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Overview - Day 1

» Lecture 1:
(Re-)Introducing Ordinary Regression
» Comparison to ANOVA
Generalized Linear Models
Generalized Linear Mixed Models (Multilevel Models)
Trade-offs
» Talk(s):
» Efficiency in Production
» Syntax in Flux
» Tutorial 1: Contrast Coding (M. Gillespie)
» Implementing specific hypotheses
» Coding types: treatment, effect (sum), Helmert, and
polynomial coding
> Interactions: centering
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Overview - Day 2

» Tutorial 2: Interactions, Centering, and more (M.
Gillespie)
» Lecture 2:

» Common Issues and Solutions in Regression Modeling
(Mixed or not)

» outliers
» collinearity
» model evaluation

» Tutorial 3: Testing Linguistic Theories with
Logistic Regression (P. Graff)
» Nested and non-nested model comparison: AIC, BIC,
etc.
» Tutorial 4: BYOD - Group Therapy (M. Gillespie, P.
Graff, F. Jaeger)

» Please ask/add to the discussion any time!
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Generalized Linear Models

Goal: model the effects of predictors (independent variables)
X on a response (dependent variable) Y.

The picture:

Predictors

Response

Model parameters
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Reviewing GLMs

Assumptions of the generalized linear model (GLM):

» Predictors {X;} influence Y through the mediation of a
linear predictor n;
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Reviewing GLMs

Assumptions of the generalized linear model (GLM):

» Predictors {X;} influence Y through the mediation of a
linear predictor n;

» 7 is a linear combination of the {X;}:

n=a+ X1+ -+ OBnXn (linear predictor)
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Reviewing GLMs ©Wied Models
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Assumptions of the generalized linear model (GLM): M. Gillespie & P.
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» Predictors {X;} influence Y through the mediation of a
linear predictor n;

» 7 is a linear combination of the {X;}:

n=a+ X1+ -+ OBnXn (linear predictor)

» 1 determines the predicted mean p of Y

n=g(u) (link function)




Reviewing GLMs

Assumptions of the generalized linear model (GLM):

» Predictors {X;} influence Y through the mediation of a
linear predictor n;

» 7 is a linear combination of the {X;}:

n=a+ X1+ -+ OBnXn (linear predictor)

» 1 determines the predicted mean p of Y

n=g(u) (link function)

» There is some noise distribution of Y around the
predicted mean p of Y:

P(Y =y 1)
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Reviewing Linear Regression

Linear regression, which underlies ANOVA, is a kind of
generalized linear model.
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Reviewing Linear Regression

Linear regression, which underlies ANOVA, is a kind of
generalized linear model.

» The predicted mean is just the linear predictor:

n=1I(p)=p

» Noise is normally (=Gaussian) distributed around 0 with
standard deviation o

e ~ N(0,0)
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Generalized Linear

Reviewing Linear Regression Mixed Models

Florian Jaeger

Linear regression, which underlies ANOVA, is a kind of M- Gillesple & P

generalized linear model.

» The predicted mean is just the linear predictor:

n=1I(p)=p

» Noise is normally (=Gaussian) distributed around 0 with
standard deviation o

e ~ N(0,0)
» This gives us the traditional linear regression equation:

Predicted Mean 1 =17 Noise~N(0,0)
Y =a+ X1+ + BaXa+ €




Reviewing Logistic Regression

Logistic regression, too, is a kind of generalized linear model.
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Reviewing Logistic Regression

Logistic regression, too, is a kind of generalized linear model.

» The linear predictor:

7’:0‘+ﬂ1X1+"'+/8an
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Reviewing Logistic Regression

Logistic regression, too, is a kind of generalized linear model.

» The linear predictor:

n=a+ X1+ + B Xn
» The link function g is the logit transform:

E(Y)=p=g'(n) &

g(p)zlnl_pp=n=a+61X1+---+ﬁan (1)
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Reviewing Logistic Regression

Logistic regression, too, is a kind of generalized linear model.

» The linear predictor:

n=a+ X1+ + B Xn
» The link function g is the logit transform:

E(Y)=p=g'(n) &

g(p)zlnl_pp=n=a+61X1+---+ﬁan (1)

» The distribution around the mean is taken to be
binomial.
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Reviewing GLM

» Poisson regression
» Beta-binomial model (for low count data, for example)
» Ordered and unordered multinomial regression.

> ...

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Theory




The Linear Model

> Let's start with the Linear Model (linear regression,
multiple linear regression)
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A simple example

» You are studying word RTs in a lexical-decision task
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tpozt Word or non-word?
house Word or non-word?
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» Data set based on Baayen et al. (2006; available
through languageR library in the free statistics program

An Example
Available online at www.sciencedirect.com
@ Jowrnal of
SCIENCE DIRECT"
Memaory and
Language
ELSEVIER Toumal of Memory ard Latguage 55 (2008) 250 313 [ A
v ke vier comflocate fml

Morphological influences on the recognition
of monosyllabic menomerphemic words

R.H. Baayen **, L.B. Feldman ®, R. Schreuder

* Rautbowed Universiy Wi o ol Max Planck: Dttt for Pyeholngidics, P.O: Box 310, 6500 AH Wimagen The Netheriouds
* Sute Chiners(p of New York at Albany, Depuriment of Fipchology, SSI12 Aibar NY 12222, USA
= Rasbotd Univercity Nijpmegen, F.0. Box 310, 6300 AH Nipmegen, The Methe S

Rexeived 15 July 2005; revision received 28 Iarch 2006
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» Lexical Decisions from 79 concrete nouns each seen by “

21 subjects (1,659 observation).
» Outcome: log lexical decision latency RT
> Inputs:

» factor (e.g. NativeLanguage: English or Other)
» continuous predictors (e.g. Frequency).

