is typically a picture in priming
studies, was associated with a production event—a message was
present, and the cword input consisted of the model’s produced
output.

The same scoring procedures that were used for the training and
testing sets were used to score the target sentence. First, the
meaning of the produced target sentence had to match the target
message. (Message accuracy on targets was 82% overall. Human
studies sometimes yield lower results; e.g., 53% target responses
occurred in Bock et al., 1992.) If the produced target sentence and
message mismatched, the trial was eliminated; if they matched, the
target’s structure was assessed. The structure was what remained
after stripping lexical information from the lexical-syntactic parse
(e.g., NOUN AUX VTRAN MOD PREP DET NOUN). One

Prime-target types

Prime sentence

Target message

Prepositional dative
Prepositional-dative-biased target

Double object dative
Prepositional-dative-biased target
Prepositional dative
Double-object-biased target

Double object dative
Double-object-biased target

the mother -s give the
orange to a grandma.

the mother -s give a
grandma the orange.
the mother -s give the

orange to a grandma.

the mother -s give a
grandma the orange.

A=THROW X=UNCLE
Y=BOTTLE Z=AUNT
EVSEM: AA=0.5 XX=0.5
YY=0.475 ZZ=0.451

(e.g., the uncle throw -ss the
bottle to the man)

A=THROW X=UNCLE
Y=BOTTLE Z=AUNT
EVSEM: AA=0.5 XX=0.5
YY=0.451 ZZ=0.475

(e.g., the uncle throw -ss the
man the bottle)
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Prime-target types Prime sentence

Target message

Passive transitive
Active-biased target

Active transitive
Active-biased target

the woman sculpt -ss a apple.
Passive transitive
Passive-biased target

Active transitive
Passive-biased target

the woman sculpt -ss a apple.

a apple is sculpt -par by the woman.

a apple is sculpt -par by the woman.

A=PUSH X=MARY Y=MAN
EVSEM: AA=0.5 XX=0.5
YY=0.475 (e.g., mary push -ss a man.)

A=PUSH X=MARY Y=MAN
EVSEM: AA=0.5 XX=0.475
YY=0.5 (e.g., a man is push -par by mary.)

structure for each alternation was arbitrarily chosen to be the target
structure, and the percentage of the two alternate structures that
corresponded to the target structure was calculated. The preposi-
tional dative was chosen to be the target structure for datives, the
active for transitives, and the theme—locative for locative alterna-
tors. This treatment of the model’s priming behavior enabled it to
be directly compared with priming experiments, which also used
these dependent variables.

The 20 trained model subjects were used for testing. Repeated-
measures analysis of variance was performed on the percentages of
the target structure, using model subject as the random factor.
Effects were considered significant when the probability associ-
ated with them was less than .05. To emphasize the priming results
in the graphs, the priming difference was calculated by subtracting
from the percentage of target structures produced after the target-
structure prime the percentage of targets produced after the
alternative-structure prime.

The goal of the priming studies with the model was to assess the
qualitative fit to the human data. That is, the aim was to see
whether the model exhibits reliable priming under the same con-
ditions that people do. In humans, structural priming experiments
yield different magnitudes of priming, presumably due to variabil-
ity in learning due to differences in task and materials, and speaker
variables such as attention span, motivation, and the strength of
existing representations. In the model, the magnitude of priming
depends on the learning rate (a parameter in back-propagation that
scales weight changes). In the present model, the learning rate
during the testing of priming was the average (0.15) of the initial
and final learning rates during training (0.25, 0.05).

Another factor that influences priming in the model is the
alternation parameter. Recall from Table 3 that the passive was
signaled by having the activation of the XX unit be 0.25 and the
YY unit be 0.5. The alternation parameter determines the differ-
ence in these activations; here it is 0.5, meaning that the lesser
activated unit, XX, has 50% of the activation of the more activated
one, YY. During training, the alternation parameter for situated
events was 0.5 half of the time and 0.75 the rest of the time. Using
two values of this parameter during training taught the model to
use the relative activation level of the two units, rather than the
absolute level. This also simulated the natural variation in prom-
inence in different learning situations. When the model was pro-
ducing target sentences to simulate priming, we reasoned that
differences in activation were even smaller; the alternation param-
eter was set at 0.95. Our reasoning was based on the fact that, in

structural priming experiments, stimuli are chosen that are not
strongly biased for one structure (e.g., active) over another (e.g.,
passive). Diminishing the differences in the activation of the XX,
YY, and ZZ units similarly makes the model’s messages less
biased. It has the effect of making the model more willing to
alternate structures—what we call “flippability.” In humans, flip-
pability in structural priming depends on the task (e.g., pictures
create more flippability than sentence repetition), the properties of
the sentences, the mixture of structures elicited, and the experience
of speakers. Because the goal of this work was to understand
priming mechanisms rather than accounting for the quantitative
details of the data, the values of the learning rate and flippability
parameters were not determined anew for each experiment being
modeled. Instead, conservatively, they were held constant at levels
that led to priming magnitudes that approximated the average
magnitude found in all of the experiments. For this reason, the
magnitude of priming in the model may not exactly match that
found in individual experimental studies.

Consider how a prepositional dative prime, “The mother give -s
the orange to the grandma,” affects the description of a dative
target during a priming trial in the model. Before the prime is
processed, the weights are set to the final adult weights achieved
during training. Furthermore, because prime processing is assumed
to involve messageless prediction, no message is set. When pro-
cessing begins, the model predicts what the initial word will be.
Assume that it correctly predicts “the” because many sentences
begin with “the.” When the initial “the” of the prime is experi-
enced, the error will thus be quite small and there will be little
weight change. Now the model tries to predict the next word given
“the” as cword input. The lack of a message means that the model
will almost certainly fail to predict “mother” (although it will
likely predict some noun), and hence there will be considerable
weight change when “mother” is experienced. Important changes
will probably occur at the word “give” and “fo,” because these
words are strongly linked to the prepositional dative structure.
After processing the prime, the weights are updated. For the target
part of the trial, the message is given to the model (e.g., A=THROW
X=UNCLE Y=BOTTLE Z=AUNT EVSEM: XX=0.5 YY=0.451
77.=0.475). Because the ZZ value is higher than the YY value, the
model would normally have a slight bias to produce a double-
object structure. However, because these values are closer together
than they are normally in training, the model is less sure about this
choice. After the model produces “The uncle throw -s the,” the
weight changes that strengthened the units associated with the
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prepositional dative during prime processing increase the likeli-
hood that the Y role is activated next (because the model already
has learned that prepositional dative units activate the Y role after
the verb), thereby increasing the chance of a prepositional dative.

Structural Priming as Implicit Learning

The model instantiates the idea that adaptation to recent sen-
tence structures in adults could be due to the same sorts of
mechanisms that are used to learn the language initially. The
experimental evidence that supports this idea comes from the
many studies that have shown persistence of priming in speech
(but not writing; cf. Branigan et al., 1999, and Branigan, Pickering,
Stewart, & McLean, 2000) over time. Hartsuiker and Kolk (1998)
found that priming lasted over a 1-s interval (because lexical
activation disappears in milliseconds, this was deemed sufficient to
test whether priming was activation). Boyland and Anderson
(1998) found that priming lasted over 20 min, and E. M. Saffran
and Martin (1997) found that priming was evident a week later for
patients with aphasia. In young children, priming from a block of
primes can persist over a block of test trials (Brooks & Tomasello,
1999; Huttenlocher et al., 2004).

In two experimental studies, Bock and Griffin (2000; see also
Bock et al., 2005) separated primes and targets with a list of
intransitive filler sentences (0, 1, 2, 4, or 10 fillers) and found that
structural priming was statistically undiminished over these differ-
ent lags between prime and target. To test whether the model’s
priming persists over as many as 10 filler sentences, dative and
transitive prime—target pairs like those given in Tables 5 and 6
were generated from the input environment grammar. Lags of 0, 4,
and 10 were used to separate the prime and the target. The 20
model subjects were tested as described earlier, with learning
during the processing of the priming sentence being the sole way
to influence the production of the target message. These prime—
target pairs were separated by a list of fillers made up of animate
and inanimate subject intransitives (e.g., a girl laugh -ed) generated
by the input environment grammar (approximating the fillers in the
human study). The filler sentences, being isolated unrelated sen-
tences, were processed in the same way as the primes were, as
messageless events. The word-sequence output for the target mes-
sage was coded, and the priming difference between the two prime
structures was calculated as described before. These results are
presented in Figure 10 along with the corresponding human results
from Experiment 2 in Bock and Griffin’s summary Table 2 (lag 0
results are averaged from Experiments 1 and 2).

For the analysis, the dependent measure was the percentage of
target utterances in the model’s output (i.e., active transitive and
prepositional dative) out of those that conveyed the target message.
The design crossed the factors of sentence type (dative or transi-
tive), prime structure (same or different), and lag (0, 4, 10). The
analysis found a single main effect of prime structure, which was
due to the fact that the model produced more of the target struc-
tures (actives, prepositional datives) when preceded by a prime of
the same structure than with primes of the other structure (same
prime = 52.3%, different prime = 48.0%), F(1, 19) = 45.81,p <
.001. There was a nonsignificant trend toward an interaction be-
tween prime structure and lag, F(2, 38) = 3.14, p = .055, due to
reduced priming between Lag 0 and Lag 10. And if we look at just
the Lag 10 position, we find a significant effect of prime type, F(1,
19) = 34.14, p < .001, and no interaction with target type, F(1,
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Figure 10. Dative and transitive priming over lag (human results from
Bock & Griffin, 2000).

19) = 2.56, p = .126, demonstrating that priming in the model
persists over lag. Note that in the data from Bock and Griffin
(2000), there was a large dip in the priming at Lag 4 for transitives,
a dip not present in the model’s priming. This dip may be a chance
event: No significant interaction with lag accompanied the main
effect of priming, and a replication of Bock and Griffin by Bock et
al. (2005) yielded no dip. Hence, the model and the data agree on
the persistence of priming. The lag results in the model demon-
strate that the assumptions of learning as processing and of pre-
diction error lead to weight changes that are structure specific, so
that learning about intransitives during processing of the fillers
does not impact transitive or dative priming. This ability is nec-
essary to explain how priming lasts over lag and also to explain
how learning from individual sentences can lead to changes in
syntax.

The model instantiates the claim that prediction error in the
sequencing system during comprehension of the prime is the basis
for structural priming. Therefore, simply comprehending the prime
should be as effective as the procedure of hearing and then pro-
ducing the prime. This was demonstrated in the replication of Bock
and Griffin’s (2000) lag study by Bock et al. (2005), which used
only comprehended primes. Averaged over Lags 0, 4, and 10, there
was a similar amount of priming regardless of whether the prime
was only comprehended or produced aloud. Figure 11 shows this
averaged data compared with the averaged production-to-
production priming effect from Bock and Griffin. Because the
model’s priming is assumed to come from its comprehension of
the prime, it accounts well for the equivalence of the priming in
these two circumstances. These results support the view that the
sequencing system acquires structural representations that serve
both comprehension and production (e.g., Bock, 1995; Hartsuiker
& Kolk, 2001; Kempen & Harbusch, 2002; MacDonald, 1999;
MacKay, 1987; Vigliocco & Hartsuiker, 2002).

Syntax and Meaning

Data from structural priming experiments constitute key psy-
cholinguistic evidence about the relation between syntax and
meaning. If surface syntax and meaning were inextricably linked,
we would expect greater overlap in meaning to lead to greater
structural priming. However, as we show, for the most part this is
not the case. In priming experiments, similarity between the prime
and the target in thematic roles, argument status, and transitivity
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Figure 11. Comprehension-based versus production-based priming (hu-

man results from Bock & Griffin, 2000; Bock et al., 2005).

does not consistently yield priming apart from the priming attrib-
utable to the structure alone. The insensitivity of syntax to these
factors suggests that some aspects of syntax are isolable from some
aspects of meaning. If our model is to capture these findings, its
internal states should respond to syntactic similarities without
requiring support from meaning similarities. In this section, we
review the priming studies that explore the relation between syntax
and meaning and test whether the model can reproduce their
findings.

Our review of the influence of meaning on structural priming
focuses on two contrasting sets of findings. The first one, exhibited
in experiments from Bock and Loebell (1990; see also Bock et al.,
1992, and Potter & Lombardi, 1998), points to the robustness of
structural priming in the face of variation in meaning. These and
other studies support the syntactic nature of priming that we
referred to earlier. The second type of finding (Chang, Bock, &
Goldberg, 2003) is a case of meaning priming the locations of
arguments in sentences. In Chang et al. (2003), the priming alter-
nation—the locative alternation—was one in which the two forms
had the same surface syntactic structure, and hence surface syntax
cannot be the basis of the priming. Thus, we have one set of studies
emphasizing that priming does not depend on meaning (e.g., Bock
& Loebell, 1990) and another (Chang et al., 2003) demonstrating
that it can depend on meaning. The model, we claim, resolves this
conflict. We focus first on Bock and Loebell’s data and particu-
larly on the effect of the model’s XYZ roles in accounting for their
data, and then turn to Chang et al. (2003). Finally, we use the
model’s behavior to state a specific hypothesis about the relation
between structural frames and meaning.

