Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

An Introduction to Linear and Logit Mixed Models

Day 1

Florian Jaeger

February 4, 2010

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Overview

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- Class 1:
- (Re-)Introducing Ordinary Regression
- Comparison to ANOVA
- Linear Mixed Models
- Generalized Linear Mixed Models
- Trade-offs \& Motivation
- How to get started
- Class 2:
- Common Issues in Regression Modeling (Mixed or not)
- Solutions
- Please ask/add to the discussion any time!

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Acknowledgments

- I've incorporated (and modified) a couple of slides prepared by:
- Victor Kuperman (Stanford)
- Roger Levy (UCSD)
... with their permission (naturalmente!)
- I am also grateful for feedback from:
- Austin Frank (Rochester)
- Previous audiences to similar workshops at CUNY, Haskins, Rochester, Buffalo, UCSD, MIT.
- For more materials, check out:
- http://www.hlp.rochester.edu/
-

http://wiki.bcs.rochester.edu:2525/HlpLab/StatsCourses

- http://hlplab.wordpress.com/ (e.g. multinomial mixed models code)

Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger
Goal: model the effects of predictors (independent variables) X on a response (dependent variable) Y.

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

```
[This slide was generously provided by or is based on slides provided by
```

R. Levy, rlevy@ucsd.edu]

Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger
Goal: model the effects of predictors (independent variables) X on a response (dependent variable) Y.

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger
Goal: model the effects of predictors (independent variables) X on a response (dependent variable) Y.

The picture:

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger
Goal: model the effects of predictors (independent variables) \mathbf{X} on a response (dependent variable) Y.

The picture:

[^0]
Reviewing GLMs

Generalized Linear
Mixed Models
Florian Jaeger
Assumptions of the generalized linear model (GLM):

- Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs

Generalized Linear
Mixed Models
Florian Jaeger
Assumptions of the generalized linear model (GLM):

- Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
- η is a linear combination of the $\left\{X_{i}\right\}$:

Reviewing GLMs

Generalized Linear
Mixed Models
Florian Jaeger
Assumptions of the generalized linear model (GLM):

- Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
- η is a linear combination of the $\left\{X_{i}\right\}$:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{N} X_{N} \quad \text { (linear predictor) }
$$

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs

Generalized Linear
Mixed Models
Florian Jaeger
Assumptions of the generalized linear model (GLM):

- Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
- η is a linear combination of the $\left\{X_{i}\right\}$:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{N} X_{N} \quad \text { (linear predictor) }
$$

- η determines the predicted mean μ of Y

$$
\eta=g(\mu) \quad \text { (link function) }
$$

There is some noise distribution of Y around the

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs

Generalized Linear
Mixed Models
Florian Jaeger
Assumptions of the generalized linear model (GLM):

- Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
- η is a linear combination of the $\left\{X_{i}\right\}$:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{N} X_{N} \quad \text { (linear predictor) }
$$

- η determines the predicted mean μ of Y

$$
\eta=g(\mu) \quad \text { (link function) }
$$

- There is some noise distribution of Y around the predicted mean μ of Y :

$$
P(Y=y ; \mu)
$$

[This slide was generously provided by or is based on slides provided by

Reviewing Linear Regression

Generalized Linear
Mixed Models
Florian Jaeger
Linear regression, which underlies ANOVA, is a kind of generalized linear model.

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing Linear Regression

Generalized Linear
Mixed Models
Florian Jaeger
Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

$$
\eta=I(\mu)=\mu
$$

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing Linear Regression

Generalized Linear
Mixed Models
Florian Jaeger
Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

$$
\eta=I(\mu)=\mu
$$

- Noise is normally (=Gaussian) distributed around 0 with standard deviation σ :

$$
\epsilon \sim N(0, \sigma)
$$

- This gives us the traditional linear regression equation:

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Reviewing Linear Regression

Generalized Linear
Mixed Models
Florian Jaeger
Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

$$
\eta=I(\mu)=\mu
$$

- Noise is normally (=Gaussian) distributed around 0 with standard deviation σ :

$$
\epsilon \sim N(0, \sigma)
$$

- This gives us the traditional linear regression equation:

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean } \mu=\eta}+\overbrace{\epsilon}^{\text {Noise } \sim N(0, \sigma)}
$$

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Reviewing Logistic Regression

Generalized Linear
Mixed Models
Florian Jaeger
Logistic regression, too, is a kind of generalized linear model.

Reviewing Logistic Regression

Generalized Linear
Mixed Models
Florian Jaeger
Logistic regression, too, is a kind of generalized linear model.