An Example

> library (languageR)
> head(lexdec[,c(1,2,5,10,11)])

Subject RT NativeLanguage Frequency FamilySize
1 Al 6.340359 English 4.859812 1.3862944
2 Al 6.308098 English 4.605170 1.0986123
3 Al 6.349139 English 4.997212 0.6931472
4 Al 6.186209 English 4.727388 0.0000000
5 Al 6.025866 English 7.667626 3.1354942
6 Al 6.180017 English 4.060443 0.6931472




A simple example

» A simple model: assume that Frequency has a linear
effect on average (log-transformed) RT, and trial-level
noise is normally distributed
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effect on average (log-transformed) RT, and trial-level
noise is normally distributed

» If x; is Frequency, our simple model is
Noise~N(0,0.)
P ,./\
RT,j =oa+ JX,",' + €jj
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A simple example

» A simple model: assume that Frequency has a linear
effect on average (log-transformed) RT, and trial-level
noise is normally distributed

» If x; is Frequency, our simple model is
Noise~N(0,0.)
P /./\
RT,j =oa+ JX,",' + €jj

» We need to draw inferences about «, 3, and

> e.g., "Does Frequency affects RT?"— is (3 reliably
non-zero?

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff




Reviewing GLMs: A simple example

Noise~N(0,7.)
RTj=o+0x+ e

» Here's a translation of our simple model into R:

> glm(RT ~ 1 + Frequency, data=lexdec,
+ family="gaussian'")

[...]

Estimate Std. Error t wvalue Pr(>|t])

(Intercept) 6.5887 0.022296 295.515
Frequency -0.0428 0.004533 -9.459

> sqrt (summary (1) [["dispersion"]])
[1] 0.2353127

<2e-16 **x
<2e-16 **x
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Reviewing GLMs: A simple example

Noise~N(0,7.)
BT, =i it a0

» Here's a translation of our simple model into R:
> glm(RT ~ 1 + Frequency, data=lexdec,
+ family="gaussian")

[...1 %
Estimate Std. Error t value Pr(>|t])

(Intercept) 6.5887 0.022296 295.515 <2e-16 **xx*

Frequency -0.0428 0.004533 -9.459 <2e-16 **xx
> sqrt (summary (1) [["dispersion"]])
[1] 0.2353127
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Reviewing GLMs: A simple example

Noise~N(0,7.)
BT, =i it a0

» Here's a translation of our simple model into R:
> glm(RT ~ 1 + Frequency, data=lexdec,
+ family="gaussian")
L1
Estimate Std. Error t value Pr(>|t])
(Intercept) 6.5887 0.022296 295.515 <2e-16 *xx
Frequency -0.0428 0.004533 -9.459 <2e-16 **xx
> sqrt(summary(l)[[”df?pg{fion”]])
[1] 0.2353127 15}
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Reviewing GLMs: A simple example

Noise~N(0,7.)
BT, =i it a0

» Here's a translation of our simple model into R:
> glm(RT ~ 1 + Frequency, data=lexdec,
+ family="gaussian")
L1
Estimate Std. Error t value Pr(>|t])
(Intercept) 6.5887 0.022296 295.515 <2e-16 *xx
Frequency -0.0428 0.004533 -9.459 <2e-16 **xx
> sqrt(summary(l)[[”df?pg{fion”]])
[1] [0.2353127 15}
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Linear Model with just an intercept

» The intercept is a predictor in the model (usually one
we don't care about).

— A significant intercept indicates that it is different from
zero.

> 1l.lexdecO0 = 1Im(RT ~ 1, data=lexdec)
> summary (1.lexdec0)
[...]
Residuals:
Min 10 Median 30 Max
-0.55614 -0.17048 -0.03945 0.11695 1.20222

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6.385090 0.005929 1077 <2e-16 **x
[...1]

NB: Here, intercept encodes overall mean.
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Generalized Linear

Visualization of Intercept Model Mixed Models

Florian Jaeger

Predicting Lexical Decision RTs
M. Gillespie & P.