In two experiments, Bock and Loebell (1990, Experiments 1 and
2) showed that thematic role overlap did not increase the magni-
tude of structural priming. In their first experiment, they compared
priming from prepositional locatives (e.g., The wealthy widow
drove an old Mercedes to the church), prepositional datives (e.g.,
The wealthy widow gave an old Mercedes to the church), and
double-object datives (e.g., The wealthy widow sold the church an
old Mercedes). The prepositional dative sentence had a dative
verb, which encoded a transfer relationship that required a recip-
ient argument. The prepositional locative had a transitive motion
verb, which specified movement to a goal adjunct phrase. Thus,
there was a difference in thematic roles (recipient—goal), argument
status (argument—adjunct), and verb class (dative—transitive), and
these differences can be related to aspects of meaning. If meaning
is tightly linked to syntax, then any one of these similarities or
differences should contribute to priming. Bock and Loebell used
target pictures that elicit dative structures, and so it seems that the
similarity of the prepositional dative primes to the dative pictures

in roles, argument status, and verb transitivity should lead to more
priming than the prepositional locative primes. When Bock and
Loebell tested these structures, however, they found that preposi-
tional locatives primed prepositional datives as much as preposi-
tional datives did (see Figure 12). Because so many aspects of
meaning are varied here, it suggests that surface syntax can be
isolated from meaning.

To see if the model can produce this result from Bock and
Loebell (1990), prime sentences for prepositional dative, double-
object dative, and prepositional locatives were generated from the
input environment grammar (see Table 7). The dative sentences
had transfer dative verbs that required the preposition to. The
prepositional locatives had transitive verbs, and the locative phrase
always used the preposition fo.

Figure 12 shows the model and human priming effects. Like the
human data, the model exhibited priming of prepositional dative
responses by prepositional dative primes relative to double-object
control primes, F(1, 19) = 25.86, p < .001. More important, the
model (and people) showed reliable priming of prepositional da-
tive responses from the structurally similar, but semantically dis-
tinct, prepositional locatives, F(1, 19) = 21.55, p < .001.

Why are prepositional locatives as effective at priming prepo-
sitional datives as prepositional datives themselves? Part of the
answer may have to do with the model’s XYZ roles. Both the
locative and goal prepositional phrases use the Z role. However,
this cannot be the whole story because the two sentence types also
differ in other ways—for example, their verbs have different
subcategorization patterns. The transitive verbs (e.g., kick, in Table
7) can occur without the locative phrase (adjuncts are optional).
Clearly, the model is able to generalize over these differences and
thus gives the appearance of abstracting a single syntactic con-
struction for prepositional locatives and prepositional datives.

Bock and Loebell’s (1990) second experiment provided another
and arguably stronger test of the hypothesis that priming is insen-
sitive to meaning. The key comparison involved passives (e.g., The
747 was alerted by the airport’s control tower), intransitive loca-
tives (e.g., The 747 was landing by the airport’s control tower),
and actives (e.g., The 747 radioed the airport’s control tower). The
passives and locatives have similar surface structures, but they
differ in meaning-related features such as thematic roles and verb
transitivity. In the passive, the verb is transitive, the subject is the
patient, and the by phrase is an agent, while in the locative, the
verb is intransitive, the subject is an agent, and the by phrase is a
location. Bock and Loebell presented pictures that elicited transi-
tive sentences and found that locatives primed passives as much as
passives themselves did (see Figure 13). This suggested that over-
lap in verb type and roles did not modulate the priming effect,
which provides further evidence for isolability of syntax.

1
12 4 M Prepositional Dative Prime

-
o
L

O Prepositional Locative Prime

8.
6 -
4
2.

Priming Difference (%)

o

Human Model

Figure 12. Prepositional locative—dative priming (human results from
Bock & Loebell, 1990, Experiment 1).
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Table 7

Prime and Targets for Bock and Loebell (1990, Experiment 1) Test

Prime types

Prime sentence

Target message

Prepositional dative
Prepositional locative

Double object dative

the mother -s give the orange to a grandma.
the mother -s kick the orange to a grandma.

the mother -s give a grandma the orange.

A=THROW X=UNCLE
Y=BOTTLE Z=MAN
(e.g., the uncle throw -ss the
man the bottle)

The XYZ message does use different roles for passive and
locatives (unlike the prepositional locatives and datives, both of
which used the Z role for the prepositional phrase). Thus, applying
the model in this case provides a good test of whether roles and
verb transitivity are inseparable from the model’s structural rep-
resentations. To test this in the model, we used passive transitives,
active transitives, and intransitive locatives as primes for transitive
messages (Table 8). The results are shown in Figure 13. The
model’s priming pattern was similar to that of Bock and Loebell’s
(1990) Experiment 2. Passive responses to the targets were pro-
moted by passive primes more than active primes, F(1, 19) =
19.35, p < .001, and, critically, locative primes also promoted
more passive responses, F(1, 19) = 14.12, p = .001. Locatives in
the model primed the way that passives do, even though they differ
in roles and verb class.

These results suggest that the model has abstracted syntactic
structures during the process of mapping from meaning into word
sequences. The model’s XYZ message format, however, differed
from traditional thematic roles in ways that are important for these
structural priming phenomena. In traditional-role theories, intran-
sitives as well as transitives distinguish the roles of agent and
patient. In the XYZ message, the subjects of intransitives are
always coded as the Y role, and this made the subject of intran-
sitive locatives similar to the subject of transitive passives. Also in
some traditional approaches, beneficiaries, recipients, goals, and
locations would be distinguished as different roles. In the XYZ
message, the same role unit (Z) is used for all of them, making the
location in prepositional locatives similar to the recipient in prep-
ositional datives.

Because the XYZ role representation appears to support human-
like priming, it is important to see whether the model’s match to
the data is specifically limited to this representational scheme. If
the model’s results are due to its ability to acquire abstract syn-
tactic mappings—that is, processes that link messages to se-
quences of words—and not to the nature of the roles it uses, the
type of role representation should be irrelevant. Traditional roles
should work as well as XYZ roles.
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Figure 13. Locative—passive priming (human results from Bock & Loe-
bell, 1990, Experiment 2).

To test this, we generated a version of the model using tradi-
tional roles. The traditional-roles message differed from the XYZ
message in that (a) the argument of causative intransitives played
the same role as the causal argument in transitives (X) and (b) the
third arguments of transfer datives, benefactive datives, and other
locations were distinguished. This means that the subject of loca-
tives used the same role unit as the subject of active transitives,
unlike XYZ messages in which the subjects of locatives use the
same role as the subjects of passive transitives. Distinguishing the
third (Z) argument of datives in the traditional-roles model means
that prepositional datives and prepositional locatives were associ-
ated with different sets of roles, and that benefactive and transfer
datives, whether prepositional or double object, no longer shared
all three roles. In all other ways (training and testing sets, archi-
tecture, parameters), the models were identical.

The traditional-roles model was tested on its ability to exhibit
the priming patterns in Bock and Loebell’s Experiments 1 and 2
(1990), as well as another study (Bock, 1989) that demonstrated
that benefactive datives prime transfer datives as much as transfer
datives (see the following section for more detail about this study).
These studies were chosen for this analysis because their materials
exhibited more role overlap in their prime and targets when the
XYZ message was used in contrast to the weaker role overlap in
the traditional-roles message. Thus, we might expect less or no
priming with the traditional-roles message. Twenty models were
trained using the same messages as in the original model. In Figure
14, the priming differences are reported for the prepositional
locative (prepositional locative with double-object dative control),
locative (locative with active control), and benefactive dative
(benefactive prepositional dative with double-object dative con-
trol) primes for the XYZ message and the traditional-roles
message.

The main question is whether the model requires the XYZ
message to get priming. It does not. Although the model with XYZ

Table 8
Prime and Targets for Bock and Loebell (1990, Experiment 2)
Test

Prime types Prime sentence Target message

A=PUSH X=MARY
Y=MAN (e.g., mary
push -ss a man.)

Passive transitive a apple is sculpt -par

by the woman.

the woman is walk
-ing by a apple.

Locative

Active transitive the woman sculpt -ss

a apple.
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roles led to more overall priming,3 F(1,19) = 4.98, p = .038, the
model with traditional roles exhibited priming in each experiment:
prepositional locative, F(1, 19) = 17.06, p < .001; locative, F(1,
19) = 6.45, p = .020; benefactive, F(1, 19) = 14.77, p = .001 (see
Figure 14). Because in each of these experiments the roles in the
prime and the roles in the target differ, the existence of priming in
each case demonstrates that the basis for the model’s priming is
not role ordering.

Overall, these results suggest that the dual-path model will learn
abstract syntactic relationships regardless of which message type is
used. This is likely because the message is not available during the
comprehension of the prime. Only changes in the sequencing
system can influence priming, and so only when roles are repre-
sented within the sequencing system will the system show message
effects interacting with structural priming.

The comparison of priming with the two role systems suggests
that the model learns abstract structural frames that are not simple
thematic role ordering schemes. Rather, they have some similarity
to surface syntactic structures. This raises the question of whether
and how role information influences syntax during production.
Chang et al. (2003) addressed this question using the locative
alternation, which has the same surface syntactic structure but
different role orders in its two versions. One form, the theme—
locative structure, illustrated in The man sprayed water on the
wall, puts the theme (water) before the location (wall). The
locative—theme structure puts the location before the theme, as in
The man sprayed the wall with water. Both forms have the same
order of surface syntactic categories NP (noun phrase) V (verb) NP
PP (prepositional phrase), so differences in priming between the
two cannot be explained by priming of these categories or their
order. Chang et al. (2003) found differences between theme—
locative and locative—theme primes, with theme—locative struc-
tures increasing in likelihood after theme-locative relative to
locative—theme primes. This supports the idea that role information
is entering into the formulation process.

To test this in the model, we generated theme—locative and
locative—theme sentences (see Table 9) from the input environ-
ment grammar, and the model subjects were tested and coded as
before. Figure 15 shows the increase in theme—locative responses
associated with theme—locative as opposed to locative—theme
primes. The model exhibited the priming effects, F(1, 19) = 15.89,
p < .001, that were present in the human data. This result is
important because it shows that the model’s (and people’s) map-
ping choices can be influenced by role information in the prime,
specifically when the alternatives share the same surface syntactic
structure but differ in the order of roles. More generally, it suggests
that the production system makes use of role information within
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Figure 14. Priming differences for XYZ and traditional-roles message.

the sequencing system when the information is needed for distin-
guishing alternative mappings from messages to structures.

In summary, the results show that the model can learn syntactic
representations that are purely structural and also representations
that incorporate meaning. This ability depends on two facets of the
dual-path model. One is due to the SRN, which is used during
prediction during the prime and also during production. This
network prefers to learn representations that just encode surface
syntactic categories, and that accounts for the tendency to learn
purely structural representations. However, because the model
uses error-based learning, if purely structural representations are
inadequate for predicting how a sentence should be produced, as in
the case with the locative alternation, then the network will learn
representations that allow it to distinguish the thematic difference
in the alternation.

Syntax and the Lexicon

Although the preceding analysis of the priming data and the
model’s account of them suggest that syntactic frames are isolable
from meaning, it is possible that syntactic structures are grounded
in lexical representations. Many theoretical frameworks project
syntax from lexical items (Haegeman, 1994; Pollard & Sag, 1994),
adult processing theories make extensive use of the lexicon in
syntax (Ferreira, 1996; Garnsey, Pearlmutter, Myers, & Lotocky,
1997; Levelt et al., 1999; MacDonald, Pearlmutter, & Seidenberg,
1994; Pickering & Branigan, 1998; Vosse & Kempen, 2000), and
language acquisition theories often emphasize the lexical nature of
early syntax (Bates & Goodman, 2001; Bowerman, 1976; Braine,
1976; Lieven, Behrens, Speares, & Tomasello, 2003; Lieven, Pine,
& Baldwin, 1997; Pine & Lieven, 1997; Theakston, Lieven, Pine,
& Rowland, 2001; Tomasello, 1992). The heart of the sequencing
system of the dual-path model is an SRN, and these networks have
been shown to learn lexically specific representations (e.g., Chang,
2002; Marcus, 1998). Thus, there are good reasons to expect
syntactic knowledge to be closely linked to lexical items, both in
people and in the model. At the same time, the structural priming
literature presents several studies in which lexical overlap is not
necessary for structure to transfer from prime to target. The most
striking example of such a finding is cross-language structural
priming, in which a prime from one language affects a bilingual
individual’s choice of target structure in another language (Hart-
suiker, Pickering, & Veltkamp, 2004; Loebell & Bock, 2003;
Meijer & Fox Tree, 2003). The priming requires similar structures
between the languages, but it occurs despite no lexical overlap.
Results like these suggest that adult syntax must involve some
nonlexical abstractions.