- The linear predictor:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}
$$

[^1]hinomial
[This slide was generously provided by or is based on slides provided by
R. Levy, rlevy@ucsd.edu]

Reviewing Logistic Regression

Generalized Linear
Mixed Models
Florian Jaeger
Logistic regression, too, is a kind of generalized linear model.

- The linear predictor:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}
$$

- The link function g is the logit transform:

$$
\begin{align*}
& \mathrm{E}(\mathrm{Y})=p=\mathrm{g}^{-1}(\eta) \Leftrightarrow \\
& \mathrm{g}(p)=\ln \frac{p}{1-p}=\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n} \tag{1}
\end{align*}
$$

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing Logistic Regression

Generalized Linear
Mixed Models
Florian Jaeger
Logistic regression, too, is a kind of generalized linear model.

- The linear predictor:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}
$$

- The link function g is the logit transform:

$$
\begin{align*}
& \mathrm{E}(\mathrm{Y})=p=\mathrm{g}^{-1}(\eta) \Leftrightarrow \\
& \mathrm{g}(p)=\ln \frac{p}{1-p}=\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n} \tag{1}
\end{align*}
$$

- The distribution around the mean is taken to be binomial.

Reviewing GLM

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example

- Poisson regression
- Beta-binomial model (for low count data, for example)
- Ordered and unordered multinomial regression.

Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Determining the parameters

Generalized Linear
Mixed Models
Florian Jaeger

- How do we choose parameters (model coefficients) β_{i} and σ ?
- We find the best ones.
- There are two major approaches (deeply related, yet different) in widespread use:

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Determining the parameters

Generalized Linear
Mixed Models
Florian Jaeger

- How do we choose parameters (model coefficients) β_{i} and σ ?
- We find the best ones.
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible model parameters and update it on the basis of what narameters hest exnlain the data

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Determining the parameters

Generalized Linear
Mixed Models
Florian Jaeger

- How do we choose parameters (model coefficients) β_{i} and σ ?
- We find the best ones.
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Determining the parameters

Generalized Linear
Mixed Models
Florian Jaeger

- How do we choose parameters (model coefficients) β_{i} and σ ?
- We find the best ones.
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right) \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}}{P(Y)}
$$

Determining the parameters

Generalized Linear
Mixed Models
Florian Jaeger

- How do we choose parameters (model coefficients) β_{i} and σ ?
- We find the best ones.
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{\overbrace{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{P(Y)}}{P(Y \text { Prior }}
$$

Penalization, Regularization, etc.

- Modern moderns are often fit using maximization of likelihood combined with some sort of penalization, a term that 'punished' high model complexity (high values of the coefficients).
- cf. Baayen, Davidson, and Bates (2008) for a nice description.

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
Figure 2. Contours of the profiled deviance as a function of the relative standard
A Simulated Example deviations of the item random effects and the subject random effects. The leftmost panel shows the deviance, the function that is minimized at the maximum likelihood estimates, the middle panel shows the component of the deviance that measures model complexity and the rightmost panel shows the component of the deviance that measures fidelity of the fitted values to the observed data.

The Linear Model

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

- Let's start with the Linear Model (linear regression, multiple linear regression)

Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions

- You are studying word RTs in a lexical-decision task tpozt house house hord or mon-words

Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions

- You are studying word RTs in a lexical-decision task tpozt Word or non-word?

Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions

- You are studying word RTs in a lexical-decision task tpozt Word or non-word?
house Word or non-word?

Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Data: Lexical decision RTs

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Available online at www.sciencedirect.com

Joumal of Memory and Language 55 (2005) 250313

Morphological influences on the recognition of monosyllabic monomorphemic words
R.H. Baayen ${ }^{\text {a,* }}$, L.B. Feldman ${ }^{\text {b }}$, R. Schreuder ${ }^{\text {c }}$
${ }^{2}$ RadBoud Uriversity Njpegen and Max Plonck Institute for Pspholingwistes, P. O. Box 310,6500 AH Njpmegon, The Netheriands
${ }^{6}$ State Chiversity of New York at Albany, Department of Psychology. SSIJ2 Aibany NY 12212, USA
"Ranboud Unversity Njimegon P.O. Box 310, 6500 AH Njimegon, The Netheriands

Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Data: Lexical decision RTs

- Lexical Decisions from 79 concrete nouns each seen by 21 subjects (1,659 observation).
- Outcome: log lexical decision latency RT
- Inputs:
- factor (e.g. NativeLanguage: English or Other)
- continuous predictors (e.g. Frequency).
> library (languageR)
> head (lexdec $[, c(1,2,5,10,11)])$