Graff
°
v
~
M o
I o
b
g g°0 .
IS o ° ° N ° 6 4 0o
Q ° o ©°° ° o
g o | 2 o #T 0 °
s ™~ ¢ o ® o0 Geometrical Intuitions
2 oo o 5 2%
= ° @ o Co oo Ofho o o
S o © % © @ %%y 60 ° o |
T o ° & %0 © ° & & o
=] ° Q 2o o o O o 0% 8
2 $°f o oo ° %o °o 8 w° % §% B:}v“
< ° ° % 0 00 % B%q P o 0ot @
= ° o o o o 2% 2o o % lme @ ©
o 0092 o, o 289 o0 Sk G B
oy % o ¢ o®0% 2 &P 0 0o ° !
o uw | o 0o @ To° 488890y oo o °0 TR oy
S © o, 3523®Be8% e Boghl O WP e B850 8P
£ °6° o of o0 FBeS o0 BB Fooo B
© 8 @oRoT R %P 2 ° o T L B8 o a0 % 9% o
= 57 £y OB s O 0 %
3 S5T o oRA et S e el T K A,
c go%%p % ?Uﬁ%‘?&" ﬁo" ), 0 G0 o °
g_ a&u :o% 088 & %2 S50, © 90888 Fe A
® ° 0, °8%g 00 00 g 8, 08 oo tHéd o8
4 %@ © 8o “wha b o kg e
& LY o Se g oo %P K & o
& o o £, ° ° 0o ° % ?
o @ &0 o ¥ o ° o
- 8%,0 89 ® o o
LR B A A
o o o ® o,
N °
T T T T
0 500 1000 1500

Case Index




Linear Model with one predictor

> l.lexdecl = 1lm(RT ~ 1 + Frequency, data=lexdec)

» Classic geometrical interpretation: Finding slope for the
predictor that minimized the squared error.

NB:

NB:

Never forget the directionality in this statement (the
error in predicting the outcome is minimized, not the
distance from the line).

Maximum likelihood (ML) fitting is the more general
approach as it extends to other types of Generalized
Linear Models. ML is identical to least-squared error for
Gaussian errors.
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Mixed Models
Florian Jaeger
M. Gillespie & P.

=
<]
2
£
-
1]
N
®
4
@
c
@
o

Geometrical Intuitions

)
o © 0, ®O0g go

o o

e ° fe
00
0o ®3° oo

° 0, 00 HOgo
o

°

Predicting Lexical Decision RTs

o

®
DN - 5 TACES

5 B

° AR

° % o 8T
o

© 000 000 B0 @D O

°®  BoSHR MFHWO0

0008 R R0, SBBRFAS
@0 Bo ®O(EB@R 000 OO

8o

oo

o o 08 6 WO O Y EO QTP O BWE D ®Oo P P
o ® o 00 @DOOO @ 00 O
% o000 00(@O @O 000 O
° ° ©  ©0 0 OOmO 000N O W CDEO 0O

o %o BO PO © O WY O HHHEO FOFOD® O ©
° °®° o ° 898 B af

o © o o0 p ® oomwooo o

o @ o oo 00 oaO® @O 0GO® @00 ®

o 00 o @oo o Hom 000 o
° oo o womo o ©

°

o

SL 0L

Frequency effect on RT

T T
S9 09

(soasw pawlojsuen-Hoj ur) Aouale| asuodsay

Word Frequency (log-transformed)



Linearity Assumption * Wied Modds

y P

NB: Like AN(C)OVA, the linear model assumes that the Florian Jacger
outcome is linear in the coefficients (linearity 1, @lpfia & R

Graff

assumption).
» This does not mean that the outcome and the input
variable have to be linearly related (cf. previous page).
» To illustrate this, consider that we can back-transform
the log-transformed Frequency (— transformations
may be necessary).

Predicting Lexical Decision RTs,

2000
L

n msecs)
1500
.

Response latency (i

0 500 1000 1500 2000

Word Frequency




Adding further predictors

» FamilySize is the number of words in the
morphological family of the target word.

» For now, we are assuming two independent effects.

> l.lexdecl = Im(RT ~ 1 + Frequency + FamilySize,
+ data=lexdec)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6.563853 0.026826 244.685 < 2e-16
Frequency -0.035310 0.006407 -5.511 4.13e-08
FamilySize -0.015655 0.009380 -1.669 0.0953

* k%
* k%
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Question

» On the previous slide, is the interpretation of the output
clear?

» What is the interpretation of the intercept?

» How much faster is the most frequent word expected to
be read compared to the least frequent word?

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Geometrical Intuitions




Mixed Models
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Continuous and categorical predictors

> l.lexdecl = Ilm(RT ~ 1 + Frequency + FamilySize +
+ NativeLanguage, data=lexdec)

» Recall that we're describing the output as a linear
combination of the predictors.
— Categorical predictors need to be coded numerically.

» The default is dummy/treatment coding for regression
(cf. sum/contrast coding for ANOVA).
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Number of morph. family members (log-transformed)

Response latency (in log-transformed msecs)

Word Frequency (log-transformed)

Native Speakers (red) and
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Question

» Remember that a Generalized Linear Model predicts the
mean of the outcome as a linear combination.

» In the previous figure, what does ‘mean’ mean here?
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» Interactions are products of predictors.

» Significant interactions tell us that the slope of a
predictor differs for different values of the other
predictor.