To examine this issue, we tested the model in structural priming
experiments that probed the relationship between syntactic frames

3We do not take these results as demonstrating that the XYZ roles
necessarily prime more than the traditional roles in the model. Recall that
the parameters that control overall priming magnitudes, the learning rate
and the alternation parameter, were set to values that led to average priming
magnitudes similar to those found in the data. This was for the principal
model, the one with the XYZ roles. In the test of the traditional-roles
version of the model, we used these same values, rather than search for
values that optimized the priming level. Hence, the overall magnitude of
priming in the models is not necessarily comparable. The key finding is
that both versions exhibit priming in these conditions, showing that the
model exhibits evidence of abstraction for both kinds of roles.
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Table 9

Prime and Targets for Chang, Bock, and Goldberg (2003) Test

Prime types Prime sentence

Target message

Theme-locative
Locative-theme

a mouse spray -ss coffee into the bottle -s.
a mouse spray -ss the bottle -s with coffee.

A=RUB X=MARY Y=CAKE
D=0OVER Z=CUP (e.g., “mary rub -ss
the cake over the cup”)

and lexical items that normally occur in them. Analogous to the
case in which we examined the influence of meaning on structural
priming, the key questions are whether priming is found in the
absence of lexical overlap and whether this overlap increases
priming. In this section, two studies are reviewed and modeled.
One was by Pickering and Branigan (1998), who varied the extent
to which prime and target verbs and their inflections matched.
They found that lexical overlap was not required for priming, and
verb inflections did not enhance priming, but the use of the same
verb stem in the prime and the target increased priming. Another
study by Bock (1989) found that priming in datives was not
affected by whether or not the prime and target shared preposi-
tions. These studies suggest that syntactic frames can prime re-
gardless of lexical overlap and that sometimes lexical and mor-
phological overlap does not increase priming.

Pickering and Branigan (1998) used a sentence-completion task
that allowed them to control the verb and verb morphology that
speakers used for both prime and target. Their first two studies
looked at whether verb overlap increased priming, and they found
that priming occurred when the prime and target verbs differed but
also that verb overlap increased the magnitude of priming. In the
next three experiments, they manipulated overlap in tense (present
vs. past tense), aspect (completed or progressive), and number
(singular or plural agreement) and found that priming was unaf-
fected by having the same morphology. To see if the model’s
representations treat verbs and morphology in a way that is similar
to findings in humans, it was tested in three conditions (see Table
10 for examples): different-verb, same-verb, and same-verb-tense
conditions. The different-verb condition was a set of 100 transfer
dative messages generated by the input environment grammar
where the prime and target had different verbs. The prime sen-
tences were always present tense, and the target sentences were
always past tense. The same-verb condition was simply the same
message—sentence pairs, except with the prime verb changed so
that it was the same as the target verb. The same-verb-tense
condition was just the same-verb condition with the prime sen-
tences changed to past tense.

The model’s semantic information about verb morphology is
represented in the event-semantics units. Making this information
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Figure 15. Locative alternation priming (human results from Chang,
Bock, & Goldberg, 2003).

available to the sequencing system leads to the possibility that
structural frames in the trained model will differ based on tense
and aspect, and this might lead to more priming when there is
greater morphological overlap, contrary to the human data. If the
model does not show more priming when verbs share tense, it
would suggest that it can learn to isolate syntactic frames from
morphology and that learning plays a role in deciding what fea-
tures inhabit the frames.

The human and model results are illustrated in Figure 16. The
model’s dependent measure is the average difference between
priming conditions in the percentage of prepositional datives out of
prepositional dative and double-object datives. Pickering and
Branigan’s results were originally presented as the percentage of
prepositional dative structures out of all structures (prepositional
datives, double-object datives, others) and the percentage of
double-object datives out of all structures. To make the experi-
ments and the model more comparable, the “other” items were
excluded, and Pickering and Branigan’s (1998) results were con-
verted into percentages of prepositional datives out of preposi-
tional datives and double-object datives.* The priming difference
between prepositional dative and double-object dative priming
conditions was computed and used as the dependent measure in
Figure 16.

There was significant priming in the model, F(1, 19) = 24.01,
p < .001, but priming did not interact with type of overlap, F(2,
38) < 1, p = .408. The lack of an interaction of priming with
overlap suggests that the model is insensitive to both verb and
morphological overlap. This insensitivity is different from the
human data. Although Pickering and Branigan (1998) found a lack
of sensitivity to overlapping verb inflections (like the model), they
found considerable enhancement of priming when the verb itself
was the same (unlike the model). We return to this discrepancy
later.

Another example of priming’s being insensitive to the identity
of closed class elements involves the influence of prepositions in
dative priming. Bock (1989) compared transfer dative primes,
which mark the goal with the preposition “f0” (e.g., A cheerleader
offered a seat to her friend), and beneficiary dative primes, which
use “for” (e.g., A cheerleader saved a seat for her friend). The
targets were all transfer datives. The finding (see Figure 17) was
that both kinds of datives lead to reliable priming of approximately
the same amount. Hence, whether the prepositions themselves

4 Same- and different-verb results came from Table 1 in Pickering and
Branigan (1998). Same-tense-verb results came from Table 3. To make the
model and human results comparable, we converted the human results so
that they excluded utterances that were classified as “other.” Same verb =
AT/(AT + .22) — .29/(.29 — .38) = .25, Different verb = .40/(.40 + .25) —
.35/(.35 — .29) = .07, Same verb tense = .50/(.50 + .19) — .34/(.34 +
.32) = .20.
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Table 10

Prime and Targets for Pickering and Branigan (1998) Test

Prime
Overlap types types

Prime sentence

Target message

Different verb PD

DO  the aunt -s lend the man the apple -s.

Same verb PD

DO  the aunt -s pass the man the apple -s.

Same verb tense PD

the aunt -s lend the apple -s to the man.

the aunt -s pass the apple -s to the man.

A=PASS

X=BROTHER

Y=ORANGE

Z=GRANDMA

EVSEM=PAST (e.g., a brother
pass -ed the grandma the orange)

the aunt -s pass -ed the apple -s to the man.

DO  a brother pass -ed the grandma -s the orange.

Note. PD = prepositional dative; DO = double object dative.

match between prime and target was not relevant. To test for this
effect in the model, we used the different-verb sentences from the
previous test (because the verbs in this condition’s prime and
target were both required to be transfer datives), and the o dative
primes were changed into for datives by linking the action A role
to a benefactive verb and the preposition-semantics D role to the
semantics for the preposition for. The benefactive verbs were
required to be verbs that allow the double-object structure. Prep-
ositional dative and double-object versions of both verbs were
tested. Table 11 shows example prime—target pairs.

The model showed priming with both transfer (t0) datives and
beneficiary (for) datives, F(1, 19) = 23.13, p < .001, and no
interaction of prime and verb type, F(1, 19) = 1.77, p = .200 (see
Figure 17). The results suggest that the model abstracts represen-
tations that are insensitive to lexical items such as prepositions.

To summarize, the model learned to produce sentences with the
appropriate words and morphology, but the syntactic representa-
tions that support these behaviors are, to a large extent, abstracted
away from particular lexical items. Although there are many routes
for lexical information to influence syntax in the model (e.g.,
cword — ccompress — hidden, hidden — compress — word), the
model also seems to be learning some representations that operate
independently of these items. This comports with views that syntax
has some abstract elements that do not have lexical content (e.g.,
the double-object construction; Goldberg, 1995). The model’s
behavior arises from the dual-pathway assumption, which keeps
syntax from incorporating too much lexical information, and the
sequencing-by-SRN assumption, which reduces the influence of
the lexicon on the hidden units by using compression units.
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Figure 16. Verb and morphology overlap (human results from Pickering
& Branigan, 1998, Experiments 1, 2, and 3).

Understanding the Mechanism

In a complex architecture like the dual-path model, syntactic
knowledge is distributed in weights between different layers. To
understand the priming mechanism behind a particular experiment,
one has to determine the appropriate layers that are involved. In
this section, we are interested in determining the source of
locative-passive priming (e.g., “The 747 was landing by the con-
trol tower”), because this priming effect is more abstract and
difficult to understand (Bock & Loebell, 1990).

As an overview, we first tracked the difference in the activation
of the agent and patient where units (which we refer to as the
agent-bias score) during the production of active and passive
transitive targets after active and locative primes. This assessed
whether priming has to influence role activation in the subject
position in order to select structures. To see how the hidden units
affect the agent and patient where units, we collected an influence
score for each hidden unit. We then collected the hidden unit
activation difference between the active and locative primes (this
is called the prime difference score). By multiplying the influence
score by the prime difference score, we get the weighted prime
difference score, which tells us which hidden units strongly influ-
ence priming. We now describe each of these steps in detail.

To start, we must first see how the model produces active versus
passive structures during target production. Chang (2002) found
that the activation of the where units (corresponding to thematic
roles) at choice points was related to the structure actually pro-
duced. For this reason, the activation of the where units X (agent
in transitives) and Y (patient in transitives) was recorded during
the production of all the target sentences in the active-locative test
set. These average activations were computed for each position in
active and passive target sentences for an individual model. For
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Figure 17. Transfer—benefactive dative priming (human results from
Bock, 1989, Experiment 1).
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Table 11
Prime and Targets for Bock (1989) Test

Prime types

Prime sentence

Target message

Prepositional
Double object to dative
Prepositional for dative

Double object for dative

sally send -ss the orange.
sally send -ss the mouse the orange.

sally carve -ss the orange for the mouse.

A=SELL X=BIRD
Y=CUP Z=AUNT
EV=PAST (e.g., the bird
sell -ed the cup to the aunt)

sally carve -ss the mouse the orange.

each structure, the difference between the average X unit and the
average Y unit activation was computed, creating the agent-bias
score. Figure 18 shows that active sentences had higher average
agent-bias scores during the production of the subject (e.g., “The
brother”) than passive sentences had during the production of their
subjects (e.g., “The grandpa”). The figure also shows that the
agent-bias score is higher for passives when the by phrase is being
produced (e.g., “by the brother”). These results suggest that the
activation of the where units tracks the structure of the sentence.
This is not surprising, because the where units encode the lexical
semantics information that must be produced at these points in the
sentences, and the model was designed to do incremental produc-
tion in a way that is sensitive to lexical selection (Chang, 2002).
Therefore, for priming to have the appropriate influence on the
target, it has to influence subject selection at the relevant sentence
positions (the first and second word positions, TarO and Tar1 in the
figure).

To understand how the prime influences the activation of where
units during target production, we need to understand how the
hidden units activate the where units. Because the where-what
weights are not set during the prime, the weights from the hidden
units to the where units were not changed by back-propagation; so
to record the influence of these weights, we created an influence
score for each hidden unit by subtracting its weight for the patient
link from its weight for the agent link. A positive value for the
influence score meant that the particular hidden unit activated the
agent where unit more than the patient unit, and vice versa for a
negative value.

Knowing how much each hidden unit influenced the where
units, we needed to see how much each hidden unit was changed
by learning from the primes. Therefore we calculated, separately
for each prime, the average hidden unit activations for each of the
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Figure 18. Agent-bias score in role units at each point during target (Tar)
sentence production.

40 hidden units during each position in the target sentence. From
the average activation of the hidden units after an active prime we
subtracted the average activation after a locative prime to create a
prime difference score (positive values mean that the unit was
more activated for actives than locatives).

Because the prime difference scores measure the change in the
hidden units due to the primes, and the influence score records the
influence of each hidden unit on the where units, multiplying them
together indicates which hidden units influence the where unit
activations. This is the weighted prime difference score. The
weighted prime difference shows which hidden units influence
priming during the production of the target subject. To understand
the relationship between the weighted prime scores and priming
behavior overall, 3 of the 20 instances of the model were tested.
We chose three models because the models differ in how sensitive
they are to a particular kind of priming. For locative-passive
priming, there was considerable individual-model variability. The
first model showed strong locative-passive priming (24.7%; this
model was also used for Figure 18); the second showed an average
level of priming (5.7%); and the last showed almost no priming
(0.25%). For each model, the six hidden units with the strongest
weighted prime scores during production of the subject in the
target sentence (see TarO, Tarl in Figure 18) are displayed in
Figure 19. The hidden units are listed in the legend of Figure 19 in
terms of arbitrary identification numbers. Because most subjects
are only two words (e.g., “the brother”), the influence from hidden
units that are sensitive to priming is normally gone by Position 4
in the sentence (Tar3), and so the figure extends only to this
position.