Subject	RT	NativeLanguage	Frequency	FamilySize
A1	6.340359	English	4.859812	1.3862944
A1	6.308098	English	4.605170	1.0986123
A1	6.349139	English	4.997212	0.6931472
A1	6.186209	English	4.727388	0.0000000
A1	6.025866	English	7.667626	3.1354942
A1	6.180017	English	4.060443	0.6931472

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View

- A simple model: assume that Frequency has a linear effect on average (log-transformed) RT, and trial-level noise is normally distributed

Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View

- A simple model: assume that Frequency has a linear effect on average (log-transformed) RT, and trial-level noise is normally distributed
- If x_{i} is Frequency, our simple model is

Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View

- A simple model: assume that Frequency has a linear effect on average (log-transformed) RT, and trial-level noise is normally distributed
- If x_{i} is Frequency, our simple model is

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

- We need to draw inferences about α, β, and σ

non-zero?

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View

- A simple model: assume that Frequency has a linear effect on average (log-transformed) RT, and trial-level noise is normally distributed
- If x_{i} is Frequency, our simple model is

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

- We need to draw inferences about α, β, and σ
- e.g., "Does Frequency affects RT?" \rightarrow is β reliably non-zero?

Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs: A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs: A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs: A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Reviewing GLMs: A simple example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Linear Model with just an intercept

- The intercept is a predictor in the model (usually one we don't care about).
\rightarrow A significant intercept indicates that it is different from zero.
> 1. lexdec0 $=\operatorname{lm}(R T \sim 1$, data=lexdec)
> summary (1.lexdecO)
[...]
Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Residuals:
Min 1Q Median 3Q
32 Max
$-0.55614-0.17048-0.03945 \quad 0.11695 \quad 1.20222$

Coefficients:

```
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.385090 0.005929 1077 <2e-16 ***
[...]
```

NB: Here, intercept encodes overall mean.

Visualization of Intercept Model

Generalized Linear

Mixed Models

Predicting Lexical Decision RTs

Florian Jaeger

Generalized Linear Model

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Generalized Linear

Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Linear Model with one predictor

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions

- Classic geometrical interpretation: Finding slope for the predictor that minimized the squared error.
NB: Never forget the directionality in this statement (the error in predicting the outcome is minimized, not the distance from the line).
NB: Maximum likelihood (ML) fitting is the more general approach as it extends to other types of Generalized Linear Models. ML is identical to least-squared error for Gaussian errors.

Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Frequency effect on RT

Predicting Lexical Decision RTs

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Generalized Linear

Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Linearity Assumption

NB: Like AN(C)OVA, the linear model assumes that the outcome is linear in the coefficients (linearity assumption).

- This does not mean that the outcome and the input variable have to be linearly related (cf. previous page).
- To illustrate this, consider that we can back-transform the log-transformed Frequency (\rightarrow transformations may be necessary).

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Generalized Linear Mixed Model

Predicting Lexical Decision RTs

Linear Mixed Model
Getting an Intuition
Understanding More
Complex Modeds
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Adding further predictors