Geometrical Intuitions

> l.lexdecl = 1lm(RT ~ 1 + Frequency + FamilySize +
+ NativeLanguage + Frequency:NativeLanguage,
+ data=lexdec)

Residuals:
Min 10 Median 30 Max
-0.66925 -0.14917 -0.02800 0.11626 1.06790

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6.441135 0.031140 206.847 < 2e-16
Frequency -0.023536 0.007079 -3.325 0.000905
FamilySize -0.015655 0.008839 -1.771 0.076726
NativeLanguageOther 0.286343 0.042432 6.748 2.06e-11
Frequency:NatLangOther -0.027472 0.008626 -3.185 0.001475




Question

» On the previous slide, how should we interpret the
interaction?
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Linear Model vs. ANOVA

» Shared with ANOVA:

» Linearity assumption (though many types of
non-linearity can be investigated)

» Assumption of normality, but part of a more general
framework that extends to other distribution in a
conceptually straightforward way.

» Assumption of independence

NB: ANOVA is linear model with categorical predictors.

» Differences:
> Generalized Linear Model
» Consistent and transparent way of treating continuous
and categorical predictors.
» Regression encourages a priori explicit coding of
hypothesis — reduction of post-hoc tests — decrease of
family-wise error rate.
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Hypothesis testing in psycholinguistic ©Vired Models
reseal‘Ch Florian Jaeger

M. Gillespie & P.
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» Typically, we make predictions not just about the
existence, but also the direction of effects.

» Sometimes, we're also interested in effect shapes
(non-linearities, etc.)

» Unlike in ANOVA, regression analyses reliably test
hypotheses about effect direction, effect shape, and
effect size without requiring post-hoc analyses if (a)
the predictors in the model are coded appropriately (cf.
M. Gillespie's tutorial later today) and (b) the model
can be trusted (cf. tomorrow).




Determining the parameters

» How do we choose parameters (model coefficients) [3;

and o7

» We find the best ones.

» There are two major approaches (deeply related, yet
different) in widespread use:
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Generalized Linear

Determining the parameters Mixed Models
Florian Jaeger
» How do we choose parameters (model coefficients) j3; M. Gillspie & P
and o7 N

» We find the best ones.
» There are two major approaches (deeply related, yet
different) in widespread use:
» The principle of maximum likelihood: pick parameter
values that maximize the probability of your data Y
choose {3;} and o that make the likelihood
P(Y|{Bi},0) as large as possible




Generalized Linear

Determining the parameters Mixed Models
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» How do we choose parameters (model coefficients) j3; M. Gillespie & P.
Graff

and o7?
» We find the best ones.
» There are two major approaches (deeply related, yet
different) in widespread use:
» The principle of maximum likelihood: pick parameter
values that maximize the probability of your data Y

choose {3;} and o that make the likelihood
P(Y|{Bi},0) as large as possible

» Bayesian inference: put a probability distribution on the
model parameters and update it on the basis of what
parameters best explain the data




Generalized Linear

Determining the parameters Mixed Models
Florian Jaeger
» How do we choose parameters (model coefficients) j3; M. Gillspie & P

and o7

» We find the best ones.
» There are two major approaches (deeply related, yet
different) in widespread use:
» The principle of maximum likelihood: pick parameter
values that maximize the probability of your data Y
choose {3;} and o that make the likelihood
P(Y|{Bi},0) as large as possible

» Bayesian inference: put a probability distribution on the
model parameters and update it on the basis of what
parameters best explain the data

Prior

P(Y|{8:}.0) PUAT. o)
P({ﬁi}70|y): ( |{ﬁl}’P?3/)({ﬁl}’o-)




Generalized Linear

Determining the parameters Mixed Models
Florian Jaeger
» How do we choose parameters (model coefficients) j3; M. Gillspie & P
and o7 N

» We find the best ones.
» There are two major approaches (deeply related, yet
different) in widespread use:
» The principle of maximum likelihood: pick parameter
values that maximize the probability of your data Y
choose {3;} and o that make the likelihood
P(Y|{Bi},0) as large as possible

» Bayesian inference: put a probability distribution on the
model parameters and update it on the basis of what
parameters best explain the data

Likelihood Prior

P({Gi},0lY) = P(YH@}/,D?/I)D({@.}’O)




Generalized Linear

Penalization, Regularization, etc. Mixed Models

Florian Jaeger

» Modern moderns are often fit using maximization of
M. Gillespie & P.

likelihood combined with some sort of penalization, a Graff
term that ‘punished’ high model complexity (high values
of the coefficients).

» cf. Baayen, Davidson, and Bates (2008) for a nice
description.

Comparison to ANOVA

Figure 2. Contours of the profiled deviance as a function of the relative standard
deviations of the item random effects and the subject random effects. The leftmost
panel shows the deviance, the function that is minimized at the maximum likelihood
estimates, the middle panel shows the component of the deviance that measures
model complexity and the rightmost panel shows the component of the deviance
that measures fidelity of the fitted values to the observed data.




Generalized Linear Mixed Models

» Experiments don't have just one participant.
» Different participants may have different idiosyncratic
behavior.
» And items may have idiosyncratic properties, too.

— Violations of the assumption of independence!

NB: There may even be more clustered (repeated) properties
and clusters may be nested (e.g. subjects € dialects €
languages).