The weighted prime difference encodes how much a particular
hidden unit contributes to locative-passive priming. When
locative-passive priming was strong (see the top panel of Figure
19), there were two hidden units (4, 19) with strong activations
during the subject position. When priming was close to average
(middle panel), only one hidden unit (39) captured this relation-
ship. Finally, when priming was close to zero (bottom panel), no
hidden units exhibited a strong weighted prime difference.

This analysis shows that locative-passive priming is mainly due
to changes in weights involving very few hidden units. Sometimes
the priming is concentrated in a single unit. This concentration
helps to explain why the model shows abstract structural priming.
The learning process integrates semantic, lexical, and structural
information from the whole sentence into individual units, so the
units are no longer controlled by any single source of information
(i.e., they are abstract). Of course, the existence of abstract units
does not preclude the existence of units that respond primarily to
lexical or semantic influences. Our claim is only that the model’s
behavior implies that at least some of its components abstract over



BECOMING SYNTACTIC 255

TarO Tarl Tar2 Tar3

,‘.‘»I;’:‘m%mnmm-,.{{\

-1.5 A

Priming = 5.7%

Weighted Prime Difference
(o]

Priming = 0.25%

Figure 19. Weighted prime difference of hidden units early in sentence
(Tar0 — Tar3). Tar = position in target utterance.

lexical and semantic information, helping to make the influence of
syntax isolable. The hidden units 4, 19, and 39 are examples of
such components.

Structural Priming Conclusion

The dual-path model assumes that learning continues into adult-
hood (the learning-as-processing assumption). Learning depends
on the difference between expectations and predictions (prediction
error assumption) and, together with the model’s architecture (the
dual-pathway and sequencing-by-SRN assumptions), these as-
sumptions allow syntactic representations to be learned that vary in
their dependence on meaning. In short, the model explains abstract
syntactic generalization.

To understand the present approach, it is useful to compare the
dual-path model with the approach to structural priming intro-
duced by Pickering and Branigan (1998). Their approach extends
network approaches that have been used to explain word produc-
tion (Dell, 1986; Levelt, 1989; Levelt et al., 1999) to structure
selection. Pickering and Branigan’s treatment of structure selection
shares many features with the dual-path model. Both use spreading
activation within a network to instantiate sentence planning and
use mechanisms that create sensitivity to recent use of a structure

(e.g., nodes and links change with experience in Pickering and
Branigan’s, 1998, account). Both use abstract syntactic units that
cannot be simply reduced to lexical entries (e.g., combinatorial
nodes such as NP,NP or NP,PP in Pickering and Branigan’s, 1998,
theory). The main difference between the two approaches is that
the dual-path model must learn its representations. Structural prim-
ing is a consequence of assumptions that are required for the
acquisition of sentence production and processing skills. These
assumptions yield three empirical consequences that do not di-
rectly follow from Pickering and Branigan’s approach.

The first consequence is that the dual-path model’s learning
assumptions lead one to expect priming effects that, in certain
circumstances, involve thematic role distinctions. Chang et al.’s
(2003) demonstration that the order of theme and locative constit-
uents can be primed constitutes a demonstration of such an effect
(see also Griffin & Weinstein-Tull, 2003). Insofar as Pickering and
Branigan’s (1998) approach focuses on purely syntactic nodes and
their links to lexical items, this kind of priming is unexplained.

The second consequence arises from the dual-path model’s use
of error-based learning. The weight changes that realize learning
are greater to the extent that predictions are incorrect. Error-based
learning, as opposed to Hebbian or correlation-based learning,
appears to be needed for learning complex mappings such as those
found in language (Dell, Schwartz, et al., 1997; Elman, 1990).
Aside from the utility and (we argue) necessity of using error to
guide learning, there is direct evidence for the prediction-error
account of structural priming from the priming data themselves. It
has been noted (e.g., Bock & Griffin, 2000; Ferreira, 2003; Hart-
suiker & Kolk, 1998; Hartsuiker, Kolk, & Huiskamp, 1999; Hart-
suiker & Westenberg, 2000; Scheepers, 2003) that prime structures
that are less common are more effective primes than those that are
more common. Particularly strong evidence for this comes from a
study by Ferreira (2005), which used prime sentences where the
main clause structure either demanded the normally disfavored
reduced embedded clause or permitted it as a disfavored option.
That is, the priming structure was the same, but it occurred in
different contexts that made it more or less preferred. Ferreira
(2005) found that the magnitude of the resulting priming was
stronger when the prime’s main clause structure allowed but did
not require the reduced structure, demonstrating that it is not the
structure itself but its context of occurrence that matters to the
strength of priming. Similar results were obtained for unreduced
structures in other contexts. Although our model does not have
multiclause embedded sentences and therefore cannot simulate
these results directly, it provides a natural explanation for this
pattern. Primes that contained the disfavored type of embedded
clause would be associated with greater prediction error and hence
more weight change. This leads to a relatively greater bias toward
the disfavored structure when the target sentence is produced.

The final consequence of the model’s assumptions in compari-
son to the Pickering and Branigan (1998) approach concerns the
relationship between particular lexical items or morphemes and the
syntax in structural priming. The empirical data show that repeat-
ing verb morphology and prepositions in the prime and target did
not increase priming but that repeating a verb did. Additional
studies have demonstrated that repeated verbs (Branigan et al.,
2000) and nouns (Cleland & Pickering, 2003) increase structural
priming. Pickering and Branigan’s account of priming suggests
that any morpheme with a lexical entry (a lemma) and a link to
combinatorial nodes (e.g., NP,PP) should lead to an enhancement
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of priming. That is, the structural effect should be greater if the
prime and the target both include the same lexical item linked to
the same combinatorial node.

The dual-path model, as we mentioned earlier, does not exhibit
increased structural priming when there is lexical or morphological
overlap. This is accurate with respect to data about overlap in
function words and verb morphology, but it is at odds with the data
concerning repeated verbs or nouns, which do enhance priming.
How do we explain the model’s discrepancy with the data? We
hypothesize that lexical enhancement of priming is not due to the
weight-change mechanisms that lead to long-lasting structural
priming. Rather, they are due to explicit memory for the wording
of the prime. When the target is being planned, the repeated
content word serves as a cue to the memory of the prime and this
biases the speaker to repeat its structure. This explicit memory
component to priming is distinct from the model’s weight-change
mechanism.

We recognize that this account of the lexical enhancement effect
is post hoc and, hence, requires additional justification. Conse-
quently, we offer three sets of predictions concerning the relation-
ship between the long-term priming mechanism and the hypothe-
sized influence of explicit memory on priming. For two of the
three sets of predictions, there exists at least some supportive data.

First, we know that explicit memory for the wording of sen-
tences decays very quickly (e.g., Levelt & Kelter, 1982; Sachs,
1967). If this is the mechanism for the lexical enhancement effect,
the enhancement should be present for prime—target lags of O or
perhaps 1, but not for longer lags. Konopka and Bock (2005)
examined structural priming for verb-particle constructions (e.g.,
“lace the boot up” vs. “lace up the boot”). Primes contained the
same or different verbs as the intended target sentences and were
associated with lags of 0, 1, 2, or 3 sentences. At Lag 0, there was
a strong lexical enhancement of priming; primes with the same
verb led to increased use of the prime’s structure. At longer lags,
the lexical enhancement effect disappeared and all that remained
was a structural priming effect. The structural priming was as large
as that at Lag 0. These results are consistent with the long-lasting
structural priming expected from the model, and a short-lived
lexically based enhancement effect. Consequently, the lexical en-
hancement effect is likely not due to the mechanisms proposed for
the model, and its existence is orthogonal rather than contrary to
the model.

Second, one can ask whether explicit episodic memory is gen-
erally responsible for structural priming, contrary to our implicit
learning hypothesis. Explicit and implicit memory data from Bock
et al. (1992) analyzed by Bock (1990) showed that explicit mem-
ory for primes was uncorrelated with priming effects: The condi-
tional probability of priming given later, explicit recognition of the
form of the priming sentence was exactly the same as the overall
conditional probability of priming, .29. Likewise, the conditional
probability of explicitly recognizing a sentence’s form given that it
had elicited priming was almost identical to the overall conditional
probability of form recognition (.66 and .67). Of course, these
conditional probabilities are not particularly strong evidence about
the association between structural priming and memory, because
the relevant dependent measures are noisy at the individual level.
Ferreira, Bock, Wilson, and Cohen (2005) provided stronger evi-
dence that long-lasting structural priming is not due to explicit
memory. Patients with amnesia who have little explicit memory

for any but the most recent events had normal levels of structural
priming for up to 10 prime—target lags. This result is a direct
prediction from the implicit learning hypothesis that forms the
basis of the model.

Finally, the hypothesis that lexical enhancement of priming is
due to explicit short-term memory for the prime can be tested by
manipulating variables that affect explicit memory. We hypothe-
size that lexical enhancement occurs for verbs and nouns, but not
function morphemes, because the latter are not particularly effec-
tive retrieval cues. A target sentence with “of” is not going to
remind one of a previous sentence with “of 7, but a target sentence
that repeats “throw” or “ball” might. Only by making function
morphemes into effective cues should there be lexical enhance-
ment, at least at short prime—target intervals. For example, asking
participants to detect repetition of prepositions (instead of repeti-
tion of whole sentences as in running recognition procedures) or
using unusual prepositions (“The man sat athwart the chair”) could
promote greater structural priming when the material is repeated in
the prime and target.

The lexical enhancement of priming from content words is the
only significant deviation between the model and priming data that
we know of. Consequently, we have taken some pains to articulate
an account of the effect, to make that account concrete by identi-
fying predictions from it, and to make it plausible by citing data
consistent with some of the predictions. We acknowledge, though,
that there is a deep unresolved issue here. It is in the nature of the
model to keep its learning about structures somewhat separate
from particular lexical items. This is required to achieve a produc-
tion system that generalizes effectively and creates structural prim-
ing. A large lexical enhancement of such priming suggests a
system in which structural and lexical information are not so
separate. For now, we suggest that the lexical-structural interac-
tion reflects short-term bindings that are not as durably represented
in the production system.

Language Acquisition

The facts of structural priming suggest that abstract syntactic
representations or processes are changed by experience with lan-
guage. The model’s account of these facts is based on language
acquisition in two respects. First, the mechanism of priming is the
same error-based learning algorithm that is used to acquire lan-
guage in the first place. Second, the structural representations that
are primed arise through the model’s developmental process and
thus reflect how its learning algorithm interacts with its other
assumptions, most important its dual-pathway and what—where
assumptions. In this section, we provide an explicit account of how
learned syntactic representations can explain differences in differ-
ent syntax acquisition tasks. We suggest that the absence of ex-
plicit task models has led to the appearance of conflict in the data
and confusion about the implications of the data for theory.

To address these issues, we applied the dual-path model to a
debate about how the transitive construction develops in young
children. There is general agreement that by 3 years of age,
children have an abstract transitive construction, as indexed by the
ability to easily combine novel verbs with transitive structures in
production. The question then is about the nature of the transitive
construction before that time. Tomasello (2000) reviewed a variety
of studies, mainly of production, suggesting that before the age of
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3, children are conservative in their ability to generalize the tran-
sitive construction. In particular, they seem to be more willing to
use verb-structure pairings that they had previously experienced,
and less willing to use novel verb-structure pairings (Abbot-Smith,
Lieven, & Tomasello, 2001; Akhtar, 1999; Akhtar & Tomasello,
1997). These results suggest that early item-specific transitive
representations develop only gradually into abstract transitive rep-
resentations and, more generally, that late-syntax approaches to
language acquisition, which de-emphasize innate factors, are true
(Bates & Goodman, 2001; Lieven et al., 2003, 1997; MacWhin-
ney, 1987; Tomasello, 2003).

Although children seem to be conservative in these production
tasks, they also seem to early exhibit knowledge of the transitive
construction if their abilities are assessed in preferential-looking
tasks (Hirsh-Pasek & Golinkoff, 1996; Naigles, 1990).
Preferential-looking tasks measure which of two actions children
prefer to look at when a particular sentence is heard. For example,
a causative action might be presented on one of two video moni-
tors, showing one individual acting on another individual. The
other monitor displays an action in which the same individuals do
something by themselves (called here the noncausative action).
When children hear a transitive sentence with either a novel or a
known verb and the individuals mentioned in the sentence match
the individuals in the video, children as young as 25 months tend
to look at the causative action video. Because the causative action
video is the one that best matches the meaning of the transitive
construction, children’s preference for this video suggests that they
have an abstract transitive construction that helps them to infer the
relationship to the appropriate video. This task thus provides
evidence for early-syntax approaches that posit some syntax-
specific tendency to learn abstract structure (Fisher, 2002a; Gleit-
man, 1990; Naigles, 2002).