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

```
> l.lexdec1 = lm(RT ~ 1 + Frequency + FamilySize,
+ data=lexdec)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	6.563853	0.026826	244.685	$<2 e-16$	***
Frequency	-0.035310	0.006407	-5.511	$4.13 \mathrm{e}-08$	***
FamilySize	-0.015655	0.009380	-1.669	0.0953	.

Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Question

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model

- On the previous slide, is the interpretation of the output clear?
- What is the interpretation of the intercept?
- How much faster is the most frequent word expected to be read compared to the least frequent word?

An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Frequency and Morph. Family Size

Predicting Lexical Decision RTs

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Generalized Linear

Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Word Frequency (log-transformed)

Continuous and categorical predictors

> l.lexdec1 = lm(RT ~ 1 + Frequency + FamilySize +

+ NativeLanguage, data=lexdec)
Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

- Recall that we're describing the output as a linear combination of the predictors.
\rightarrow Categorical predictors need to be coded numerically.
- The default is dummy/treatment coding for regression (cf. sum/contrast coding for ANOVA).

Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Adding Native Language

Generalized Linear

Mixed Models
Florian Jaeger
Predicting Lexical Decision RTs
Generalized Linear Model

Word Frequency (log-transformed)
Native Speakers (red) and Non-Native Speakers (blue)

Question

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions

- Remember that a Generalized Linear Model predicts the mean of the outcome as a linear combination.
- In the previous figure, what does 'mean' mean here?

Comparison to ANOVA

Generalized Linear

Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interactions

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Question

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

- On the previous slide, how should we interpret the interaction?

Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interaction: Frequency \& Native Language

Generalized Linear

 Mixed ModelsFlorian Jaeger

Predicting Lexical Decision RTs

Generalized Linear Model

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

 ModelGetting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interaction with Native Speakers (red) and Non-Native Speakers (blue)

Linear Model vs. ANOVA

- Linearity assumption (though many types of non-linearity can be investigated)
- Assumption of normality, but part of a more general framework that extends to other distribution in a conceptually straightforward way.
- Assumption of independence

NB: ANOVA is linear model with categorical predictors.

- Differences:
- Generalized Linear Model
- Consistent and transparent way of treating continuous and categorical predictors.
- Regression encourages a priori explicit coding of hypothesis \rightarrow reduction of post-hoc tests \rightarrow decrease of family-wise error rate.

Hypothesis testing in psycholinguistic research

- Typically, we make predictions not just about the existence, but also the direction of effects.
- Sometimes, we're also interested in effect shapes (non-linearities, etc.)
- Unlike in ANOVA, regression analyses reliably test hypotheses about effect direction, effect shape, and effect size without requiring post-hoc analyses if (a) the predictors in the model are coded appropriately and (b) the model can be trusted.
- cf. tomorrow

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Generalized Linear Mixed Models

- Experiments don't have just one participant.
- Different participants may have different idiosyncratic behavior.
- And items may have idiosyncratic properties, too.
\rightarrow Violations of the assumption of independence!
NB: There may even be more clustered (repeated) properties and clusters may be nested (e.g. subjects ϵ dialects ϵ languages).
- We'd like to take these into account, and perhaps investigate them.
\rightarrow Generalized Linear Mixed or Multilevel Models (a.k.a. hierarchical, mixed-effects).

Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Recall: Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Recall: Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model

An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Recall: Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model

An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Recall: Generalized Linear Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model

An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Generalized Linear Mixed Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Generalized Linear Mixed Models

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example
[This slide was generously provided by
R. Levy, rlevy@ucsd.edu]

Generalized Linear Mixed Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example
[This slide was generously provided by
R. Levy, rlevy@ucsd.edu]

Generalized Linear Mixed Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Generalized Linear Mixed Models

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed Linear Model

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- Back to our lexical-decision experiment:
- A variety of predictors seem to affect RTs, e.g.:
- Frequency
- FamilySize
- NativeLanguage
- Interactions

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed Linear Model

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- Back to our lexical-decision experiment:
- A variety of predictors seem to affect RTs, e.g.:
- Frequency
- FamilySize
- NativeLanguage
- Interactions
- Additionally, different participants in your study may also have:
- different overall decision speeds
- differing sensitivity to e.g. Frequency.

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Mixed Linear Model

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- Back to our lexical-decision experiment:
- A variety of predictors seem to affect RTs, e.g.:
- Frequency
- FamilySize
- NativeLanguage
- Interactions
- Additionally, different participants in your study may also have:
- different overall decision speeds
- differing sensitivity to e.g. Frequency.
- You want to draw inferences about all these things at the same time

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Mixed Linear Model

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example

- Random effects, starting simple: let each participant i have idiosyncratic differences in reaction times (RTs) $R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\text {Noise } N N\left(0, \sigma_{\epsilon}\right)}$

Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed linear model with one random intercept

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory

- Idea: Model distribution of subject differences as deviation from grand mean.
- Mixed models approximate deviation by fitting a normal distribution.
- Grand mean reflected in ordinary intercept
\rightarrow By-subject mean can be set to 0
\rightarrow Only parameter fit from data is variance.

```
> lmer.lexdec0 = lmer(RT ~ 1 + Frequency +
+ (1 | Subject), data=lexdec)
```

An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Interpretation of the output

Generalized Linear
Mixed Models
Florian Jaeger

- Interpretation parallel to ordinary regression models:

```
Formula: RT ~ 1 + Frequency + (1 | Subject)
    Data: lexdec
        AIC BIC logLik deviance REMLdev
    -844.6 -823 426.3 -868 -852.6
Random effects:
    Groups Name Variance Std.Dev.
    Subject (Intercept) 0.024693 0.15714
    Residual 0.034068 0.18457
Number of obs: 1659, groups: Subject, 21
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.588778 0.026981 244.20
Frequency -0.042872 0.003555 -12.06
```

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

MCMC-sampling

- t-value anti-conservative
\rightarrow MCMC-sampling of coefficients to obtain non anti-conservative estimates