» We'd like to take these into account, and perhaps
investigate them.

— Generalized Linear Mixed or Multilevel Models
(a-k.a. hierarchical, mixed-effects).

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Generalized Linear
Mixed Model




Recall: Generalized Linear Models

The picture:

Generalized Linear
Mixed Models
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Graff

Graphical Model View
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Recall: Generalized Linear Models

The picture:

Predictors

Model parameters
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Recall: Generalized Linear Models

The picture:

Predictors

Response

Model parameters
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Generalized Linear Mixed Models

Cluster-specific
parameters
(“random effects”)
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Generalized Linear Mixed Models

Cluster-specific
parameters
(“random effects”)
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Generalized Linear Mixed Models

Cluster-specific
parameters

(“random effects”)

Parameters governing
inter-cluster variability

Generalized Linear
Mixed Models
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Graphical Model View




Mixed Linear Model e
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M. Gillespie & P.
Graff

» Back to our lexical-decision experiment:

» A variety of predictors seem to affect RTs, e.g.:
» Frequency
» FamilySize
» NativeLanguage
> Interactions

Linear Mixed
Model




Mixed Linear Model

» Back to our lexical-decision experiment:
» A variety of predictors seem to affect RTs, e.g.:
» Frequency
» FamilySize
» NativeLanguage
> Interactions
» Additionally, different participants in your study may
also have:
» different overall decision speeds
» differing sensitivity to e.g. Frequency.

Generalized Linear
Mixed Models
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Graff

Linear Mixed
Model




Mixed Linear Model

» Back to our lexical-decision experiment:
» A variety of predictors seem to affect RTs, e.g.:
» Frequency
» FamilySize
» NativeLanguage
> Interactions
» Additionally, different participants in your study may
also have:
» different overall decision speeds
» differing sensitivity to e.g. Frequency.
» You want to draw inferences about all these things at
the same time

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Linear Mixed
Model




Mixed Linear Model e

Florian Jaeger

M. Gillespie & P.
Graff

» Random effects, starting simple: let each participant i
have idiosyncratic differences in reaction times (RTs)

~N(0,05) Noise~N(0,0.)

—~~
RT,'J' =+ dX,J + b + fgu\

Getting an Intuition




Generalized Linear

Mixed linear model with one random Mixed Models
intercept

Florian Jaeger

M. Gillespie & P.
Graff

» Idea: Model distribution of subject differences as
deviation from grand mean.

» Mixed models approximate deviation by fitting a normal
distribution.
» Grand mean reflected in ordinary intercept

— By-subject mean can be set to 0
— Only additional parameter fit from data is variance.

Getting an Intuition

> Ilmer.lexdecO = lmer (RT ~ 1 + Frequency +
+ (1 | Subject), data=lexdec)




Generalized Linear

Interpretation of the output Mixed Models

Florian Jaeger

M. Gillespie & P.
~N(0,55)  Noise~N(0,0.) Graff

=~
RT,'J':(I+“3X,'J'+ b; + ,‘E/,J\

» Interpretation parallel to ordinary regression models:

Formula: RT ~ 1 + Frequency + (1 | Subject)
Data: lexdec
AIC BIC logLik deviance REMLdev

-844.6 -823 426.3 -868 -852.6
Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 0.024693 0.15714

Residual 0.034068 0.18457

Getting an Intuition

Number of obs: 1659, groups: Subject, 21

Fixed effects:

Estimate Std. Error t value
(Intercept) 6.588778 0.026981 244.20
Frequency -0.042872 0.003555 -12.06




MCMC-sampling © Wived Models

Florian Jaeger

» t-value anti-conservative
. - . M. Gillespie & P.
— MCMC-sampling of coefficients to obtain non Graff

anti-conservative estimates

> pvals. fnc(lmer.lexdecO, nsim = 10000)

$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t])

(Intercept) 6.5888 6.5886 6.5255 6.6516 0.0001 0
Frequency -0.0429 -0.0428 -0.0498 -0.0359 0.0001 0
$random

Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper
1 Subject (Intercept) 0.1541 0.1188 0.1205 0.0927 0.1516
2 Residual 0.1809 0.1817 0.1818 0.1753 0.1879

S e ey

Getting an Intuition

o o1 o

RS

Densiy.

T m @ @ w 1w

Posterior Values




Interpretation of the output

» So many new things! What is the output of the linear
mixed model?

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Interpretation of the output ©Vired Models

Florian Jaeger

M. Gillespie & P.
Graff

» So many new things! What is the output of the linear
mixed model?

» estimates of coefficients for fixed and random
predictors.

» predictions = fitted values, just as for ordinary
regression model.

> cor(fitted(lmer.lexdec0), lexdecSRT) "2 Cetnalnlititiol
[1] 0.4357668




Mixed models vs. ANOVA

» Mixed models inherit all advantages from
Generalized Linear Models.

» Unlike the ordinary linear model, the linear mixed model
now acknowledges that there are slower and faster
subjects.

» This is done without wasting kK — 1 degrees of freedom
on k subjects. We only need one parameter!

» Unlike with ANOVA, we can actually look at the
random differences (— individual differences).