The early- and late-syntax approaches are clearly at odds. Early-
syntax approaches view the preferential-looking results as provid-
ing evidence of abstract syntactic knowledge in children by around
age 2 and argue that children are conservative with novel verbs in
production because they must understand the meaning of the novel
verb as well as link the verb to a syntactic structure (Fisher, 1996,
2002a; Fisher, Gleitman, & Gleitman, 1991; Naigles, 2002). The
late-syntax approaches treat the production results as a more valid
index of syntactic knowledge and regard the preferential-looking
results as due to an earlier ability to use partial knowledge to bias
looking in a forced-choice task (Tomasello & Abbot-Smith, 2002).
Because both theories can explain elicited production and prefer-
ential looking, the disparities in the results do not selectively
undermine either approach (Fisher, 2002a; Naigles, 2003; Toma-
sello & Abbot-Smith, 2002; Tomasello & Akhtar, 2003). This
makes the theories hard to falsify with the kinds of tests that are
available.

Our view is that the dual-path model can help to address this
debate, because it can learn abstract representations using a
general-purpose learning mechanism. Therefore, it can address
both data sets in a way that might be compatible with late-syntax
approaches. But it also develops representations in the SRN that
record sentence-position-specific syntax—semantic links, and these
links might allow it to exhibit preferences earlier in preferential
looking than production. Thus, it has architectural constraints on
learning that make it compatible with early-syntax approaches.

Modeling Language Acquisition Tasks

To model the acquisition data, we needed to simulate the tasks.
The elicited production task was easy. The dual-path model was
simply asked to produce transitive sentences with novel verbs,
which is basically what the children must do. For preferential
looking, the model had to take the same novel-verb transitive
sentences and see if they matched a causative meaning. The model
was tested every 2,000 epochs to see how both of the measures
changed over time. Furthermore, to equate the materials, the same
transitive sentences were used in both tasks. Forty transitive
progressive-aspect messages with proper name arguments were
generated, and then the action information was replaced with a
novel verb (e.g., Marty is glorp -ing Mary).

As a test of the novel-verb production, the model was given each
of the 40 glorp messages to produce. Because glorp is a novel
verb, the model cannot produce sentences with glorp unless it
learns to map from the action meaning of glorp to the lexical
representation of glorp. To do this, we set the weight between the
what unit GLORP and the word unit glorp to a strong value of 15
(and the corresponding weight from cword glorp to cwhat GLORP
was also set). These links only allow the novel word to be pro-
duced and recognized and do not influence syntax (just as in the
human experiments, where learning the word glorp does not teach
the child the syntax of the transitive). Rather, the model’s syntactic
knowledge has to come from the knowledge that it accumulated
during learning of the language from sentences with real verbs.
The dependent measure for this task was the percentage of correct
transitive sentences produced. The same 20 models that were used
for the structural priming simulations were tested on these sen-
tences, and the average number of messages correctly produced
can be seen by referring back to Figure 8.

The model’s ability to produce transitive sentences with novel
verbs grows gradually over time. The overall pattern of the model
is similar to what has been found with children. In Tomasello
(2000), productive transitives constituted approximately 30% of
children’s responses at 36 months and 65% at around 48 months
(approximated from Tomasello’s, 2000, Figure 3). The model
reaches 32% correct at 12,000 epochs, and 70% at 20,000 epochs
(see Figure 20). Given these results, we can use the production
results to calibrate the model’s “age.” The model reaches its third
birthday at Epoch 12,000 and its fourth birthday at 20,000, so a
period of 12 human months approximates 8,000 epochs. This
approximation is used later to compare development on other
measures. The model’s gradual development of an abstract tran-
sitive construction in production stems from its experience with
specific sentence—message pairs.

To simulate preferential looking, it is necessary to understand
the mechanisms behind performance of the task. One way to think
of preferential looking is that the child looks at the event display
that provides the best information for predicting the structure of
the sentence. Prediction of sentence sequences is essentially what
the dual-path model does. The model uses all of its internal
representations to predict the next word in the sentence, and the
difference between its prediction and the actual experienced word
(the error difference) is used to adjust the weights. Therefore,
prediction error represents the compatibility of the model’s inter-
nal representations, including its message, with the actual sen-
tence. Prediction error summed across the sentence is thus a
measure of the model’s preference for a particular event—sentence
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Figure 20. Production and preferential looking with novel transitives during development.

pairing, with lower error meaning better matching. Because the
task uses two events, we presented the stimulus sentence twice
(once with matching and once with mismatching meaning; see
Table 12 for an example of the message—sentence pairings), re-
cording the error for the sentence during the processing of the
message—sentence pair. To determine the preference for a partic-
ular sentence, we subtracted the matching-pair error from the
mismatching-pair error (because lower error equals higher prefer-
ence). The subtraction yielded a positive number (the error differ-
ence score) when the matching pair had a lower error than the
mismatching pair.

The preferential-looking results of the model for novel transi-
tives are shown in Figure 20, compared with its production of the
same novel transitives. In preferential looking, the transitive match
preference score starts to rise from the beginning of learning, that
is, before the model’s second birthday at 4,000 epochs, using the
assignment of epochs to ages that we previously described for the
model’s production behavior. (Note that Epoch 0 is not age O,
because the model begins training with input, e.g., already seg-
mented into words.) This demonstrates that the model’s meaning-
based prediction approach to preferential looking exhibits data
consistent with the observation that transitive knowledge in pref-
erential looking precedes transitive knowledge in production.
However, what the model knows when performing both tasks is
exactly the same.

The model also sheds light on why children’s performance on
related structures advances unevenly. In preferential-looking tasks,
conjoined-noun-phrase intransitives (e.g., The duck and the rabbit

Table 12
Preferential Looking Message-Sentence Pairs

Structure match type Message-sentence pair

A=GLORP X=MARTY Y=MARY

Marty is glorp -ing Mary.

A=GLORP Y=MARTY Z=MARY D=WITH
Marty is glorp -ing Mary.

A=GLORP Y=MARTY Z=MARY D=WITH
Marty is glorp -ing with Mary.

A=GLORP X=MARTY Y=MARY

Marty is glorp -ing with Mary.

Transitive match

Transitive mismatch

Intransitive match

Intransitive mismatch

are daking) and with intransitives (e.g., The duck is daking with the
rabbit) have been used in addition to transitives. Whereas novel
transitives are correctly and consistently associated with causative
meanings by children after 23 months, performance with
conjoined-noun-phrase intransitives and with intransitives by chil-
dren around this age is much more variable.

The variability is well documented. Several studies have tested
the transitive and the conjoined-subject intransitive with novel
verbs (Hirsh-Pasek & Golinkoff, 1996; Naigles, 1990), although
only three studies have used novel or low-frequency verbs with the
with intransitive (Bavin & Growcott, 2000; Hirsh-Pasek &
Golinkoff, 1996; Kidd, Bavin, & Rhodes, 2001). Hirsh-Pasek and
Golinkoff (1996, pp. 144-148) found that 28-month-olds correctly
preferred the noncausative event for intransitives, whereas in the
23-month-olds, the results were inconsistent: Boys actually pre-
ferred the nonmatching causative video. The other two studies
used a within-subject design that allowed for comparison between
transitives and with intransitives. Kidd et al. tested 30-month-old
children and found a transitive bias for causative actions with
novel verbs, but only a nonsignificant with intransitive bias for
noncausative actions. Bavin and Growcott (2000) tested 27-month-
olds and found both a significant transitive-causative and a with
intransitive-noncausative bias. Thus, from 25 months, children
know that transitives are associated with causative meanings but
are less sure that with intransitives (and conjoined-subject intran-
sitives) are associated with noncausative meanings. These results
are important, because intransitives and transitives are structurally
related in many linguistic frameworks, with intransitives (SUB-
JECT VERB) being a proper subset of transitives (SUBJECT
VERB OBJECT). If children use preexisting structural sensitivities
to learn about novel verbs, it is strange that they have more trouble
with some kinds of structural knowledge than others.

To understand why the differences between transitives and
intransitives might exist, we tested the model in its analog to the
preferential-looking task with both kinds of structures. Because the
model does not know conjoined noun phrases, only the with
intransitives were used to represent intransitive performance. The
transitive-glorp sentences from the production test were changed
so that they would generate with intransitives. The model generates
these structures when role Y represents the intransitive subject, Z
represents with-adjunct information, and the D role (the where unit
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linked to the semantics of the preposition) is set to the meaning of
with. In this way, we created a matched set of transitive and with
intransitive sentences paired with the same nouns and a novel verb.
Each message was then paired with each sentence so that the
message and the sentence either matched (e.g., causative message
and transitive structure) or mismatched (e.g., with intransitive-
noncausative message and transitive structure). Table 12 shows an
example.

The preferential-looking results of the model for intransitives
compared with transitives are shown in Figure 21 (the transitive
results shown are the same ones displayed in Figure 20). Before
the model reaches age 3, its intransitive-noncausative match
preference is weaker than its robust transitive-causative match
preference, just as in the human data. To understand why this is,
we need to look carefully at how the model accomplishes the
task.

Explaining the Model’s Behavior

The model’s account of acquisition phenomena, like its account
of priming, makes use of its incremental processing system. One
key finding, the fact that the same representations in the model led
to sensitivity in preferential looking earlier than in production,
arises simply from the nature of these dependent measures. Pro-
duction is coded at the level of a whole utterance, which requires
a sequence of correct decisions. Preferential looking, on the other
hand, can be seen as a series of forced choices between two
monitors spread over an interval of time. Hence, partial form—
meaning matches can be more useful in this task.

The other key finding is that robust preferential looking appears
earlier for transitives than for intransitives. The model’s account of
this result is less transparent, and so we need to examine the
model’s preferences as it does incremental word prediction. To see
how preferences change during the processing of a test sentence, a
message-bias score for both the transitive and the with intransitive
sentence was calculated at each position in a sentence. This
message-bias score reflects the bias of the message toward a
causative interpretation. It was computed at each position by
taking the error that was generated when the sentence was paired
with a noncausative message and subtracting the error that was
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generated when the sentence was paired with a causative message.
When error was lower, the message-bias score was positive, and
the model preferred to pair the sentence with a causative message;
when the message-bias score was negative, the model preferred to
pair the sentence with the noncausative message.

It is useful to look at the message-bias scores at Epoch 18,000
first, where the model exhibits strong transitive and intransitive
match preference (see Figure 22, top panel). The patterns for
transitive and intransitive sentences are the same for the early part
of the sentence, because these structures have the same initial word
sequence (“Marty is glorp—ing. . .”). At the position after glorp-
ing, the model prefers the causative message when it receives
Mary (message-bias score becomes positive), and it prefers the
noncausative message when it receives with (message-bias score
becomes negative). Because these are also the cues that structur-
ally distinguish the transitive and the intransitive sentences, the
model seems to be sensitive to the structural features of the input
at Epoch 18,000. This is not surprising, because the model is
already able to produce transitives with novel nouns. We refer to
the ability to use the words after the verb to bias toward one of the
messages the postverbal structural bias.

The message-bias at Epoch 6,000 tells a different story (see
Figure 22, middle panel). As with the model at Epoch 18,000, the
model at this time has the postverbal structural bias. However, in
addition, it has a bias for the causative message at the early points
in the sentence (e.g., at Marty in Figure 22, middle panel). Because
both the transitive and intransitive sentences have the same pre-
verbal lexical material, this early bias for causative messages must
be due to the difference in the messages. The likely cause is the
model’s greater facility with mapping the agent of causative mes-
sages (X = MARTY) to subject position relative to its ability to
map the agent of intransitives (Y = MARTY). One reason that the
model has this difference in its ability to map the X and Y roles to
subject comes from the fact that the X role maps to subject in many
constructions in the model’s language (transitives, datives, locative
alternation, change of state, benefactives), whereas the Y role
maps to subjects only in intransitives and passives. Evidence from
child-directed speech suggests that children receive more than 3
times as many transitives as intransitives (Cameron-Faulkner et al.,
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2003), which suggests that children could use the frequency of
causative agent subjects relative to noncausative agent subjects.
Therefore, the transitive-causative preference at Epoch 6,000 is
due to two factors, the causative-agent-subject bias and the post-
verbal structural bias at the position after the verb. The
intransitive-noncausative preference is weaker at Epoch 6,000,

because the causative-agent-subject bias conflicts with the non-
causative structure bias at the position after the verb.