```
> pvals.fnc(lmer.lexdec0, nsim = 10000)
$fixed
\begin{tabular}{rrrrrr} 
Estimate & MCMCmean & HPD95lower & HPD95upper & pMCMC & \(\operatorname{Pr}(>|t|)\) \\
6.5888 & 6.5886 & 6.5255 & 6.6516 & 0.0001 & 0 \\
-0.0429 & -0.0428 & -0.0498 & -0.0359 & 0.0001 & 0
\end{tabular}
```

\$random
Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper

1	Subject (Intercept)	0.1541	0.1188	0.1205	0.0927
2	Residual	0.1809	0.1817	0.1818	0.1753

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interpretation of the output

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interpretation of the output

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed models vs. ANOVA

Generalized Linear
Mixed Models
Florian Jaeger

Genera Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Mixed models with one random intercept

- Let's look at the by-subject adjustments to the intercept. These are called Best Unbiased Linear Predictors (BLUPs)
- BLUPs are not fitted parameters. Only one degree of freedom was added to the model. The BLUPs are estimated posteriori based on the fitted model.

$$
P\left(b_{i} \mid \widehat{\alpha}, \widehat{\beta}, \widehat{\sigma}_{b}, \widehat{\sigma}_{\epsilon}, \mathrm{X}\right)
$$

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Mixed models with one random intercept

- Let's look at the by-subject adjustments to the intercept. These are called Best Unbiased Linear Predictors (BLUPs)
- BLUPs are not fitted parameters. Only one degree of freedom was added to the model. The BLUPs are estimated posteriori based on the fitted model.

$$
P\left(b_{i} \mid \widehat{\alpha}, \widehat{\beta}, \widehat{\sigma}_{b}, \widehat{\sigma}_{\epsilon}, \mathrm{X}\right)
$$

- The BLUPs are the conditional modes of the $b_{i} s$-the choices that maximize the above probability

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Mixed models with one random intercept

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed models with one random intercept

- Observed and fitted values of by-subject means.

```
> p = exp(as.vector(unlist(coef(lmer.lexdec0) $Subject)))
> text(p, as.character(unique(lexdec$Subject)), col = "red")
> legend(x=2, y=850, legend=c("Predicted", "Observed"),
+ col=c("blue", "red"), pch=1)
```


Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed models with more random intercepts

Generalized Linear
Mixed Models
Florian Jaeger

- Unlike with ANOVA, the linear mixed model can accommodate more than one random intercept, if we think this is necessary/adequate.
- These are crossed random effects.

```
> lexdec.lmer1 = lmer(RT ~ 1 + (1 | Subject) + (1 | Word),
+ data = lexdec)
> ranef(lmer.lexdec1)
$Word
                (Intercept)
almond 0.0164795993
ant -0.0245297186
apple -0.0494242968
apricot -0.0410707531
$Subject
        (Intercept)
A1 -0.082668694
A2 -0.137236138
A3 0.009609997
```


Mixed models with more random intercepts

Generalized Linear
Mixed Models
Florian Jaeger

- Shrinkage becomes even more visible for fitted by-word means

Word as random effect

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed models with random slopes

- Not only the intercept, but any of the slopes (of the predictors) may differ between individuals.
- For example, subjects may show different sensitivity to Frequency:

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example
Fixed effects:
Estimate Std. Error t value
$\begin{array}{llll}\text { (Intercept) } & 6.588778 & 0.049830 & 132.22\end{array}$
Frequency -0.042872 0.006546 -6.55

Mixed models with random slopes

Generalized Linear
Mixed Models
Florian Jaeger

- The BLUPs of the random slope reflect the by-subject adjustments to the overall Frequency effect.
> ranef(lmer.lexdec2)
\$Word
(Intercept)
almond
0.0164795993
ant
-0.0245297186
\$Subject
(Intercept) Frequency
A1 -0.1130825633 0.0020016500
A2 $-0.2375062644 \quad 0.0158978707$
A3 $-0.0052393295 \quad 0.0034830009$
C $\quad-0.13205995870 .0143830430$
D 0.00113357640 .0038101993
I $\quad-0.14164464790 .0029889156$

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed model vs. ANOVA

- A mixed model with random slopes for all its predictors (incl. random intercept) is comparable in structure to an ANOVA
- Unlike ANOVA, random effects can be fit for several grouping variables in one single model.
\rightarrow More power (e.g. Baayen 2004; Dixon, 2008).
- No nesting assumptions need to be made (for examples of nesting in mixed models, see Barr, 2008 and his blog). As in the examples, so far, random effects can be crossed.
- Assumptions about variance-covariance matrix can be tested
- No need to rely on assumptions (e.g. sphericity).
- Can test whether specific random effect is needed (model comparison).

Random Intercept, Slope, and Covariance

- Random effects (e.g. intercepts and slopes) may be correlated.
- By default, R fits these covariances, introducing additional degrees of freedom (parameters).
- Note the simpler syntax.

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Random Intercept, Slope, and Covariance

Generalized Linear

 Mixed ModelsFlorian Jaeger

Generalized Linear Model

Graphical Model View

Random effects:			
Groups	Name	Variance	Std. Dev.
Word	(Intercept)	0.00296905	0.054489
Subject	(Intercept)	0.05647247	0.237639
	Frequency	0.00040981	0.020244
Residual		0.02916697	0.170
Number of obs: 1659, groups: Word, 79			
Fixed effects:			
	Estimate	Std. Error	t value
(Intercept) 6.588778	0.059252	111.20
Frequency	-0.042872	0.007312	-5.86

- What do such covariance parameters mean?

Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Covariance of random effects: An example

Generalized Linear
Mixed Models
Florian Jaeger
Random Effect Correlation

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Plotting Random Effects: Example

- Plotting random effects sorted by magnitude of first BLUP (here: intercept) and with posterior variance-covariance of random effects conditional on the estimates of the model parameters and on the data.
> dotplot(ranef(lmer.lexdec3, postVar=TRUE))

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Plotting Random Effects: Example

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Plotting Random Effects: Example

Generalized Linear

Mixed Models
Florian Jaeger

- Plotting observed against theoretical quantiles:

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model

Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Is the Random Slope Justified?

- One great feature of Mixed Models is that we can assess whether a certain random effect structure is actually warranted given the data.
- Just as nested ordinary regression models can be compared (cf. stepwise regression), we can compare models with nested random effect structures.
- Here, model comparison shows that the covariance parameter of lmer. lexdec3 significantly improves the model compared to lmer.lexdec 2 with both the random intercept and slope for subjects, but no covariance parameter $\left(\chi^{2}(1)=21.6, p<0.0001\right)$.
- The random slope overall is also justified $\left(\chi^{2}(2)=24.1\right.$, $p<0.0001$).
\rightarrow Despite the strong correlation, the two random effects for subjects are needed (given the fixed effect predictors in the model).

Interactions

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model