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Mixed models with one random intercept

» Let's look at the by-subject adjustments to the
intercept. These are called Best Unbiased Linear
Predictors (BLUPs)

» BLUPs are not fitted parameters. Only one degree of
freedom was added to the model. The BLUPs are
estimated posteriori based on the fitted model.

P(bllaa 37 a\b78€7X)

Generalized Linear
Mixed Models
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Getting an Intuition




Mixed models with one random intercept

» Let's look at the by-subject adjustments to the
intercept. These are called Best Unbiased Linear
Predictors (BLUPs)

» BLUPs are not fitted parameters. Only one degree of
freedom was added to the model. The BLUPs are
estimated posteriori based on the fitted model.

P(bllaa 37 a\b78€7X)

» The BLUPs are the conditional modes of the b;s—the
choices that maximize the above probability

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Mixed models with one random intercept  Nired Moddls

Florian Jaeger

M. Gillespie & P.
Graff

NB: By-subjects adjustments are assumed to be centered

around zero, but they don't necessarily do so (here:
—2.3E-12).

head (ranef (lexdec.lmer0))

$Subject
(Intercept)
Al -0.082668694
A2 -0.137236138
A3 0.009609997
C -0.064365560
D 0.022963863

Getting an Intuition




Generalized Linear

Mixed models with one random intercept Mixed Models

Florian Jaeger

» Observed and fitted values of by-subject means. . G 8 p
. Hlespie .

Graff

> p = exp(as.vector (unlist (coef (Imer.lexdec0) $Subject)))

> text (p, as.character (unique (lexdec$Subject)), col = "red")
> legend(x=2, y=850, legend=c("Predicted", "Observed"),

+ col=c("blue", "red"), pch=1)

Subject as random effect
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Mixed models with more random intercepts

» Unlike with ANOVA, the linear mixed model can
accommodate more than one random intercept, if we
think this is necessary/adequate.

» These are crossed random effects.
> lexdec.lmerl = lmer(RT ~ 1 + (1 | Subject) + (1 | Word),

+ data = lexdec)
> ranef (lmer.lexdecl)

SWord

(Intercept)
almond 0.0164795993
ant —-0.0245297186
apple —-0.0494242968
apricot -0.0410707531
$Subject

(Intercept)

Al -0.082668694
A2 -0.137236138
A3 0.009609997

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Generalized Linear

Mixed models with more random intercepts [ g

Florian Jaeger

M. Gillespie & P.
» Shrinkage becomes even more visible for fitted by-word Graff

means

Word as random effect
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Mixed models with random slopes ©Vired Models

Florian Jaeger

> Not only the intercept, but any of the slopes (of the T e
predictors) may differ between individuals. Graft

» For example, subjects may show different sensitivity to
Frequency:

> lmer.lexdec2 = lmer (RT ~ 1 + Frequency +

+ (1 | Subject) + (0 + Frequency | Subject) +
+ (1 | Word),

+ data=lexdec)

Random effects:

Groups Name Variance Std.Dev.
Word (Intercept) 0.00295937 0.054400
Subject Frequency 0.00018681 0.013668 Getting an Intuition
Subject (Intercept) 0.03489572 0.186804
Residual 0.02937016 0.171377

Number of obs: 1659, groups: Word, 79; Subject, 21

Fixed effects:

Estimate Std. Error t wvalue
(Intercept) 6.588778 0.049830 132.22
Frequency -0.042872 0.006546 =6.55




Generalized Linear

Mixed models with random slopes Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

» The BLUPs of the random slope reflect the by-subject
adjustments to the overall Frequency effect.

> ranef (1lmer.lexdec2)

SWord
(Intercept)

almond 0.0164795993
ant —-0.0245297186
$Subject

(Intercept) Frequency
Al -0.1130825633 0.0020016500 o
A2 -0.2375062644 0.0158978707
A3 -0.0052393295 0.0034830009
C -0.1320599587 0.0143830430
D 0.0011335764 0.0038101993
I -0.1416446479 0.0029889156




Mixed model vs. ANOVA

» A mixed model with random slopes for all its predictors
(incl. random intercept) is comparable in structure to
an ANOVA

» Unlike ANOVA, random effects can be fit for several
grouping variables in one single model.

— More power (e.g. Baayen 2004; Dixon, 2008).

» No nesting assumptions need to be made (for examples
of nesting in mixed models, see Barr, 2008 and his
blog). As in the examples, so far, random effects can be
crossed.

» Assumptions about variance-covariance matrix can be
tested

» No need to rely on assumptions (e.g. sphericity).
» Can test whether specific random effect is needed
(model comparison).

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Random Intercept, Slope, and Covariance

» Random effects (e.g. intercepts and slopes) may be
correlated.

» By default, R fits these covariances, introducing

additional degrees of freedom (parameters).
> Note the simpler syntax.