To see how these biases develop, it is useful to look at the
earliest point with the transitive-causative bias (Epoch 2,000). The
bottom panel in Figure 22 shows that the postverbal structural bias
for the match between the transitive and the causative meaning is
nearly nonexistent at this point in development, and the model’s
preference is mainly due to the causative-agent subject bias. There-
fore, the model’s transitive preferential-looking behavior is ini-
tially due to causative-agent subject bias (Epoch 2,000) and only
later comes to depend on the postverbal structural bias (Epoch
18,000). If the causative-agent-subject bias were stronger than the
postverbal bias in some conditions with some children, then we
would expect a with intransitive causative preference, and this is
confirmed in the significant preference for the nonmatching caus-
ative video in 23-month-old boys in the Hirsh-Pasek and Golinkoff
(1996) study. These boys looked at the nonmatching causative
picture more (e.g., Big Bird bending Cookie Monster) when they
heard “Big Bird is bending with Cookie Monster.” It is significant
that early in development, the model and these children both
exhibit a nonmatching preference (causative-agent-subject bias
with noncausative-intransitive pairs). Because early-syntax ap-
proaches assume early matching preferences, and late-syntax
approaches assume that the input conspires to create matching
rather than mismatching preferences, it is difficult for either of
these theories to explain early mismatching preferences. Thus, the
model’s account may be superior in this respect.

The analysis of the error in preferential looking suggests two
related reasons why transitives precede with intransitives in the mod-
el’s simulation of preferential looking. First, causative agents are
represented differently from noncausative agents in the XYZ mes-
sage, and, second, constructions with causative agents are more fre-
quent relative to those with noncausative agents. This predicts that
models trained with a traditional-role message, where causative and
noncausative agents are treated as the same role, would not be able to
account for the weakness of intransitive preferences.

As a test of this prediction, the traditional-role models that were
used in the structural priming message comparison were also
tested on preferential looking. The traditional-roles message
yielded a transitive preference (see Figure 23) that appeared early
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like the transitive preference with the XYZ message (see Figure
21). What differed was the with intransitive bias, which was
stronger earlier on with the traditional-roles message than with the
XYZ message and, in particular, seemed actually to precede the
transitive bias in development. Thus, whereas the XYZ message
had a weak with intransitive preference that resembled the weak
preference of children, the traditional-roles message made the
model’s preferences for intransitives and transitives similar in
strength and the intransitive preference emerged earlier. Neither of
these patterns fit the existing data.

The model’s account of preferential looking for transitives and
with intransitives also leads to predictions about data yet to be
gathered. Specifically, the model predicts that English-speaking
children should never show a preference for pairing an intransitive
frame with a noncausative meaning if they do not also show a
preference for pairing a transitive frame with a causative meaning.
This arises from the model’s causative-agent-subject bias, which in
turn arises from the model’s XYZ roles and the relative frequen-
cies of these roles occurring in certain positions and grammatical
functions. If a language frequently places objects in initial position
(e.g., Japanese), however, the causative-agent-subject bias should
be weaker, and one should expect that early transitive-causative
and intransitive-noncausative development would develop more in
parallel.

Converging Evidence

To seek converging evidence about the nature of syntax in the
developing model, we also tested whether the relationship between
lexical and syntactic knowledge in the model mimics the relation-
ship in development and whether the model’s structural priming
behavior is analogous to what has been observed in children.

Several studies of children have found structural priming. In
these studies, dative and transitive structural priming have been
found at age 4 and above (Huttenlocher et al., 2004; Savage,
Lieven, Theakston, & Tomasello, 2003; Whitehurst, Ironsmith, &
Goldfein, 1974) and can be found at younger ages with stronger
manipulations (Brooks & Tomasello, 1999; Savage et al., 2003).
Because priming is a relation between different sentences, rather
than a preference for a certain meaning or the ability to generate a
novel sentence, it is a different measure of the abstractness of the

261

model’s syntax. Structural priming was tested in the developing
model in the same way that it was tested in the adult model. Both
transitive—transitive and dative—dative priming were tested with no
lag between prime sentences and target messages. Because per-
centages can be skewed by low numbers of correct responses, the
priming difference was assessed as the difference between the raw
numbers of active transitives and prepositional datives after their
respective prime structures. This difference as a function of epoch
is given in Figure 24.

Structural priming in the model develops gradually over time.
The increase in priming as the model gets older is due to the
growing abstractness of the structural representations, allowing
changes to transfer between prime and target. To compare these
results with the percentage priming results in the adult data, we
calculated priming differences expressed in percentages for Epoch
40,000. Dative priming was 4.1%, F(1, 19) = 22.15, p < .001, and
transitive priming was 5.8%, F(1, 19) = 23.25, p < .001, which
suggests that priming is adultlike by Epoch 40,000 (see, e.g.,
Figure 11 for comparison). The fact that priming grows over time
in the model, rather than maintaining the same level throughout,
mirrors the change in the techniques needed to find robust priming
in children. Priming studies at earlier ages often require stronger
manipulations (lexical overlap, blocks of primes) than studies at
later ages. More generally, the results suggest that the word se-
quence prediction mechanism, which is the heart of the model’s
language learning algorithm, gradually acquires representations
that are sufficiently abstract and syntactic in nature to create
structural priming.

One criticism of sentence production models such as the dual-
path model is that they assume an abstract set of thematic roles,
which are not evident early on in child language (Bowerman,
1976; Tomasello, 1992). Children’s early production often in-
volves lexically specific frames, where thematic roles appear in
different orders with different verbs. For example, a child studied
by Tomasello (1992) for a period of time produced agent subjects
for take, but not for put. Although the dual-path model has abstract
roles, it has to learn to map them onto syntax, and its ability to do
this depends on its experience with particular sentences with
particular verbs. This suggests that the model’s syntactic knowl-
edge may be tied to specific lexical items at the earliest stages. To

6
- ~ 24 months ~36months| © ~48 months
5. A O
E O ‘ ¥ V4
o
o
o 2
c .
£ ~Q==Dative
O —I—Transitive

Figure 24. Structural priming in development.



262

examine whether early representations are verb-specific, we tested
the model’s developing ability to place verbs into the transitive
construction. Only verbs that occurred in the transitive and bene-
factive constructions in the model (kick, carry, push, hit) were
used. To examine the use of these verbs with transitive frames,
occurrences of these verbs in the 2,000 test sentences that were
used to evaluate the overall accuracy of the model were recorded.
A single model was tested because averaging over models can
obscure lexical variability in particular models.

The percentage of correct sentences out of all the messages that
were supposed to yield a transitive sentence (NP V NP) with one
of these verbs was recorded every 2,000 epochs (see Figure 25). If
the model was using a common abstract transitive representation
throughout development, there should be little variation in the
correctness among the verbs. If, instead, abstract frames develop
from lexically specific frames, we expect greater variation in
earlier epochs. Figure 25 clearly shows that at the earliest epoch
where there is some generalization (4,000), generalization varies
from 15% (kick) to 63% (carry), a range of 48%. The range is
consistently smaller for later epochs even when mean generaliza-
tion is far from ceiling. The decrease in lexical variability with
development in the model suggests that it starts with partially
verb-specific transitive frames that later evolve into a fully abstract
frame. This early lexical specificity arises from the model’s SRN
and localist word inputs and outputs. Because the model stores
knowledge in weights from particular word units, its internal
knowledge also tends to be strongly influenced by its experience
with particular lexical elements (Chang, 2002; Marcus, 1998).
Thus, even with abstract roles, the model can account for the
lexical specificity of early sentence production.

We have shown that lexically specific syntactic patterns in child
language are consistent with the model. This result demonstrates
that early lexical specificity does not imply the early absence of
abstract roles. The model, which has such roles from the start,
nonetheless must learn to use them with particular lexical items. In
this regard it is also worth noting that the model’s assumption that
learners know early on how to set these roles when processing
situated messages has some support. Infants can extract verb/
action-general information about role-correlated information
such as intentionality and goal directedness (Behne, Carpenter,
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Call, & Tomasello, 2005; Carpenter, Akhtar, & Tomasello,
1998; Carpenter, Call, & Tomasello, 2005). Therefore, we
believe that the dual-path model provides an approach to ac-
quisition that is consistent with much of what is known about
lexical specificity and its implications for semantic and syntac-
tic acquisition.

Language Acquisition Conclusion

Early on, transitive development is gradual and lexically spe-
cific, because the model must make predictions from lexical inputs
in order to learn (learning as processing), and its weight changes
are related to the difference in its prediction and lexical outputs
(prediction error). Nonetheless, the model can use its immature
representations early in development in tasks that involve an
implicit choice between two interpretations (e.g., preferential look-
ing), provided that the construction being tested is associated with
consistent structure—-meaning mappings in the input, as is the case
for the transitive in English.

As a theory of language acquisition, the dual-path model incor-
porates features of both late-syntax and early-syntax approaches.
The sequencing system learns to sequence the XYZ roles, which
leads to a preference for configurations that have stable mappings
of arguments to sentence positions (Fisher, 2002b; Goldberg,
1995; Lidz, Gleitman, & Gleitman, 2003). This knowledge, how-
ever, is shaped by the types of lexical elements that occur in these
configurations, with much syntactic knowledge arising from ab-
stractions that are useful for predictions about word sequences
(Bates & Goodman, 2001; Lieven et al., 1997; Tomasello, 2003).
Given that the model has partial structural representations before it
can produce whole transitive sentences in production, it is consis-
tent with approaches that argue that structures are helpful for
learning verb meaning (as in syntactic bootstrapping; Gleitman,
1990; Naigles, 1990). However, because syntactic bootstrapping
claims that frames help to constrain the meaning of verbs, it does
not explain how one learns to differentiate the meaning of verbs
that occur in the same frames (e.g., “eat,” “drink”). The model
helps to explain how this occurs, because the model can use the
noun concepts that are associated with particular verbs (e.g., “eat
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a donut,” “drink some soda”) to help in distinguishing these verbs
and selecting the correct verb in production.

The dual-path model differs from traditional generative ap-
proaches to language acquisition. An implicit assumption of these
approaches is that grammaticality is a property of whole utterances
(C. L. Baker, 1979; Chomsky, 1957; Gold, 1967; Pinker, 1984,
1989). Because a grammatical utterance will not inform the learner
as to which parts of it are crucial for its grammaticality and
because the amount of input is always a small subset of the
indefinitely many possible utterances, generative approaches have
argued that learners come preequipped to make hypotheses about
experienced utterances. This is the “poverty of the stimulus”
argument for innate knowledge. A variety of types of such knowl-
edge is assumed to be necessary to learn main clause syntax:
syntactic categories, X-bar templates, syntax-specific parameters
(e.g., the head direction parameter), syntax-specific principles
(e.g., the projection principle), syntax-specific relational opera-
tions (e.g., c-command), and syntax-semantics linking rules (e.g.,
agent — subject, object — noun). The dual-path model is able to
learn without these types of innate knowledge, because it learns
from its predictions at each word position. Incremental prediction
increases the amount of information that can be used for learning
and focuses learning on the particular representations that made
the incorrect prediction. The prediction-based approach is thus a
potential solution to the problem of learning from sparse input
(Chang, Lieven, & Tomasello, 2005).

Successes and Limitations of the Model

The dual-path model attempts to link language acquisition and
adult sentence production. In Table 13, a summary of the model’s
structural priming behavior is provided, showing that it is gener-
ally successful in reproducing what is known about priming. The
model’s account of these data is unique because it must use its
language acquisition mechanisms to account for priming in adults.
At the same time, the model also directly accounts for a number of
acquisition phenomena (see Table 14 for a summary). Here, as-
sumptions that were needed for adult sentence production yielded
results that resemble those found in children. Previous treatments

of the developmental phenomena did not explicitly model the
relevant behavior, fueling disagreement about how to interpret the
findings.

Although we believe the model provides the broadest imple-
mented coverage of adult sentence production and child lan-
guage acquisition data of any theory, theories and models are,
in the end, just abstractions that tie together a complex set of
results within a simpler framework. The simplifications in the
dual-path model impose several limitations that are important for
understanding its relationship to the totality of human language
behavior.

One limitation is that the model only produces single-clause
sentences and hence does not address issues of learnability, syntax,
and production that relate to recursion, “moved” constituents, and
the association of clauses with propositions. There are two prob-
lems related to recursion in connectionist models. One is whether
it is possible to get humanlike recursion to emerge from learning
in a SRN (as argued by Christiansen & Chater, 1999; Elman, 1993)
or whether one needs a symbolic mechanism such as a stack (as in
Miikkulainen, 1996; Miikkulainen & Mayberry, 1999). A second
problem that has not been as clearly addressed is how meaning is
related to recursive elements (but see a discussion of this issue in
Griffin & Weinstein-Tull, 2003, and computational implementa-
tions in Miikkulainen, 1996; Miikkulainen & Dyer, 1991; Rohde,
2002). Presumably, the message must be able to encode role and
propositional relationships to embedded clauses as well as to main
clauses. For example, in the sentence “The boy that was chased by
the dog climbed the tree,” the boy is the agent of climbing and the
patient of chasing. Exploratory testing of the dual-path model with
messages that encode more than one clause has been promising.
What is not clear at this point, however, is whether this augmented
model conforms to what we know about human production and
learning of embedded clauses.