```
> lmer.lexdec4b = lmer(RT ~ 1 + NativeLanguage * (
+ Frequency + FamilySize + SynsetCount +
+ Class) +
+ (1 + Frequency | Subject) + (1 | Word),
+ data=lexdec)
```

[...]
Fixed effects:

(Intercept)	6.385090	0.030425	209.86
cNativeEnglish	-0.155821	0.060533	-2.57
cFrequency	-0.035180	0.008388	-4.19
cFamilySize	-0.019757	0.012401	-1.59
cSynsetCount	-0.030484	0.021046	-1.45
cPlant	-0.050907	0.015609	-3.26
cNativeEnglish:cFrequency	0.032893	0.011764	2.80
CNativeEnglish:cFamilySize	0.018424	0.015459	1.19
cNativeEnglish:cSynsetCount	-0.022869	0.026235	-0.87
cNativeEnglish:cPlant	0.082219	0.019457	4.23

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interactions

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
> p.lmer.lexdec4b = pvals.fnc(lmer.lexdec4b, nsim=10000, withMCMC=T)
> p.lmer.lexdec\$fixed

Estimate	MCMCmean	HPD95lower	HPD95upper	pMCMC	Pr $(>\|t\|)$
6.4867	6.4860	6.3839	6.5848	0.0001	0.0000
0.3314	0.3312	0.1990	0.4615	0.0001	0.0000
-0.0211	-0.0210	-0.0377	-0.0048	0.0142	0.0156
-0.0119	-0.0120	-0.0386	0.0143	0.3708	0.3997
-0.0403	-0.0401	-0.0852	0.0050	0.0882	0.0920
-0.0157	-0.0155	-0.0484	0.0181	0.3624	0.3767
-0.0329	-0.0329	-0.0515	-0.0136	0.0010	0.0006
-0.0184	-0.0184	-0.0496	0.0109	0.2416	0.2366
0.0229	0.0230	-0.0297	0.0734	0.3810	0.3866
-0.0822	-0.0825	-0.1232	-0.0453	0.0001	0.0000

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Visualizing an Interactions

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear
Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

MCMC

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear
Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

Generalized Linear

Mixed Model
Graphical Model View

Linear Mixed

Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed Logit Model

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA

- So, what do we need to change if we want to investigate, e.g. a binary (categorical) outcome?

Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Recall that ...

Generalized Linear
Mixed Models
Florian Jaeger
logistic regression is a kind of generalized linear model.

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
The distribution around the mean is taken to be
binomial.

Fitting Models
A Simulated Example

Recall that ...

- The linear predictor:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}
$$

- The link function g is the logit transform:

$$
\begin{align*}
& \mathrm{E}(\mathrm{Y})=p=\mathrm{g}^{-1}(\eta) \Leftrightarrow \\
& \mathrm{g}(p)=\ln \frac{p}{1-p}=\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n} \tag{2}
\end{align*}
$$

- The distribution around the mean is taken to be binomial.

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Mixed Logit Models

Generalized Linear
Mixed Models
Florian Jaeger

- Mixed Logit Models are a type of Generalized Linear Mixed Model.
- More generally, one advantage of the mixed model approach is its flexibility. Everything we learned about mixed linear models extends to other types of distributions within the exponential family (binomial, multinomial, poisson, beta-binomial, ...)
Caveat There are some implementational details (depending on your stats program, too) that may differ.

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

An example

Generalized Linear
Mixed Models
Florian Jaeger

- The same model as above, but now we predict whether participants' answer to the lexical decision task was correct.
- Outcome: Correct vs. incorrect answer (binomial outcome)
- Predictors: same as above