> Ilmer.lexdec2 = lmer (RT ~ 1 + Frequency +

+ (1 + Frequency | Subject) +
+ (1 | Word),
+ data=lexdec)

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Random Intercept, Slope, and Covariance  Nired Moddls

Florian Jaeger

M. Gillespie & P.
Graff

Random effects:
Groups Name Variance Std.Dev. Corr
Word (Intercept) 0.00296905 0.054489
Subject (Intercept) 0.05647247 0.237639
Frequency 0.00040981 0.020244 -0.918
Residual 0.02916697 0.170783
Number of obs: 1659, groups: Word, 79; Subject, 21

Fixed effects:

Estimate Std. Error t value
(Intercept) 6.588778 0.059252 111.20
Frequency —-0.042872 0.007312 =35, 686

Getting an Intuition

» What do such covariance parameters mean?




Generalized Linear

Covariance of random effects: An example Mixed Models

Florian Jaeger

Random Effect Correlation M. Gillespie & P.
Graff
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Frequency
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Getting an Intuition
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Generalized Linear

Plotting Random Effects: Example Mixed Models

Florian Jaeger

» Plotting random effects sorted by magnitude of first . Gl & P
BLUP (here: intercept) and with posterior Graff
variance-covariance of random effects conditional on the
estimates of the model parameters and on the data.

> dotplot (ranef (1mer. lexdec3, postVar=TRUE))
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P P
(Intercept) Frequency

Getting an Intuition
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Plotting Random Effects: Example

» Plotted without forcing scales to be identical:

> dotplot (ranef (1lmer. lexdec3, postVar=TRUE),
+ scales = list(x =

+ list (relation = 'free')))[["Subject"]]
(Intercept) Frequency
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Generalized Linear
Mixed Models
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Getting an Intuition




Generalized Linear

Plotting Random Effects: Example Mixed Models

Florian Jaeger

M. Gillespie & P.
» Plotting observed against theoretical quantiles: Graff
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Getting an Intuition
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Is the Random Slope Justified?

| 2

One great feature of Mixed Models is that we can
assess whether a certain random effect structure is
actually warranted given the data.

Just as nested ordinary regression models can be
compared (cf. stepwise regression), we can compare
models with nested random effect structures.

Here, model comparison shows that the covariance
parameter of 1mer.lexdec3 significantly improves the
model compared to lmer.lexdec2 with both the
random intercept and slope for subjects, but no
covariance parameter (x2(1) = 21.6, p < 0.0001).

The random slope overall is also justified (x?(2) = 24.1,
p < 0.0001).

Despite the strong correlation, the two random effects
for subjects are needed (given the fixed effect predictors
in the model).

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Getting an Intuition




Interactions

Class) +

+ 4+ + + Vv

[...]

Fixed effects:

(Intercept)
cNativeEnglish
cFrequency
cFamilySize
cSynsetCount
cPlant

cNativeEnglish:
cNativeEnglish:
cNativeEnglish:
cNativeEnglish:

Estimate Std.

6

=0,

-0.

-0.

-0.

-0.

cFrequency 0.
cFamilySize 0.
cSynsetCount -0.
cPlant 0.

385090
155821
035180
019757
030484
050907
032893
018424
022869
082219

0.
.060533 =057
.008388 -4.19
.012401 =il 59
.021046 -1.45
.015609 =3.26
.011764 2.80
.015459 1.19
.026235 -0.87
.019457 4.23

Oocoooooooo

lmer.lexdec4b = lmer (RT ~ 1 + NativeLanguage * (
Frequency + FamilySize + SynsetCount +

(1 + Frequency | Subject) + (1 | Woxd),
data=lexdec)

Error t value
030425 209.86

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Understanding More
Complex Models




Generalized Linear

Interactions Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

> p.lmer.lexdec4b = pvals.fnc(lmer.lexdec4b,
nsim=10000, withMCMC=T)
> p.lmer.lexdec$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t])

(Intercept) 6.4867 6.4860 6.3839 6.5848 0.0001 0.0000
NativeLanguageOther 0.3314 0.3312 0.1990 0.4615 0.0001 0.0000
Frequency -0.0211 -0.0210 -0.0377 -0.0048 0.0142 0.0156
FamilySize -0.0119 -0.0120 -0.0386 0.0143 0.3708 0.3997
SynsetCount -0.0403 -0.0401 -0.0852 0.0050 0.0882 0.0920
Classplant -0.0157 -0.0155 -0.0484 0.0181 0.3624 0.3767
NatLang:Frequency -0.0329 -0.0329 -0.0515 -0.0136 0.0010 0.0006
NatLang:FamilySize -0.0184 -0.0184 -0.0496 0.0109 0.2416 0.2366
NatLang:SynsetCount 0.0229 0.0230 -0.0297 0.0734 0.3810 0.3866
NatLang:Classplant -0.0822 -0.0825 -0.1232 -0.0453 0.0001 0.0000 Understanding More

Complex Models




Generalized Linear

Visualizing an Interactions Mixed Models

Florian Jaeger

M. Gillespie & P.
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Mixed Logit Model

» So, what do we need to change if we want to
investigate, e.g. a binary (categorical) outcome?

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Mixed Logit
Models




Recall that ...

logistic regression is a kind of generalized linear model.

Generalized Linear
Mixed Models
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Graff
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Recall that ...

logistic regression is a kind of generalized linear model.