Another limitation is that the model does not truly extend to
comprehension, in the sense of deriving an appropriate meaning
from a sequence of words. Instead, it carries out the word predic-
tion processes that we hypothesize accompany comprehension.
Connectionist learning models that do both comprehension and

Table 13
Summary of Structural Priming Phenomena in Human and Model
Phenomenon Human Model
Priming persists over lag?
Lag 0 Dative-transitive Yes-yes (Bock & Griffin, 2000) Yes-yes
Lag 4 Dative-transitive Yes-yes* (Bock & Griffin, 2000) Yes-yes
Lag 10 Dative-transitive Yes-yes (Bock & Griffin, 2000) Yes-yes
Comprehension-based priming similar to Yes (Bock et al., 2005) Yes
production-based priming?
Priming can be sensitive to meaning?
Prepositional locative-dative No (Bock & Loebell, 1990) No
Locative-transitive No (Bock & Loebell, 1990) No
Locative alternation Yes (Chang et al., 2003) Yes
Priming can be sensitive to function morphemes?
Preposition No (Bock, 1989) No
Past tense No (Pickering & Branigan, 1998) No
Priming can be sensitive to lexical overlap?
Verb Yes (Pickering & Branigan, 1998) No

“Data suggested no transitive priming after 4 fillers, but priming returned after 10 fillers; priming from
comprehension after 4 fillers showed no such decrement (Bock, 2002).
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Table 14

Summary of Language Acquisition Phenomena in Human and Model

Phenomenon Human Model

Gradual development of Yes (e.g., Tomasello, 2000) Yes
production?

Preferential looking precedes Yes (e.g., Naigles, 2003) Yes
production?

Transitive precedes intransitive in Yes (e.g., Hirsh-Pasek & Golinkoff, 1996) Yes
preferential looking?

Structural priming during Yes (e.g., Savage et al. 2003; Huttenlocher et al. 2004; Yes
development? Whitehurst et al., 1974)

Verb-based development of Yes (e.g., Tomasello, 1992) Yes
transitive?

production have been built (Miikkulainen & Dyer, 1991; Rohde,
2002), but these models’ message representations lack the features
of the dual-path model that promote generalization, the need for
which is certainly as acute in comprehension as it is in production.
Addressing these issues will be an important focus of future
work. The present model is limited by the scope of our area of
inquiry and not by inherent limitations in the ability of the model
to do recursion or comprehension. Having clearer accounts of
recursion and language comprehension would help to show
whether and how the model can address some of the critical open
questions in theories of syntactic knowledge and usage.

Conclusion

Producing sentences from meaning and learning language from
input have traditionally been studied in separate branches of psy-
cholinguistics, but of course they are related, and a theory that
recognizes the tight relationship is needed (MacDonald, 1999;
Mazuka, 1998; Seidenberg & MacDonald, 2001). The model pre-
sented here represents an attempt to implement a theory of that
relationship. The theory builds on three theoretical cornerstones,
each of which is associated with two critical assumptions: an
innate architecture, associated with sequencing by SRN and dual
pathways; a structured message comprising what—where bindings
and XYZ roles; and a domain-general learning algorithm using
prediction error and implementing learning as processing. In this
conclusion, we revisit these assumptions in turn.

The model’s architecture incorporates an SRN to learn to se-
quence words. This network is needed to learn lexically specific
structural preferences, as seen in the development of the transitive
construction (see the Converging Evidence section) and more
generally in adult sentence processing (e.g., Ferreira, 1996). The
SRN developed representations that were appropriate for selecting
words at different points in an utterance. These position-specific
representations developed independently over time with language
input (e.g., causative-agent-subject bias and postverbal structural
bias in Figure 22). The changes in these states allowed the model
to explain the overall differences between production and prefer-
ential looking, and the variable sensitivity to particular structures
at different ages in preferential looking. More generally, although
there is a lot of evidence that sentence production is incremental,
it has not been clear whether an incremental system could explain
structural priming. What this model shows is that an SRN can learn
syntax in a way that allows its deployment in an incremental

fashion, while at the same time encoding aspects of the whole
construction.

The dual-path architecture was designed originally to allow
words to be placed into novel sentence positions (Chang, 2002).
This kind of generalization resulted only when the lexical seman-
tics and the sequencing system were located in different pathways
and therefore each pathway could learn different components of
the problem (akin to the division of labor in the triangle models of
reading; Harm & Seidenberg, 2004; Plaut et al., 1996). Separating
these pathways allowed the network to account for novel verb—
structure generalization in acquisition and for double dissociations
in aphasia (Gordon & Dell, 2003). The isolation of the sequencing
system from lexical semantics also helps to explain why structural
priming can occur without lexical or meaning overlap and why
error from comprehension-input can create changes to priming in
production. Finally, the dual-path architecture supports processing
with novel verbs, which is necessary to explain the elicited pro-
duction and preferential-looking results. Thus, an important claim
of the present work is that children eventually develop abstract
syntactic representations in part because of a preexisting separa-
tion in the brain between neurons that learn sequences and neurons
that encode concepts (Chang, 2002; Ullman, 2001). The final
result of syntactic development is an adult representation that
distinguishes frames from their lexical fillers as in most theories of
adult sentence production (Bock, 1982; Dell, 1986; Eberhard et al.,
2005; Garrett, 1975; Gordon & Dell, 2003; Levelt, 1989).

Our use of a “what-where” system of bindings for semantic
representations, like the dual-pathway architectural assumption, is
motivated by the need for generalization. Chang (2002) specifi-
cally demonstrated that such a system of binding is required for a
model to be able to produce sentences expressing meanings in
which concepts occur in novel role configurations. Because struc-
tural priming can involve sentences with different meanings, it is
crucial that the model have structural representations that can
apply to many different meanings. Elicited production and prefer-
ential looking with novel verbs also require the ability to bind a
novel word into a known syntactic structure. All of these behaviors
depend on the what—where system of message binding.

The XYZ role representation is also an important factor in the
model’s behavior. Although similar representations were used in
Chang (2002) and Chang et al. (2000), no experimental results
were provided to support the use of those representations. Here,
the XYZ role representation made the right prediction about the
development of the intransitive construction in preferential-
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looking studies; the traditional-role representation did not. The fact
that XYZ roles are better than the traditional representation shows
that children do not need a complex role representation in order to
learn to map meanings into sentences. Rather they can learn
language-specific and construction-specific mappings of these ab-
stract roles (Croft, 2001), and this provides them with enough
flexibility to organize their system in just the way that their
language demands.

The model’s learning mechanism uses prediction error to guide
weight changes. This error-based learning within an incremental
word-based prediction system is crucial for dealing with language
acquisition. It changes the problem from an intractable whole-
sentence-based hypothesis-testing problem to a simpler problem of
constraining word transitions, and it thereby allows broad abstract
grammars to be learnable from limited input. Error-based learning
also implements structural priming, providing a common mecha-
nism for syntactic change in children and adults. Because error can
be used to implement the preferences in preferential-looking ex-
periments, this learning algorithm motivates the existence of pref-
erences in the first place. It is not just that children prefer to look
at things that match but rather that they use their production
abilities to support the anticipation of upcoming language and
upcoming events, and they tend to look at the things that increase
the validity of their expectations.

Perhaps the most critical assumption of this work is that lan-
guage learning and adult processing are part of the same mecha-
nism. To learn the language and to display structural priming, the
model has to try to produce a string of words that can be compared
with the input sentence. The process continues throughout life.
This assumption is supported by many studies showing that chil-
dren, including infants, learn experimentally induced linguistic
regularities in the same way that adults do (Aslin, Saffran, &
Newport, 1999; Chambers, Onishi, & Fisher, 2003; Gupta & Dell,
1999; Gupta & MacWhinney, 1997; Onishi, Chambers, & Fisher,
2002; J. R. Saffran, Aslin, & Newport, 1996). Connectionist mod-
els that instantiate this hypothesis have been developed in other
domains (Plaut et al., 1996; Seidenberg & McClelland, 1989).
Most pertinent to the present study is the fact that children and
adults both show structural priming. These results forcefully argue
for a unified approach to language acquisition and production, and
the present model represents a step in that direction.

Modern generative linguistics emerged when language research-
ers started to take the abstractness of syntax seriously. The diffi-
culty of explaining how people could learn abstract syntax from
experience suggested that people must have innate syntax-specific
biases in their genetic inheritance. Because it is nontrivial to
imagine how abstract linguistic constraints can be implemented in
a neural network (such as the brain), or why such an arrangement
would have evolved in the first place, critics of generative gram-
mar (Elman et al., 1996; MacWhinney, 1999; Seidenberg, 1997;
Tomasello, 2003) and, more recently, generativists themselves
(Culicover & Nowak, 2003; Hauser, Chomsky, & Fitch, 2002;
Jackendoff, 2002), have placed their hopes on domain-general
learning mechanisms, such as implicit sequence learning. Implicit
sequence learning is evident in different tasks, different modalities,
and different species (Conway & Christiansen, 2001; Gupta &
Cohen, 2002; Seger, 1994), which suggests that it is domain
general and computationally powerful, but also realizable in neural
tissue and under selection pressures in evolution. What was miss-
ing, however, was a formal theory of how a domain-general

learning algorithm could yield the kinds of abstractions that mo-
tivated the generative enterprise in the first place. The model in
this article, by showing how an error-based sequence learning
mechanism within a particular architecture can yield adult syntax,
provides a bridge between the biological evolution of learning
mechanisms and the abstract products of our cultural evolution.
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Appendix

Details of the Model Simulations

The simulations were implemented using Version 2.6 of the LENS
connectionist software package (Rohde, 1999). The model had 145 word—
cword units, 20 compress—ccompress units, 40 hidden—context units, 8
event-semantics units (AA, DD, XX, YY, ZZ, COMMAND, PROG,
PAST), 124 what-cwhat units, and 5 where—cwhere units (A, D, X, Y, Z).
Unless specified otherwise, these units used the sigmoidal logistic activa-
tion function, with activation values running between 0 and 1. The learning
rate started at 0.25 for 10,000 epochs and then was lowered gradually to
0.05 after an additional 30,000 epochs, where it stayed for the remaining
20,000 epochs. Weights were initially set to values uniformly sampled
between —1 and 1. Steepest descent back-propagation was used for training
the model during acquisition and for testing structural priming. The order
of training sentences was permuted, so that all sentences were seen before
repeating, but the order was random. Unless otherwise stated, default
parameters of the simulator were used.

Normally, units in a connectionist model have a link from a bias unit,
which helps to set the resting activation of the unit. Bias weights, however,
complicated the interpretation of structural priming over lag, because some
of the priming effect could be due to changes in the bias weight rather than
the weight between representations. Thus, bias weights were left out,
except for three layers: event-semantics, what, and cwhat. These layers
needed bias terms to ensure that they had a low resting level of activation.
The bias weight to the event-semantics units implemented the event se-
mantics information (role prominence). This was done to make the setting
of the event semantics information identical to the setting of the weights in
the what—where links. The event-semantics units were linear units, and the
connection from bias was either zero or one (and was set by the message,
so it was not changed by learning). The what and cwhat units had a
negative bias weight (weight = —3) to ensure that they had a low resting
activation level when no input was present.

The cwhat units received a training signal from the previous activation
of the what unit. Because the cwhat units were logistic units, the cross-
entropy error measure was used. This helped to train the cword-cwhat
mapping, because the cword activations were often related to the elements
in the message (where—what links) during situated learning, and therefore
the what unit activations were often helpful in mapping to appropriate
concepts.

The word and cwhere units used a soft-max activation function, which
passes the activation of the unit through an exponential function and then
divides the activation of each unit by the sum of these exponential activa-
tions for the layer. In the word units, this leads to a single word’s being
activated at each time point. Error on the word units was measured in terms
of divergence—X. t; log(t,/0,)—where o is the activation for the i output
unit on the current word and t; is its target activation because of the
soft-max activation function. In the cwhere units, it is important to use this
activation function because the cword layer, which feeds into the cwhere
layer, often has multiple words activated (especially if the previous word
out mismatches the external input word). Hence, it is the cwhere layer that
decides which word was more active and which structure should be chosen.

The context, cwherecopy, and cword units were “elman” units, meaning
that they took their activation from the previous activation of other units.
The context units received a copy of the previous hidden unit activation
(initially set to 0.5 to make it easier for the system to recognize the
beginning of utterances). The cwherecopy units also averaged a copy of the
cwhere state with the previous cwherecopy state, and this created a running
sequence of the roles that had been processed by the model, helping the
SRN to know which alternation was being produced. The cword units
summed together the previous activation of the word units and the activa-
tion from external comprehended word input. The activation of this layer
was normalized to make the activation pattern of particular units similar
when they were activated by the word layer or by the external input.