```
> lmer.lexdec.answer4 = lmer(Correct == "correct" ~ 1 +
+ NativeLanguage * (
+ Frequency + FamilySize + SynsetCount +
+ Class) +
+ (1 + Frequency | Subject) + (1 | Word),
+ data=lexdec, family="binomial")
```

NB: The only difference is the outcome variable and the family (assumed noise distribution) now is binomial (we didn't specify it before because "gaussian" is the default).

Mixed Logit Output

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model

```
[ . . ]
    AIC BIC logLik deviance
    495 570.8 -233.5 467
Random effects:
    Groups Name Variance Std.Dev. Corr
    Word (Intercept) 0.78368 0.88526
    Subject (Intercept) 2.92886 1.71139
    Frequency 0.11244 0.33532 -0.884
Number of obs: 1659, groups: Word, 79; Subject, 21
Fixed effects:
\begin{tabular}{|c|c|c|c|c|c|}
\hline (Intercept) & 4.3612 & 0.3022 & 14.433 & < 2e-16 & *** \\
\hline cNativeEnglish & 0.2828 & 0.5698 & 0.496 & 0.61960 & \\
\hline cFrequency & 0.6925 & 0.2417 & 2.865 & 0.00417 & ** \\
\hline cFamilySize & -0.2250 & 0.3713 & -0.606 & 0.54457 & \\
\hline cSynsetCount & 0.8152 & 0.6598 & 1.235 & 0.21665 & \\
\hline cPlant & 0.8441 & 0.4778 & 1.767 & 0.07729 & \\
\hline cNativeEnglish: cFrequency & 0.2803 & 0.3840 & 0.730 & 0.46546 & \\
\hline cNativeEnglish:cFamilySize & -0.2746 & 0.5997 & -0.458 & 0.64710 & \\
\hline cNativeEnglish:cSynsetCount & -2.6063 & 1.1772 & -2.214 & 0.02683 & * \\
\hline cNativeEnglish:cPlant & 1.0615 & 0.7561 & 1.404 & 0.16035 & \\
\hline
\end{tabular}
```

Theory

Linear Model

An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

 ModelGetting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interaction in logit space

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Interaction in probability space

Generalized Linear

Mixed Models
Florian Jaeger

Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model

Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Why not ANOVA?

Generalized Linear
Mixed Models
Florian Jaeger

- ANOVA over proportion has several problems (cf. Jaeger, 2008 for a summary)
- Hard to interpret output
- Violated assumption of homogeneity of variances

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example
Fig. 1. Variance of sample proportion depending on p (for $n=1$).

Why not ANOVA?

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Summary

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- There are a lot of issues, we have not covered today (by far most of these are not particular to mixed models, but apply equally to ANOVA).

$$
\begin{aligned}
& \text { Power (especially on unbalanced data) } \\
& \text { No assumption of homogeneity of variances } \\
& \text { Random effect structure can be explored, understood. } \\
& \text { Extendability to a variety of distributional families } \\
& \text { Conceptual transparency } \\
& \text { Effect direction, shape, size can be easily understood } \\
& \text { and investigated. } \\
& \text { You end up getting another perspective on your data }
\end{aligned}
$$

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Summary

Generalized Linear
Mixed Models
Florian Jaeger

- There are a lot of issues, we have not covered today (by far most of these are not particular to mixed models, but apply equally to ANOVA).
- The mixed model approach has many advantages:
- Power (especially on unbalanced data)
- No assumption of homogeneity of variances
- Random effect structure can be explored, understood.
- Extendability to a variety of distributional families
- Conceptual transparency
- Effect direction, shape, size can be easily understood and investigated.

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Summary

Generalized Linear
Mixed Models
Florian Jaeger

- There are a lot of issues, we have not covered today (by far most of these are not particular to mixed models, but apply equally to ANOVA).
- The mixed model approach has many advantages:
- Power (especially on unbalanced data)
- No assumption of homogeneity of variances
- Random effect structure can be explored, understood.
- Extendability to a variety of distributional families
- Conceptual transparency
- Effect direction, shape, size can be easily understood and investigated.
\rightarrow You end up getting another perspective on your data

Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Modeling schema

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary
Extras
Fitting Models
A Simulated Example

Two Methods

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Two Methods

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
 model parameters and update it on the basis of what narameters hest exnlain the data

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Two Methods

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

$$
\begin{aligned}
& \text { choose }\left\{\beta_{i}\right\} \text { and } \sigma \text { that make the likelihood } \\
& P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right) \text { as large as possible }
\end{aligned}
$$

- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

Two Methods

Generalized Linear
Mixed Models

$$
\text { Noise } \sim N\left(0, \sigma_{\epsilon}\right)
$$

$R T_{i j}=\alpha+\beta x_{i j}+\overbrace{\epsilon_{i j}}$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

$$
\begin{aligned}
& \text { choose }\left\{\beta_{i}\right\} \text { and } \sigma \text { that make the likelihood } \\
& P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right) \text { as large as possible }
\end{aligned}
$$

- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

Linear Mixed

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right) \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}}{P(Y)}
$$

Two Methods

Generalized Linear
Mixed Models
Florian Jaeger
Noise $\sim N\left(0, \sigma_{\epsilon}\right)$
$R T_{i j}=\alpha+\beta x_{i j}+\overbrace{\epsilon_{i j}}$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y

$$
\begin{aligned}
& \text { choose }\left\{\beta_{i}\right\} \text { and } \sigma \text { that make the likelihood } \\
& P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right) \text { as large as possible }
\end{aligned}
$$

- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

Linear Mixed

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{\overbrace{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}}{P(Y)}
$$

Fitting Mixed Models

Generalized Linear
Mixed Models
Florian Jaeger
$R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\text {Noise } N\left(0, \sigma_{\epsilon}\right)}$

- A couple of caveats about current implementations:
- To avoid biased variance estimates, linear mixed models are sometimes fit with Restricted Maximum Likelihood.
- There are no known analytic solutions to the likelihood formula of mixed logit models. Instead Laplace Approximation is used, which, however, provides a decent approximation (Harding and Hausman 2007). In modern implementations, this approximation can be improved (at the cost of increased computational cost).
- Finally, and as for all models/analysis, statistics are only a tool and, whether we can trust our results, depends on how careful we use these tools \rightarrow Tomorrow's lecture.

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear
Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simulated example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View
Linear Mixed
Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simulated example

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View
Theory
Linear Model
An Example

- Simulation of trial-level data can be invaluable for achieving deeper understanding of the data