» The linear predictor:

» The link function g is the logit transform:

EY)=p=g'(n) <

g(p) =In fp=n=a+ﬂ1X1+---+,8an

1

» The distribution around the mean is taken to be
binomial.

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Mixed Logit
Models




Mixed Logit Models

» Mixed Logit Models are a type of Generalized Linear
Mixed Model.

» More generally, one advantage of the mixed model
approach is its flexibility. Everything we learned about
mixed linear models extends to other types of
distributions within the exponential family (binomial,
multinomial, poisson, beta-binomial, ...)

Caveat There are some implementational details (depending on

your stats program, too) that may differ.

Generalized Linear
Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff

Mixed Logit
Models




An examp'e Generalized Linear

Mixed Models
Florian Jaeger
» The same model as above, but now we predict whether M. Gillespie & P.
participants’ answer to the lexical decision task was et
correct.

» Outcome: Correct vs. incorrect answer (binomial
outcome)

» Predictors: same as above

Ilmer.lexdec.answer4 = lmer (Correct == '"correct" ~ 1 +
NativeLanguage * (

Frequency + FamilySize + SynsetCount +

Class) +

(1 + Frequency | Subject) + (1 | Woxrd),

data=lexdec, family="binomial")

++ ++ +V

. . . Mixed Logi
NB: The only difference is the outcome variable and the Models

family (assumed noise distribution) now is binomial (we

didn't specify it before because "gaussian” is the
default).




Mixed Logit Output ® Wied Models

Florian Jaeger

M. Gillespie & P.
Graff

[ 1

AIC BIC logLik deviance

495 570.8 -233.5 467
Random effects:

Groups Name Variance Std.Dev. Corr
Word (Intercept) 0.78368 0.88526

Subject (Intercept) 2.92886 1.71139
Frequency 0.11244 0.33532 -0.884
Number of obs: 1659, groups: Word, 79; Subject, 21

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.3612 0.3022 14.433 < 2e-16 **x

cNativeEnglish 0.2828 0.5698 0.496 0.61960

cFrequency 0.6925 0.2417 2.865 0.00417 *x

cFamilySize -0.2250 0.3713 -0.606 0.54457

cSynsetCount 0.8152 0.6598 1.235 0.21665

cPlant 0.8441 0.4778 1.767 0.07729

cNativeEnglish:cFrequency 0.2803 0.3840 0.730 0.46546
cNativeEnglish:cFamilySize -0.2746 0.5997 -0.458 0.64710 Mixed Logit
cNativeEnglish:cSynsetCount -2.6063 1.1772 -2.214 0.02683 =* Models
cNativeEnglish:cPlant 1.0615 0.7561 1.404 0.16035




Generalized Linear

Interaction in logit space Mixed Models

Florian Jaeger

M. Gillespie & P.
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Generalized Linear

Interaction in probability space Mixed Models

Florian Jaeger

M. Gillespie & P.
Graff
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Why not ANOVA? Generalized Linear

Mixed Models

Florian Jaeger

. M. Gillespie & P.
» ANOVA over proportion has several problems (cf. Graft

Jaeger, 2008 for a summary)
» Hard to interpret output
» Violated assumption of homogeneity of variances
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Fig. 1. Variance of sample proportion depending on p (for
n=1)




Why not ANOVA? ® Wied Models

» These problems can be address via transformations,

Slope of transformation
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Florian Jaeger

M. Gillespie & P.
Graff

weighted regression, etc., But why should we do this is
if there is an adequate approach that does not need
fudging and has more power?
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Summary

» There are a lot of issues, we have not covered today (by
far most of these are not particular to mixed models,
but apply equally to ANOVA).
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Summary

» There are a lot of issues, we have not covered today (by
far most of these are not particular to mixed models,
but apply equally to ANOVA).

» The mixed model approach has many advantages:

vV vy vy VY VY

Power (especially on unbalanced data)

No assumption of homogeneity of variances

Random effect structure can be explored, understood.
Extendability to a variety of distributional families
Conceptual transparency

Effect direction, shape, size can be easily understood
and investigated.
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Summary

» There are a lot of issues, we have not covered today (by
far most of these are not particular to mixed models,
but apply equally to ANOVA).

» The mixed model approach has many advantages:

vV vy vy VY VY

Power (especially on unbalanced data)

No assumption of homogeneity of variances

Random effect structure can be explored, understood.
Extendability to a variety of distributional families
Conceptual transparency

Effect direction, shape, size can be easily understood
and investigated.

You end up getting another perspective on your data
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Generalized Linear

Modeling schema Mixed Models

Florian Jaeger

) e M. Gillespie & P.
model quality? Graff

outcome
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transforming centering i interactions
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input var I ——input var 1+ £ predictor 1 —= predictor 1
+ predictor 2 - predictor 2
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input var 2 ——— input var 2+~ - predictor 3 = predictor 3

>
-+ predictor 4 = predictor 4
-------- + predictor 5 predictor 5
input var 3 ——— input var 3 ——— predictor 6 predictor 6

. Aty —
input var4~---~~|9~g~~--~» input var 4 ——— predictor 7 collinearity predictor 7
predictor 8 predictor 8
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