Training began by randomizing the weights of the network (the seed was
set to 100, and the same random weights were used for all models). In
Chang (2002), batch weight update was used, that is, weight changes were
collected during the processing of the entire training set (over one
“epoch”™), and then the weight changes were applied at once. In the present
model, weights are updated after each message—sentence pattern, because
this led to faster learning with fewer presentations (Wilson & Martinez,
2003). Because an epoch can be defined as the period of time between
weight updates, the word “epoch” was used to refer to points in time during
training. Unlike models where an epoch refers to a whole pass through the
training set, here an epoch refers to the amount of time needed to train a
single pattern (epoch 2,000 = after 2,000 patterns have been trained). The
weights were saved every 2,000 epochs, and the model was tested on both
the training and the test set (only 1,000 training patterns were tested). The
training set allowed pronouns to replace full noun phrases, but in the testing
set, no pronouns were used. This reduced the overlap between training and
test sets (to provide a more stringent test of generalization), and the test set
was a better sample of the possible sentences in the grammar (pronouns
reduce the diversity of noun phrases). Grammaticality on the test sentences
was initially higher than on training sentences, because there is an asym-
metry in accuracy of noun phrases. If a pronoun was marked in the
message, the model could still produce a full noun phrase, and early on in
training, it was likely to make a mistake in grammaticality. If a full noun
phrase was marked in the message, and the model decided to produce a
pronoun, it was more likely to be grammatical. Thus, early in training, the
test set had more switches to pronouns that were grammatical than the
training set had switches to full noun phrases that were grammatical.
Training ended when 60,000 patterns had been experienced, and the model
was tested on structural priming with these weights. The raw output of the
model was processed by a decoder program that yielded a sequence of
words (both the target sequence and the actual sequence). If the most
activated word unit was less than 0.3, the decoder left that position empty.
The word sequence was then processed by a syntactic coder program that
added the syntactic tags and the message coding (described in the “Train-
ing the Dual-Path Model section of the main text of this article”). This
program also collected the statistics that were used in the figures.

Input Environment Grammar

The next sections describe the generation of the input. Although the
process of generating the input environment starts with the message and
eventually yields a sequence of words, it is difficult to describe the
grammar in that order, because the message is the most complex repre-
sentation. Instead, we start with the lexicon, then talk about syntactic
constraints related to those words, and then discuss the message structure.

Lexicon

The model had 20 animate nouns (humans, pets), 24 inanimate nouns
(vehicles, containers, places, food, drink, and plants), and 10 pronouns (/,
me, you, he, she, it, him, her, they, them). There were 59 verbs in 14 verb
classes; verbs could occur in more than one class (see the actions in Table
Al). The other words included 6 adjectives, 2 determiners (a, the), 12
prepositions (in, on, under, over, near, around, into, onto, by, to, for, with),
5 forms of the auxiliary be (is, are, was, were, am) and an end-of-sentence
marker (.). One unit was reserved for the novel test word “glorp”. There
were also 5 inflectional morphemes: a plural noun marker (-s), a singular
verb marker (-ss), a past tense marker (-ed), a progressive aspect marker
(-ing), and a past participle marker (-par). Words, inflectional morphemes,
and the end-of-sentence marker were all treated as separate lexical items
and are hereafter just referred to as words.
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Relation

Arguments

Actions

Animate intransitive
Animate with intransitive

Inanimate intransitive
Locative
Transitive

Transitive-motion
Theme-experiencer
Cause-motion

Transfer dative
Benefactive dative
Benefactive transitive

State-change
Locative Alternation

Y=ANIMAL

Y=ANIMAL D=WITH Z=ANIMAL

Y=THING
Y=ANIMAL D=PREP Z=GOAL
X=ANIMAL Y=THING

X=MOVER Y=GOAL

X=MOVER Y=ANIMAL

X=ANIMAL Y=THING Z=GOAL

D=PREP

X=ANIMAL Z=RECIPIENT Y=THING D=TO
X=ANIMAL Y=THING Z=RECIPIENT D=FOR
X=ANIMAL Y=THING Z=RECIPIENT D=FOR

X=ANIMAL Z=CONTAINER Y=THING D=WITH
X=ANIMAL Y=THING Z=CONTAINER D=PREP

dance, sleep, laugh, play, go, walk, run, jump, crawl,
bounce

dance, sleep, laugh, play, go, walk, run, jump, crawl,
bounce

open, close, break, smash, fall, disappear, float, appear

go, walk, run, jump, crawl, bounce

open, close, break, smash, make, bake, build, mold,
sculpt, shape, cook, carve

hit, carry, push, slide

scare, surprise, bother, hurt

put, hit, carry, push, slide

give, send, throw, feed, trade, sell, lend, pass

make, bake, build, mold, sculpt, shape, cook, carve

hit, carry, push, slide, open, close, break, smash,
hurt, scare, surprise, bother

fill, cover, soak, bathe, plug, ring, flood, stain

spray, load, brush, heap, jam, rub, shower, pack

Note. ANIMAL refers to humans and pets; THING refers to plants, containers, foods, and drinks; CONTAINERS refers to containers; GOAL refers to
animals, places, containers, and vehicles; MOVER refers to animals and vehicles; RECIPIENT refers to animals and places.

Syntax

Table 2 in the main text presents the various sentence types and an
example of each type. Some of the types are associated with syntactic
alternations (active—passive voice, double-object/prepositional dative,
location—theme/theme—location). The sentence structures were associated
with meaning constraints as described in the next paragraph.

Sentences were generated by applying English-specific rewrite rules to
the messages provided by the message generator. The order of arguments
in the message used by the formal grammar was used to define the word
order of the noun phrases in the sentence inventory. The verb was placed
in the appropriate position, and the appropriate closed class elements were
added to mark the syntactic structure. For example, if the patient preceded
the agent in the message, then passive words and morphology would be
added (push — “is push -par by”). Similar additions were made for the
dative alternation and the locative alternation. The elements in each argu-
ment were then ordered in a noun-phrase appropriate way. Aspectual
changes were also applied here (e.g., “is push -ing”). If a feature in the
message (corresponding to the COMMAND unit in the event semantics)
signaled an imperative, it caused the subject to be omitted (e.g., “give it to
the girl”). A definiteness feature on arguments determined whether “the”
or “a” was selected (indefinite mass nouns had no articles). The arguments
in a message could have a pronoun marker that would cause it to be
replaced by a pronoun with the appropriate gender and case. Then agree-
ment rules were applied.

Message

The message generator created messages from a message grammar. The
message grammar did not include all the world knowledge that would be
needed to ensure that only “meaningful” sentences would be created.
Instead, it was designed to be easy to describe and to replicate. The
message grammar had event templates for each sentence type and had
constraints on the categories that could participate in that event (see Table
15 in the main text). Roles were labeled with the capital letters (A, D, X,
Y, Z). In the table, each constraint is associated with a particular role. The
letters X, Y, and Z represent arguments in the event. For example,
“X=ANIMAL” means that only humans and pets could be linked to the X

role. The A role was linked to information about the action of the event
(lexical semantics for the verb). The D role was linked to semantic
information about the preposition used. There were six conceptual catego-
ries used for content selection: ANIMAL, THING, GOAL, RECIPIENT,
MOVER, and CONTAINER (see Table 15 in the main text for more
information about these categories). Event templates had frequencies as-
sociated with them, so that shorter templates were more likely to be
selected than longer templates. This difference reflects our belief that
adjective-modified arguments are less common than pronominal or simple
noun phrase arguments. In addition, intransitive templates were half as
frequent as other structures like transitives, because this mirrors the input
better (Cameron-Faulkner et al., 2003). Benefactive dative templates were
also half as frequent because the model had two benefactive templates
(benefactive and benefactive transitive).

Roles by themselves do not fully determine the mapping into syntactic
structure. Rather, it is assumed that the relative prominence of different
roles within a particular message determines the mapping of roles into
sentence positions (Dowty, 1991; Goldberg, 1995). Two aspects of the
model were designed to deal with this assumption. The first aspect had to
do with the message generation system. The message generator creates
messages that have a particular default order of the roles (as in Table 15 in
the main text). The linear order in the message is used only by the formal
message generator and is not encoded in the message representation in the
model. To represent the relative frequencies of the particular syntactic
alternations, the message generator permuted the default order of the roles
a certain percentage of the time for the five sentence types associated with
alternations. For the transfer and benefactive dative messages, half of the
messages had their Y and Z argument order switched. The rewrite rules
were sensitive to these changes, so that if the Y role preceded the Z role,
a prepositional dative was output by the sentence generator, but if Z
preceded Y, a double-object dative occurred. The fact that half of these
dative messages had permuted orders was intended to capture the fact that
double-object and prepositional datives are both about equally likely in the
human input environment. The locative alternation also was associated
with permuted Y and Z roles half of the time, leading to equal chances of
location—theme and theme—location structures. The active—passive alterna-
tion (transitive and theme-experiencer) was different. The default order X

(Appendix continues)
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then Y led the sentence generator to create a transitive active sentence. If
the order was Y then X, it would generate a passive complete with the
relevant passive morphology. Because passives are relatively uncommon,
the X and Y role order was changed only 20% of the time, leading to four
times as many transitive actives as passives in the collection of message—
sentence pairs.

The second aspect related to alternations had to do with the way that the
information about prominence of arguments was given to the model. One
assumption of the dual-path architecture is that the sequencing system,
which learns about syntactic frames, is relatively isolated from much of
lexical semantics, allowing it to learn representations that generalize to
novel content. However, the sequencing system does need some knowl-
edge about the prominence of the arguments in the message, and so it uses
three event-semantics units XX, YY, and ZZ (corresponding to X, Y, and
Z roles in the where units) to encode this prominence information. For
example, an intransitive sentence would only have an argument in the Y
role, and hence only the Y'Y unit would be activated in the event semantics.
For a transitive sentence, both the XX and the YY event-semantics units
would be active, signaling to the syntax that the X and Y roles have
content. In addition, the relative activation of these two units would signal
whether an active or passive was to be produced. Recall that the message
generator represented the relative prominence of the X and Y roles with
their linear order; an X-Y order was associated with actives and a Y-X
order with passives. When messages are actually represented in the model
itself, this linear order is gone and is replaced by activations of the XX and
YY event-semantics units. If YY is more active than XX, then Y is more
prominent than X and the model would be trained to produce a passive
output. The reverse situation typically leads to an active output. Corre-
spondingly, the dative and locative alternations depended on the activation
of the YY and ZZ units. If the ZZ unit was more active than the YY unit,
a double-object or a location-theme structure was preferred; otherwise, a
prepositional dative or a theme—location was preferred. In testing situations
where the model was supposed to choose between two alternatives, the
difference between the relevant units was reduced, making it more difficult
to use the event-semantics information to select the appropriate structure.

In addition to the XX, YY, and ZZ event-semantics units, the event
semantics also included units for tense and aspect. There were units for past
tense (PAST) and progressive aspect (PROG). Simple present tense was
considered to be unmarked. There were also event-semantics units that
marked the presence of an action (AA) and direction (DD). In general, all
of these event-semantics units provide the sequencing system with the kind

of nonlexical information that normally affects the choice of sentence
structures.

The event-semantics units and the material that is bound to the where
units (X, Y, Z, A, and D) constitute the model’s message. However, there
is one additional property of the messages that were actually given to the
model. This concerns features that determine whether a noun phrase is
expressed as a pronoun or not, and if not, whether it has a definite or
indefinite article. For each noun phrase, the formal grammar simply ran-
domly generates meaning units that correspond to articles (DEFINITE) and
pronouns (PRON). However, because languages of the world often use the
same words for pronouns and articles (Diessel, 1999; Harris & Campbell,
1995), it did not seem appropriate to treat these as two independent
features. Instead, an overlapping representation was used, which made use
of the what—where links for the main concept (corresponding to the noun
or the referent of the pronoun) and a single DEFPRO feature. If a full noun
phrase was intended, then the main concept where—what link was set to its
normal level. When a pronoun was intended, then the main concept link
was set to half of this normal level. By reducing the activation of the lexical
concept, this representation helps to explain why languages use pronouns
(e.g., English) or null ellipsis (e.g., Japanese) rather than simply repeating
a recently accessed content word. The DEFPRO unit was at the normal
level for pronouns, but at 66% for definite noun phrases and 33% for
indefinite noun phrases. Using one feature to represent these distinctions
leads to more competition between pronouns and articles within the model.
By making it harder for the model to use the message to predict the form
of noun phrases, this semantic representation helped the model to develop
syntactic constituents that would treat different sequences of words (e.g.,
“I”, “the boy”, “the old apple”) as the same type of unit (e.g., a noun
phrase). This feature is crucial for developing structural representations
that used these syntactic constituents and for generalizing across these
structures in structural priming.

The input environment grammar was only used to generate the message—
sentence pairs used in training and testing the model. The abstract syntactic
knowledge that was used to generate the input was not available to the
model. The model had to construct its own representations from its input
experience, and therefore its representations differ from the input environ-
ment grammar.
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