```
## simulate some data
```

> sigma.b <- 125 \# inter-subject variation larger than

```
> sigma.e <- 40 # intra-subject, inter-trial variation
```

> alpha <- 500
> beta <- 12
$>M<-6 \quad$ \# number of participants
$>n<-50$ \# trials per participant
$>b<-\operatorname{rnorm}(M, 0$, sigma.b) \# individual differences
$>$ nneighbors <- rpois $(M * n, 3)+1$ \# generate num. neighbors
> subj <- $\operatorname{rep}(1: M, n)$
$>R T<-$ alpha + beta * nneighbors + \# simulate RTs!
$b[s u b j]+\operatorname{rnorm}(M * n, 0$, sigma.e) \#

Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed Model

Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simulated example

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model

Graphical Model View
Theory
Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

 ModelGetting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simulated example

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

A simulated example

Generalized Linear

Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models

- Participant-level clustering is easily visible
- This reflects the fact that (simulated) inter-participant variation (125 ms) is larger than (simulated) inter-trial variation (40ms)

A simulated example

Generalized Linear
Mixed Models
Florian Jaeger

Generalized Linear Model
Graphical Model View Theory

Linear Model
An Example
Geometrical Intuitions
Comparison to ANOVA
Generalized Linear Mixed Model
Graphical Model View

Linear Mixed

Model
Getting an Intuition
Understanding More
Complex Models
Mixed Logit
Models
Summary

Extras

Fitting Models
A Simulated Example

- And the (simulated) effects of neighborhood density are also visible

[^0]: [This slide was generously provided by or is based on slides provided by
 R. Levy, rlevy@ucsd.edu]

[^1]: The distribution around the mean is taken to be

